
Chapter 1

Introduction

In this thesis, we find arithmetic properties of a partition function, several results

on vanishing coefficients in infinite series expansions and various relations between

sums of squares and sums of triangular numbers. We use t-dissections of q-products

and Ramanujan’s theta functions. The thesis comprised of five chapters, including

this introductory chapter. In this chapter, we present some basic material on q-

products, partitions and other relevant topics. An outline of the work done in the

subsequent chapters are also presented here.

1.1 The partition function and q-products

A partition λ = (λ1, λ2, . . . , λk) of a positive integer n is a finite sequence of non-

increasing positive integer parts λi such that λ1 + λ2 + . . .+ λk = n.

The partition function p(n) is the number of partitions of a non-negative integer n,

with the convention that p(0) = 1. For example, we have p(4) = 5, as there are five

partitions of 4, namely,

(4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).

The generating function for p(n), due to Euler, is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
,
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where, for any complex number a and q, with |q| < 1, we define

(a; q)0 := 1,

(a; q)n :=
n−1∏
m=0

(1− aqm), n ≥ 1,

(a; q)∞ :=
∞∏

m=0

(1− aqm).

Throghout the thesis, for convenience, we will use fk = (qk; qk)∞.

1.2 Ramanujan’s theta functions and t-dissections

Ramanujan’s general theta function f(a, b) is defined by

f(a, b) :=
∞∑

k=−∞

ak(k+1)/2bk(k−1)/2, |ab| < 1.

Three special cases of f(a, b) are

φ(q) := f(q, q) =
∞∑

k=−∞

qk
2

=
f 5
2

f 2
1 f

2
4

, (1.2.1)

ψ(q) := f(q, q3) =
∞∑
k=0

qk(k+1)/2 =
f 2
2

f1
, (1.2.2)

and

f(−q) := f(−q,−q2) =
∞∑

k=−∞

(−1)kqk(3k−1)/2 = f1, (1.2.3)

where the product representations arise from Jacobi’s famous triple product identity

[21, p. 35, Entry 19]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞, (1.2.4)

If P (q) denotes a power series in q, then a t-dissection of P (q) is given by

P (q) =
t−1∑
k=0

qkPk(q
t),
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where Pk are power series in qt.

For example, the 3-dissections of ϕ(−q) and ψ(q) are given by [27, p. 132, Eqs.

(14.3.2) and (14.3.3)]

ϕ(−q) = (q9; q9)2∞
(q18; q18)∞

− 2q
(q3; q3)∞(q18; q18)2∞
(q6; q6)∞(q9; q9)∞

and

ψ(q) =
(q6; q6)∞(q9; q9)2∞
(q3; q3)∞(q18; q18)∞

+ q
(q18; q18)2∞
(q9; q9)∞

.

In the remaining sections of this chapter, we review the literature and briefly

outline the work done in the subsequent chapters of the thesis.

1.3 Partition functions PDt(n) and PDOt(n)

In [12], Andrews, Lewis and Lovejoy introduced and studied a new class of partitions,

partitions with designated summands. Partitions with designated summands are

constructed by taking ordinary partitions and tagging exactly one of each part size.

For example, there are 10 partitions of 4 with designated summands, namely,

4′, 3′ + 1′, 2′ + 2, 2 + 2′, 2′ + 1′ + 1, 2′ + 1 + 1′,

1′ + 1 + 1 + 1, 1 + 1′ + 1 + 1, 1 + 1 + 1′ + 1, 1 + 1 + 1 + 1′.

The total number of partitions of n with designated summands is denoted by PD(n).

Hence, PD(4) = 10. Andrews, Lewis and Lovejoy [12] also studied PDO(n), the

number of partitions of n with designated summands in which all parts are odd.

From the above example, PDO(4) = 5. Further studies on PD(n) and PDO(n) were

carried out by Chen, Ji, Jin, and Shen [24], Baruah and Ojah [20], and Xia [42].

Recently, Lin [31] introduced two new partition functions PDt(n) and PDOt(n),

which count the total number of tagged parts over all partitions of n with des-

ignated summands and the total number of tagged parts over all partitions of n
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with designated summands in which all parts are odd, respectively. From the par-

titions of 4 with designated summands given above, we note that PDt(4) = 13 and

PDOt(4) = 6. Lin [31] proved that the generating functions of PDt(n) and PDOt(n)

are

∞∑
n=0

PDt(n)q
n =

1

2

(
f 5
3

f 3
1 f

2
6

− f6
f1f2f3

)
(1.3.1)

and

∞∑
n=0

PDOt(n)q
n =

qf2f
2
3 f

2
12

f 2
1 f6

. (1.3.2)

Lin [31] also derived several congruences modulo small powers of 3 for PDt(n)

and PDOt(n). For example, for any nonnegative integers n and k,

PDt(3n) ≡ 0 (mod 3),

PDt(3n+ 2) ≡ 0 (mod 3),

PDt(36n+ 21) ≡ 0 (mod 9), (1.3.3)

PDt(36n+ 33) ≡ 0 (mod 9), (1.3.4)

PDt(48n+ 20) ≡ 0 (mod 9),

PDt(48n+ 36) ≡ 0 (mod 9),

PDt(72n+ 42) ≡ 0 (mod 9),

PDt(72n+ 66) ≡ 0 (mod 9),

PDOt(8n) ≡ 0 (mod 9),

PDOt(24n) ≡ 0 (mod 27),

PDOt(36n) ≡ 0 (mod 27),

PDOt(36n+ 24) ≡ 0 (mod 27),

PDOt(8 · 52k+1(30n+ 6a+ 5)) ≡ 0 (mod 27),

where a = 1, 2, 3, 4.

Very recently, Adansie, Chern and Xia [1] found the following two infinite families

of congruences modulo 9.
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For any nonnegative integers n and k,

PDt(3
2k+1(9n+ 2)) ≡ 0 (mod 9)

and

PDt((3
2k+1(9n+ 7)) ≡ 0 (mod 9).

By analyzing a large number of values of PDt(n) and PDOt(n) via MAPLE, Lin

[31] further speculated the existence of congruences modulo small powers of 2. For

example, he conjectured that, for any nonnegative integer n,

PDt(48n+ 28) ≡ 0 (mod 8), (1.3.5)

PDt(48n+ 46) ≡ 0 (mod 8), (1.3.6)

PDOt(8n+ 6) ≡ 0 (mod 8), (1.3.7)

and

PDOt(8n+ 7) ≡ 0 (mod 8). (1.3.8)

In Chapter 2 of this thesis, we prove the above congruences. In fact, we find the

exact generating functions of PDOt(8n + 6) and PDOt(8n + 7) that immediately

imply (1.3.7) and (1.3.8), respectively. We also find many new congruences and

infinite families of congruences for PDt(n) modulo 2 and 4.

1.4 Infinite series expansions with vanishing co-

efficients

In 1978, Richmond and Szekeres [33] proved that if

∞∑
n=0

αnq
n :=

(q3, q5; q8)∞
(q, q7; q8)∞

and
∞∑
n=0

βnq
n :=

(q, q7; q8)∞
(q3, q5; q8)∞

,
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then the coefficients α4n+3 and β4n+2 always vanish. They also conjectured that if

∞∑
n=0

γnq
n :=

(q5, q7; q12)∞
(q, q11; q12)∞

and
∞∑
n=0

δnq
n :=

(q, q11; q12)∞
(q5, q7; q12)∞

,

then γ6n+5 and δ6n+3 vanish.

In [11], Andrews and Bressoud proved the following general theorem, which

contains the results of Richmond and Szekeres as special cases.

Theorem 1.4.1. (Andrews and Bressoud) If 1 ≤ r < k are relatively prime integers

of opposite parity and

(qr, q2k−r; q2k)∞
(qk−r, qk+r; q2k)∞

=:
∞∑
n=0

ϕnq
n,

then ϕkn+r(k−r+1)/2 is always zero.

In [10], Alladi and Gordon generalized the above theorem as follows:

Theorem 1.4.2. (Alladi and Gordon) Let 1 < m < k and let (s, km) = 1 with

1 ≤ s < mk. Let r∗ = (k − 1)s and r ≡ r∗ mod mk with 1 ≤ r < mk.

Put r′ = ⌈r∗/mk⌉ mod k with 1 ≤ r′ < k. Write

(qr, qmk−r; qmk)∞
(qs, qmk−s; qmk)∞

=:
∞∑
n=0

µnq
n.

Then µn = 0 for n ≡ rr′ mod k.

They also proved the following companion result to Theorem 1.4.2.

Theorem 1.4.3. (Alladi and Gordon) Let m, k, s, r∗, r and r′ be defined as in The-

orem 1.4.2 with k odd. Write

(qr, qmk−r; qmk)∞
(−qs,−qmk−s; qmk)∞

=:
∞∑
n=0

µ′
nq

n.

Then µ′
n = 0 for n ≡ rr′ mod k.

The result of Alladi and Gordon in Theorem 1.4.2 does not provide any infor-

mation about vanishing coefficients in the cases where k < m or k = m. In [32], Mc

Laughlin proved the following theorem which covers the cases k ≤ m as well.
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Theorem 1.4.4. (Mc Laughlin) Let k > 1, m > 1 be positive integers. Let r =

sm + t, for some integers s and t, where 0 ≤ s < k, 1 ≤ t < m and r and k are

relatively prime. Let

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

=:
∞∑
n=0

νnq
n;

then νkn−rs is always zero.

He also found the following companion result to Theorem 1.4.4.

Theorem 1.4.5. (Mc Laughlin) Let k > 1, m > 1 be positive integers with k odd.

Let r = sm+ t, for some integers s and t, where 0 ≤ s < k, 1 ≤ t < m and r and k

are relatively prime. Let

(qr−tk, qmk−(r−tk); qmk)∞
(−qr,−qmk−r; qmk)∞

=:
∞∑
n=0

ν ′nq
n;

then ν ′kn−rs is always zero.

All the proofs of the above theorems use Ramanujan’s well-known 1ψ1 summation

formula. Very recently, Hirschhorn [28] proved the following interesting result by

using only Jacobi triple product identity and elementary q-series manipulations.

Theorem 1.4.6. (Hirschhorn) If

∞∑
n=0

anq
n := (−q,−q4; q5)∞(q, q9; q10)3∞ and

∞∑
n=0

bnq
n := (−q2,−q3; q5)∞(q3, q7; q10)3∞,

then

a5n+2 = a5n+4 = 0 (1.4.1)

and

b5n+1 = b5n+4 = 0. (1.4.2)
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Note that the forms of the q-products in Theorem 1.4.6 are quite different from

those in Theorems 1.4.1–1.4.5.

Motivated by the work of Hirschhorn [28], Tang [36] found more results on van-

ishing coefficients in some other comparable q-series expansions. In particular, Tang

[36] proved the following theorem.

Theorem 1.4.7. (Tang) If

∞∑
n=0

cnq
n := (−q,−q4; q5)3∞(q3, q7; q10)∞ and

∞∑
n=0

dnq
n := (−q2,−q3; q5)3∞(q, q9; q10)∞,

then

c5n+3 = c5n+4 = 0 (1.4.3)

and

d5n+3 = d5n+4 = 0. (1.4.4)

In Chapter 3 of our thesis, we prove the following results.

If an, bn, cn and dn are as defined in the previous two theorems, then

∞∑
n=0

b(5n)qn −
∞∑
n=0

a(5n− 2)qn =
f 4
1

f 4
2

,

b5n+1 = a5n−1,

b5n+2 = a5n,

b5n+3 = a5n+1,

b5n+4 = a5n+2,

c5n = d5n,

c5n+2 = d5n+2,

c5n+3 = d5n+3,

c5n+4 = d5n+4,
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and

∞∑
n=0

c5n+1q
n −

∞∑
n=0

d5n+1q
n = 4

f 4
2

f 4
1

.

Furthermore, we notice from the above that instead of proving both (1.4.1) and

(1.4.2) by Hirschhorn [28], it would have been enough to prove only one of (1.4.1) or

(1.4.2). Similarly, instead of proving both (1.4.3) and (1.4.4) by Tang [36], it would

have been enough to prove only one of (1.4.3) or (1.4.4). It also follows from the

last identity that c5n+1 > d5n+1.

In addition to the above results, we prove several new results in that chapter.

1.5 Relations between sums of squares and sums

of triangular numbers

Let N+, N and Z denote the set of positive integers, the set of nonnegative integers,

and the set of integers, respectively. For an integer ℓ ≥ 2, let Nℓ = N×N× . . .×N(ℓ

times) and Zℓ = Z×Z× . . .×Z(ℓ times). For a1, a2, . . . , aℓ ∈ N+ and n ∈ N, define

N(a1, a2, . . . , aℓ;n) : =
∣∣{(x1, x2, . . . , xℓ) ∈ Zℓ : a1x

2
1 + a2x

2
2 + · · ·+ aℓx

2
ℓ = n

}∣∣
and

T (a1, a2, . . . , aℓ;n) : =
∣∣∣{(x1, x2, . . . , xℓ) ∈ Nℓ : a1

x1(x1 + 1)

2
+ a2

x2(x2 + 1)

2

+ · · ·+ xℓ
xℓ(xℓ + 1)

2
= n

}∣∣∣,
where we take N(a1, a2, . . . , aℓ; 0) = T (a1, a2, . . . , aℓ; 0) = 1.

From the above definitions and the definitions of ϕ and ψ in (1.2.1) and (1.2.2),

it is clear that

∞∑
n=0

N(a1, a2, . . . , aℓ;n)q
n = ϕ(qa1)ϕ(qa2) · · ·ϕ(qaℓ)
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and

∞∑
n=0

T (a1, a2, . . . , aℓ;n)q
n = ψ(qa1)ψ(qa2) · · ·ψ(qaℓ).

Jacobi and Legendre proved that

N(1, 1, 1, 1;n) = 8
∑
d|n,4-d

d

and

T (1, 1, 1, 1;n) = σ(2n+ 1),

respectively, where σ(n) =
∑

d|n d.

For further formulas for N(a, b, c, d;n) and T (a, b, c, d;n) for certain values of

a, b, c, d ∈ N+, we refer to Dickson’s historical comments [11], Cooper’s papers [25,

26], Alaca’s papers [3, 4], papers [5] – [9] by Alaca, Alaca, Lemire and Williams,

Williams’ papers [39, 40] and book [41], and papers [37, 38] by Wang and Sun.

Finding relations between N(a, b, c, d;n) and T (a, b, c, d;n) is another interesting

area of research. For a, b, c, d ∈ N+ with 5 ≤ a+ b+ c+ d ≤ 8, let

C(a, b, c, d) = 16 + 4i1(i1 − 1)i2 + 8i1i3,

where ij is the number of elements in {a, b, c, d} which are equal to j. When 5 ≤

a+ b+ c+ d ≤ 7, Adiga, Cooper and Han [2] proved that

C(a, b, c, d)T (a, b, c, d;n) = N(a, b, c, d; 8n+ a+ b+ c+ d).

When a+ b+ c+ d = 8, Baruah, Cooper and Hirschhorn [15] proved that

C(a, b, c, d)T (a, b, c, d;n) = N(a, b, c, d; 8n+ 8)−N(a, b, c, d; 2n+ 2).

Wang and Sun [37, 38] and Sun [34] discovered several new relations between

N(a, b, c, d;n) and T (a, b, c, d;n). In particular, in [34], Sun posed 23 conjectures

(Conjecture 2.1 – Conjecture 2.23) stating some relations between N(a, b, c, d;n)
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and T (a, b, c, d;n). Five of the conjectures (Conjectures 2.2, 2.3, 2.4, 2.7, and 2.11)

were proved by Yao [45] by utilizing (p, k)-parametrization of theta functions. In

Section 8 of [45], Yao also remarked that Conjectures 2.1, 2.14, 2.15, 2.19, 2.20, and

2.21 can also be proved in a similar way. In fact, in another recent paper, Yao [46]

proved some general relations from which Conjectures 2.1, 2.15, 2.19, 2.20, and 2.21

follow as special cases. Recently, Sun [35] himself confirmed Conjectures 2.2 and 2.6

– 2.8 by proving the following general result.

Let m ≡ 1 (mod 4) or m ≡ 4 (mod 8). Suppose that there is an odd prime

divisor p of m such that
(

4n+5
p

)
= −1, where

(
a
p

)
is the Legendre symbol. Then

32T (1, 1, 8,m;n) = N(1, 1, 8,m; 8n+ 10 +m).

Most recently, Xia and Zhong [44] proved Conjectures 2.18, 2.22, and 2.23 by using

theta function identities.

In Chapter 4 of the thesis, we prove the remaining seven conjectures, namely,

Conjectures 2.5, 2.9, 2.10, 2.12, 2.13, 2.16, and 2.17, of Sun [34].

In another paper [35], Sun also found several more relations between N and T

and posed seven more open conjectures (Conjecture 6.1 – Conjecture 6.7). Five are

on ternary quadratic forms and two are on quaternary quadratic forms. The five

conjectures on the ternary case are proved in [30] by an elementary method. Xia

and Yan [43] proved Conjecture 6.1 – Conjecture 6.6.

In the final chapter of our thesis, we give alternative proofs of three of the

conjectures of Sun [35] that were proved by Xia and Yan [43] and also prove the

remaining conjecture, i.e., Conjecture 6.7, in [35]. Furthermore, we prove some new

relations between N(a, b, c, d;n) and T (a, b, c, d;n).
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