Chapter 2

Number of tagged parts over the
partitions with designated
summands

2.1 Introduction

In this chapter, we prove the congruences (1.3.5)-(1.3.8) and also find several
new congruences and infinite families of congruences modulo 2 and 4.

The following theorem states the exact generating functions of PDO¢(8n + 6)
and PDO;(8n 4 7) that immediately implies the congruences (1.3.7) and (1.3.8).

Theorem 2.1.1. For any nonnegative integer n, we have

x 1 Bl I )
];)DC)t n__ 2 2 12 _ 16 2J2 4J12 2 ]
2_PDO\(8n+0)g 8( 7f3f12 ~ g 00T ) (L)
and

+ 4q

iPDOt@n”)q":S(f"?f}gfif+ f2f332f6 fff;‘f) 219

n=0
In the next theorem and corollary, we present our new congruences and infinite

families of congruences modulo 2 and 4 for PD¢(n).
Theorem 2.1.2. For any nonnegative integers k, £ and n, we have

PD,(24n + 12) = 0 (mod 2), (2.1.3)
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PD;(24n 4 21) = 0 (mod 2),
PD,(48n + 30) = 0 (mod 2),
PD;(144n + 102) = 0 (mod 2),
PD,(216n + 153) = 0 (mod 2),
PD,(36n + 21) = 0 (mod 4),
PD,(36n + 33) = 0 (mod 4),
PD,(2%% - 12n) = PD,(12n) (mod 4),
PD, (3" - 2%(24n + 12)) = PD,(24n + 12) (mod 4),
PD;(96n + 60) = 0 (mod 4),
PD;(96n + 84) = 0 (mod 4),
PD¢(144n 4 84) = 0 (mod 4),
PD, (144n 4+ 120) = 0 (mod 4),
PD;(144n 4 132) = 0 (mod 4),
PD,(3"(288n + 204)) = PD(288n + 204) = 0 (mod 4),
PD;(864n + 792) = 0 (mod 4),
PD,(1728n + 1224) = 0 (mod 4),
PD,(2592n + 1080) = 0 (mod 4),
PD;(36n + 30) = 0 (mod 4),
PD;(108n 4+ 90) = 0 (mod 4),

PD,(3%*(12n + 6)) = PD;(12n + 6) (mod 4).
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Corollary 2.1.3. For any positive integers k, { and any nonnegative integer n, we

have

PD, (3 - 2%*(8n + 5)) = 0 (mod 4),

PD, (3" - 2%(8n + 7)) = 0 (mod 4),
PD;(3"- 2% (12n + 7)) = 0 (mod 4),
PD, (3" 2%%(12n + 11)) = 0 (mod 4),
PD(3 - 2***1(6n 4 5)) = 0 (mod 4),
PD (3™ - 2%(24n + 17)) = 0 (mod 4),
PD,(3? - 22" (12n + 11)) = 0 (mod 4),
PD,(3? - 22" (24n 4+ 17)) = 0 (mod 4),
PD(3* - 22" (12n + 5)) = 0 (mod 4),
PD;(2-3¥(6n +5)) = 0 (mod 4).

Proof. Congruences (2.1.12)— (2.1.14) and (2.1.16) may be rewritten as
PD;(24(4n + 2) + 12) = 0 (mod 4),
PD(24(4n + 3) + 12) = 0 (mod 4),

PD;(24(6n + 3) + 12) = 0 (mod 4),
and
PD.(24(6n + 5) + 12) = 0 (mod 4),

respectively. From (2.1.11) and the above congruences, we easily arrive at the first
four infinite families of congruences of the corollary. Since the other congruences

can also be proved in a similar way, we omit the details. O

In Section 2.2, we present some preliminary results. In Section 2.3, we prove
Theorem 2.1.1 whereas Section 2.4 is devoted to proving the congruences (1.3.5)

and (1.3.6). In Section 2.5, we prove Theorem 2.1.2.
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2.2 Preliminary results
In the following lemma we state some useful 2-dissections.

Lemma 2.2.1. We have
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2 3 fsfa fi fro

Proof. Identities (2.2.1) and (2.2.3) are the 2-dissections of ¢(q) and ¢(q?) (see [27,

(2.2.10)

+

Egs. (1.9.4) and (1.10.1)]). Replacing ¢ by —¢ in (2.2.1) and (2.2.3), and then using

(—a;—q) _f (2.2.12)
R 0

we readily arrive at (2.2.2) and (2.2.4), respectively. Identities (2.2.5), (2.2.6),
(2.2.7), (2.2.9), (2.2.10), and (2.2.11) are Eqs. (30.12.1), (30.12.3), (22.1.13), (22.1.14),
(30.10.2), and (30.10.4), respectively, in [27]. Finally, (2.2.8) follows from (2.2.7) by

replacing ¢ by —¢ and then using (2.2.12). O
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The next lemma we present some useful 3-dissections.

Lemma 2.2.2. We have

f_12 _ f_g o f3f18
R he hi (22.13)
4 r6
fi = frald®) — 3qfs, (2.2.15)
fif,—a( )J;'g + 3qa(q )J;g +9 2{?2, (2.2.16)
1 f9 f18 2f9f18
ih ) g el g 30 (2:217)
where
m2+mn+n?2 3n+1 C]3"+2
z_:_ q _1+62 1_q3n+1_1_q3n+2 :

Proof. The first identity is equivalent to the 3-dissection of ¢(—¢q) (see [27, Eq.
(14.3.2)]). The second can be obtained from the first by replacing ¢ with wq and
w?q and then multiplying the two results, where w is a primitive cube root of
unity. Identities (2.2.15), (2.2.16) and (2.2.17) are in [27, Eqs. (21.3.1), (39.2.8)
and (22.9.4)]. O

We also recall the following useful results from [27, Egs. (22.1.12), (22.11.8) and
(22.11.9)], where the first is a 2-dissection of a(q):

2 r2
a(q) = a(q") + 6q‘7;f2‘7;§62,
a(q) + 2a(¢*) = J{Qf?’

1
a(q) + a(¢®) = 2;1?,;63

We end this section by noting the following congruences which can be easily

established:

a(q) =1 (mod 2),
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a*(g) =1 (mod 4),
fi = fo (mod 2),
fi = f3 (mod 4),
fi = f; (mod 8).

We will use the identities and congruences of this section in the subsequent

sections without referring to these.

2.3 Proof of Theorem 2.1.1

We have
. w_ fte B3
PDO; = S
2 PPOm)" = =g 5,
 foffs <fff6f122 f4f62f8f24>
= Gttt T R ) (2:3.1)
from which we extract
S PDO(2n)g" = 20fafifofrz Jff
n=0 1
3 20 £2
= 2qf2fafef12 <]L%JJ:§2 + 3qf4§gf12) .
From the above, we extract
Z PDO(4n + 2)¢"
n=0
3
R
f3 ( i fff§)2( B 3f§f§‘4>
= 9= 4 -4
fo \IER )\
i B 1 SN/
5 S5 o 2 13 3f6f24
- 3 f3° fo fou — 6dq 111 fo o —128¢ 5f4f6f8f24

1f8f12 7f12 3.f12 7
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from which we extract

N S50 B S 3T
PDOt(Sn + 6)qn = 16 2 J6 _ 8q 2 12 128(]2 2 4 12’
; TN e 12

which is (2.1.1).

Next, from (2.3.1) we also extract

- w_ fafs 1
;PDOt(QTH—l)q e
_fifs ( g f4fs>
= e\ T )
from which we have
ZPDOt (4n + 3)q"
n=0
_ P
fo  f& f
_ Lt ( 3 f4f16) (fffﬁffz f4f§fsfg4)2
G \T% T2t ) \Gihde T fi
F2 fe 8 fis FLfE 13 fra Ji fo Sl fis
—4
T O e TS i
LT3 Ji 18 fa S RIS s fis 3
16246824 32246 16 32346 16J24
TR 1, B 2
from which we extract
0 4 4
> “PDO(8n + T)q" =8 if;g;f + 16f29f11323§,£2f6 + 32q—f§f§{§j§ﬁ2,

n=0

which is (2.1.2).

2.4 Proofs of (1.3.5) and (1.3.6)

We have

2 PDy g = . L o L
= 8 R ff

5
B (@ B+ saat) B 0 )
6 3 3
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_E(( 62 /3 + qalq )f18 +3 2f9f18) (2.4.1)

f3 f3 f6 f3 fﬁ f3 f6
from which we extract
2 i PD¢(3n + 1)¢" = 3a(q) fi a(q) 23 fo
2 5"

g )
( i gag) "9
s (358 - D aw

AN

_ fﬁ‘}g (alg) + 2a(¢®) — 1) a(q)

_ﬁ( a(q) + a(—q) + 2a(¢?) — 1 — a(—q)) a(q)
j}j; - (2a(q*) + 2a(¢®) — 1 — a(—q)) a(q)

(L
f1 fg By

a(-
_ f4f6_ f4f12 o
flfz (f2f12 1)( )+ 0a ) a ‘D“(q))
_ ( I3 fe <

f1f2 s
_ _ 2f4f12)

( T )

- & (( H () — ata') — ) + 36202

f2 f2f12 f2f6

G (A, )
ca(agy o ) gt )

Extracting the terms involving ¢>**! from both sides of the above and then dividing

by 2, we find that

S PDy(6n + 4)q" = ;( B (BB () - ate?) - ) + 300252 )
n=0 1 1

£ ()
i (25 3% )




Taking congruences modulo 8, we have

f: PD,(6n + 4)q"
=

;i <6f2f4 (a(q®) + a*(¢*)) + 4 182;4 5 ﬁ;ﬁf)
B (s S )
= (6fif5a(q®) + 10f{f5) - flf ol :Z;j
= o) 1005 (it o)

4 2
oot (gt -

) (mod 8).

We extract
i PDy(12n + 4)¢"
n=0
— (a2 2 o JiL8 31
= (64 fyala) + 10/213) fLhafifh Jr5fir’fzxfu
f2f4 . f_3 f62 . £3 13
f6 a(q) - f1 +10f4 +5f s Iifs

f2f4 f4f12) (f4f6f122 f4fgf8f24)
e < (") + 64 Jof6 I3 fs fou +2 fafia

2 2 r4
+10ff+5f:;6012 (f2f8f12 _ f4f6f24>

Rl "RRR

_ N o [1 fsfrafou NI
‘6<“(Q)f§fsf24“2q 7 +q<2“<“ GIE

£t o[BI Rffi
+6f25f6f8f24>>“Of‘*”(fﬂﬁf& KA
3 2f4f6f24 3 ilfgf264

Rfhe " BRG > o

from which we extract

> PDy(24n + 4)q"

n=0

20

(2.4.2)
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= fala )ffj”jj6”12+1of22+5<]22f§+ @éé)
oo )

( %)

= 6a(q )f;f +10f§+5<f2;§2f6 +3 ZJZJ;};) (mod 8).

Therefore,
PD;(48n + 28) = 0 (mod 8).

which is (1.3.5).

Now, from (2.4.2), we also extract

> PD,(12n + 10)q"

n=0
= (67 ala) + 10733) die 4 02l
1J3J4J6 1J6
o212 folt fafefr2
T a(q) + 102242 i + 1022002 7.
f2.];»];‘12 ( (q4)_'_6qf]‘212ff‘162> _'_10f2ff612 +10f2];§)'2f12 (Il’lOd 8),
from which we extract
ZPDt 24n + 22)q" f}f = 36/2f3 (mod 8),

n=0

Thus,
PD;(48n 4 46) = 0 (mod 8),

which is (1.3.6).
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2.5 Proof of Theorem 2.1.2

From (2.4.1) we extract

QZPDt 3n o f3 2(q) f3 ( 2)

[ f3 13
_ 1 5 ad) S
A I h
_ i_a(QQ)) (fffa @)
_(Z i) \Jep, P07, ed® 251
from which we extract
QiPDt(Gn)q"
n=0
_ (i_ﬂ) 313
5 13 ) fife
BB BB

fe fi fe [P
_f (f4f6f12 49 f4f62f8f24)

= fo \Bfsfu Ut
o (filfefia f4f§f8f24) ( s @)
T, <f§’f8f24 +2q T a(q*) + 6q N7 (mod 4). (2.5.2)
Therefore,
S W B ORRRR
22 PDu1ang" = e = g o

2 r2
= Lo T ) (moa ),

from which we readily arrive at
PD;(24n 4 12) = 0 (mod 2),

which is (2.1.3).
Next, extracting the terms involving ¢*"™! from both sides of (2.5.2), and then

dividing by 2, we have

fafsfafi2
fifs

fofsfife ., S5

_ 2 —
N T3

> PD(12n+6)¢" =

n=0



23

f2f4f12 f3
fo  f
_ fafafie [ F2f8 fff6f122)
= B002 (s + o) moa,

from which we extract

ZPDt24 +6)¢" —%-%:JZ( mod 2),
n=0

from which we further extract
PD;(48n 4 30) = 0 (mod 2),

which is (2.1.5), and

> PDu(48n +6)q" = f} = fsa(q®) — 3¢S (mod 2),

n=0

which implies
PD;(144n + 102) = 0 (mod 2),

which is (2.1.6).

Now, from (2.5.1) we extract

QZPDt 6n + 3)g" (1 &?)f_é’

— 2B f
_Jo IS (4 @)
BB (a(q ) +607 5, ) medd)
from which we extract
Z PD;(12n + 9)¢" _ b ﬁ fi _ f2 (mod 2). (2.5.3)
n=0

This implies
PD;(24n + 21) =0 (mod 2),
which is (2.1.4). Furthermore,

PD;(36n + 21) = PD(36n + 33) = 0 (mod 2),
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which are weaker versions of (2.1.8) and (2.1.9).

From (2.5.3) we also extract

Z PD(72n + 9)¢" = f; = fsa(q¢®) — 3qf; (mod 2), (2.5.4)

n=0

from which we further extract
PD;(216n + 153) = 0 (mod 2),

which is (2.1.7).

From (2.4.1), we extract

o f3 a2 f3 2

QZPDt (3n)q = F (q) — iE a(q”)
- fffg (2(a(g) + a(¢)) = (a(q) + 2a(q?)))"
ff‘;Q ((alq) +2a(¢®)) — (a(g) + a(e?)))

B (f2f3 f2f> f3 ( f2f3 f2f3>

SRR\ g TR pR\CRR R

Taking congruences modulo 8, we have

00 2 1

— i hhs >
f6 ( f8 f12 + f4f24 )
- A\BRER T TBRE R

E f2f8f12_ f4f6f24) .
R <f§f6f§4 572, ) H2 (med8), (2.5.5)

from which we extract

2> "PD,(6n + 3)¢"
n=0

_ Bl BT
TS fifRfE
_ folts f_122 2 £2
=g, Vi il
_Bfh g S ‘<f2f82f{*2 ) f4f6f24)
 fife Tife

fifof3 f2fsf12
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Ry LS _(f%fg‘fl%_ - 2fff§f244)
= PP i, PRt i ) med 8)

Extracting the terms involving ¢?"*! from both sides, and then dividing by 2, we

have

o 4
Z PD:(12n +9)¢" = f—62 (mod 4),
n=0 f3

from which we extract

PD;(36n 4 21) = 0 (mod 4)
and

PD;(36n 4 33) = 0 (mod 4),

which are (2.1.8) and (2.1.9), respectively.

Now, from (2.5.5), we extract

- n_ i3 fifa
2D PDUOn)" = g + 5 2
_ LR R 1
=nmR tem ot
B <f2ffff‘2 f2f8f12f24>

= 2q
I3[l \ f§ fsfoa fufd
2 r4 14
—3f§f§ ( - +4qf4f8>+2(mod 8), (2.5.6)
f2f12 f8
which yields
S e 1 , 1
2 PD:(12n)¢" = === . — — 3 — +2
2 PDU{120)" = FEE =30
S B ()
fafia \f3*fg )
14 f f
—3f3 < T2 4P 24) +2 (mod 8), (2.5.7)
fﬁ f24 6
from which we extract
f2 32 2 1
2213Dt 2n)q" == 2 37— +2

n=0 f6 1 3



_f (fff6f122+ f4f6f8f24)

~ s 5 fa faa s iz
_ i 3f12f24
315 | =2 + 44 + 2 (mod 8).
fs f24 G
We extract
2 ;PDt(ZBn)q =t T f3 2 (mod 8).

From (2.5.7) and (2.5.9), we arrive at
PD¢(12n) = PD(48n) (mod 4),

which, by iteration, gives (2.1.10).
We also extract from (2.5.7)

> PDy(24n +12)¢" = 2fF — 29/},

n=0
= 2f12a(q12) - 6q4f§6 - 2Qf132 (mod 4),

from which we extract

D PDi(24(3n + 1) +12)¢" = 2} — 2qf}, (mod 4).

n=0

From the above two, we have
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(2.5.8)

(2.5.9)

(2.5.10)

PD,(24(3n + 1) + 12) = PDy(3(24n + 12)) = PD,(24n + 12) (mod 4).

Thus, for any nonnegative integer /,
PD,(3°(24n + 12)) = PDy(24n + 12) (mod 4).

Combining the above with (2.1.10), we readily arrive at (2.1.11).

Next, from (2.5.8) we also have

QiPDt(%n)q”E—g-é— f6+2
e fo f2 fs
_ §<f6f9 f6f9 2f6f18> f6 d
=\ TRy P ) 3 2 (mod )



27

from which we extract

0 3
D PDy(72n + 48)¢" = 2f2{i6
n=0 fl
3
= 2f—6 (mod 4),

2

from which we further extract
PD;(144n + 120) = 0 (mod 4),

which is (2.1.15).
From (2.5.10), we extract

> PDy(48n + 12)¢" = 2/ (mod 4) (2.5.11)
n=0

and
> PD,(48n + 36)¢" = 2f§ (mod 4), (2.5.12)
n=0

which readily implies
PD;(96n + 60) = 0 (mod 4)
and

PD,(96n + 84) = 0 (mod 4),

which are (2.1.12) and (2.1.13), respectively. Furthermore, equating the coefficients

of @31 and ¢***2 from both sides of (2.5.12), we arrive at

PD;(144n 4 84) = 0 (mod 4)
and

PD, (144n + 132) = 0 (mod 4),

which are (2.1.14) and (2.1.16), respectively.
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From (2.5.11) and (2.5.12), we also have

Z PD;(96n + 12)q Z PD,(288n + 36)¢" = 2f} = 2 (fsa(¢®) — 3¢f;) (mod 4),

n=0 n=0

from which we extract
PD;(288n + 204) = PD;(3(288n + 204)) = 0 (mod 4),

which, by iteration, yields (2.1.17).

From (2.5.8), we extract

S w_ fofafafie o fEfis
;%PDt(zlé%n +24)¢" = T 2 s
_ Rife fi
fo i

) - 2qf132 (mod 4),

 hafide (S35 RS
=77 (fé’ffz+3q /1

from which we further extract

> PD,(96n + 24)¢" =

n=0

;z (foa(q®) —3¢° fi5) (mod 4) (2.5.13)

and

_ o fs
P

—2fF 3L fi

5
=213+ 3fof3 (fgj% +2 %?S) (mod 4).  (2.5.14)

Z PD,(96n + 72)¢" —2f3

n=0

From (2.5.13) we extract

0 2
> PDy(288n +216)¢" = f§ - I
n=0 f2
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(B f3f128>
=Js (f18 Thofs ) (oY)

from which we extract
PD;(864n + 792) = 0 (mod 4),

which is (2.1.18). We further extract

> PDy(864n + 216)q" =

n=0

from which we have
PD;(2592n 4 1080) = 0 (mod 4),

which is (2.1.20).
From (2.5.14) we extract

> PD,(192n + 72)¢"
n=0
31
=9213+3
Js + 3505
=i +353 53
f3
4 r6 3 r3 2 r3
= 2f§+3f9? (flg?f;S +2q2f12{18 +4q4f12{:36) (mod 4)7
I6 136 6 6
from which we extract
o0 3 r4 £6
> PDy(576n + 72)¢" = 2f} +3f1§4:fﬁ
=0 f2 i
fé) 3
=|2+37>)-
( o)
2
= (2 + 3%) (fsa(g®) —3¢f3) (mod 4),

from which we further extract

PD,(1728n + 1224) = 0 (mod 4),
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which is (2.1.19).

From (2.5.6), we extract

= w_ fofsfafia i fsfl
PD, (12 6 = — -2
2 P20 +0)q" =~ — 27
= 2ff +3f2%f12 . ;_%
o afufis (fffé? fff6ffz>
DA A T
(2+3f6)-f3+qf3 2 (2.5.15)
fin) 2f
2
= (2 + 3]{—) (f12a(q12) - 3q4f§’6)
12
s (fis 2 fo /3% )
*ahs (f36 T hots) MO0
from which we extract
PD;(36n 4 30) = 0 (mod 4),
which is (2.1.21), and
S " PDy(36n + 18)" = 243 + 3af, ;—2 + % fi
n=0
_ 3 3 @ 5.2 fof36 )
= 2fia S0k (f36 s
2
+ 4% (Falg™) = 3¢*f3) (mod 4).

From the above we extract
PD;(108n + 90) = 0 (mod 4),

which is (2.1.22), and

i PD;(108n + 54)q" (2 + 3;6 > fitafly J}—2 (mod 4). (2.5.16)
n=0
From (2.5.15) and (2.5.16), we have

PD;(9(12n + 6)) = PD¢(12n + 6) (mod 4),

which, upon iteration, yields (2.1.23). This completes the proof.
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