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1.1 Introduction 

Snakes, also called serpents, are a class of limbless reptiles that are grouped 

under the suborder Serpentes. They are believed to have diverged from terrestrial lizards 

(order Squamata) in the Cretaceous period which dates back to 70 to 140 million years 

[1], and they flourished in the Neogene period, which is appropriately known as the 

‘Age of Snakes’ [2]. On the basis of their ability to produce a highly specialized toxic 

secretion known as venom, snakes are broadly classified into two categories, venomous 

and non-venomous. There are nearly 3000 species of snakes distributed throughout the 

globe with exceptions to Antarctica and several islands, including Greenland, Iceland, 

and Ireland, and among them only one-fifth are venomous [3,4]. 

Every venomous organism, including snakes, are equipped with venom glands 

whose primary function is the synthesis and storage of a suite of toxins for instant 

availability and to provide protection to the snake itself against its own toxins [5-7]. 

Snake venom contains a myriad of proteins and peptides that have accelerated through 

positive Darwinian evolution to aid in immobilizing, killing, and digesting prey [8-11]. 

Bestowed with high affinity and selectivity, these zootoxins primarily affect the 

cardiovascular and neuromuscular systems, and blood coagulation of prey or victim 

[12-18]. Nevertheless, this spectrum of medically important toxins, with meticulous 

characterization, also holds good promise as candidate lifesaving drugs [18-20]. 

India has a unique relationship with serpents, which are both respected and 

feared. This country is the home to more than 250 species of snakes, out of which about 

60 are highly venomous [21,22]. Among the venomous species, the ‘Big Four’ snakes 

namely Russell’s Viper (Daboia russelii) (RV), Spectacled Cobra (Naja naja), 

Common Krait (Bungarus caeruleus), and Saw-scaled Viper (Echis carinatus) are 

distributed throughout the country and are responsible for most cases of envenoming, 

morbidity and mortality [23,24]. Apart from these deadly species, Monocelleate Cobra 

(N. kaouthia), Wall’s Krait (B. walli), Sind Krait (B. sindanus), King Cobra 

(Ophiophagus hannah), and several species of Pit Vipers (Hypnale hypnale, 

Protobothrops spp.) also inhabit in different parts of the country and can cause fatalities 

albeit incidence of snakebite by these species of snakes, except N. kaouthia, is much 

less compared to Big Four venomous snakes [14,25-27]. 
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1.2 Families of venomous snakes 

Among the 3000 species of snakes distributed worldwide, about 600 species are 

known to be venomous and are classified under the four families namely Colubridae, 

Viperidae, Elapidae and Atractaspididae [4,6,28]. The members of Colubridae, the 

largest snake family with almost 1,800 species, are distributed throughout the globe 

[6,28-30]. It is further sub-divided into 7 subfamilies that includes several medically 

relevant species such as the Boomslang (Dispholidus typus), the Red-necked Keel-back 

(Rhabdophis subminiatus), and Brown Treesnake (Boiga irregularis) [31,32]. The 

family Viperidae with around 310 species is classified into three subfamilies - 

Azemiopinae (with only one recognized member, Azemiops feae), Viperinae (true 

Vipers belonging to genus Bitis, Cerastes, Echis, and Daboia), and Crotalinae (Pit 

Vipers belonging to Crotalus, Agkistrodon, and Bothrops genera). These venomous 

snakes are primarily terrestrial and widely distributed in Asia, Africa, Europe, and 

America [4,31,32]. About 350 species of the Elapidae family are distributed throughout 

Africa, America, Middle East, Asia, and Australasia. The family is further sub-divided 

into two sub-families - Hydrophiinae (sea snakes belonging to genus Laticauda, 

Enhydrina, Hydrophis, and Microcephalophis) and Elapinae (belonging to genus Naja, 

Bungarus, Dendroaspis, Oxyuranus, Calliophis, and Micrurus) [31,32]. The members 

of the family Atractaspididae are distributed in Africa and Middle-east and contain only 

a few medically important snakes including burrowing asp (Atractaspis engaddensis), 

and southern African stiletto (Atractaspis bibronii) [32,33]. 

Notably, members of all the four families of snakes produce venoms containing 

an arsenal of toxin classes, several of which share significant sequence homology across 

the family. However, with marked differences in amino acid sequence and relative toxin 

abundance, venoms from each family exhibit distinguishing biological properties 

[4,28,34]. For example, Viperidae venoms are usually rich in enzymatic proteins that 

affect the haemostatic system of victims or prey [13,35-38]. On the contrary, snakes 

from the Elapidae family produce venoms that contain high quantity of neurotoxic 

proteins [39-43]. Further, Atractaspididae venoms harbour several peptide toxins that 

affect the blood vascular system [4,44], and Colubridae venoms exhibit activities 

similar to both Viperidae and Elapidae snakes [30,45,46]. 
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1.3 The global burden of snake envenomation: a neglected tropical disease 

Snake envenoming is an occupational health hazard that primarily affects the 

rural agricultural workers in developing countries of Africa, Asia, Latin America, and 

Oceania [47]. Snakebite victims in these regions are inflicted with high morbidity and 

mortality rate due to poor access to health services, and in many instances because of 

the scarcity of antivenom, the only choice of treatment for snakebite [27,48]. Regardless 

of its physical, psychological and socio-economic impacts, the problem of snakebite has 

received scant attention from regional and national health authorities as well as research 

funding agencies throughout the world. Recently (March, 2018), the World Health 

Organization has recognized snake envenoming as a neglected tropical disease [49] and 

subsequently, interests in understanding and addressing this grave problem have 

gradually emerged among health authorities, non-governmental organizations, and 

several antivenom manufacturers and research groups throughout the globe. 

A recent global epidemiological study on snake envenoming conducted in 227 

countries by Kasturiratne and her co-workers reported that globally at least 4, 21,000 

snakebites occur annually and approximately 20,000 envenoming results in deaths [50]. 

However, these estimates can be as high as 1, 841,000 envenomings and 94,000 deaths 

[50]. The highest burden of snake envenoming was found in south and southeast Asia, 

and sub-Saharan Africa (Fig. 1.1) with conservative estimates of 121,000, 111,000, and 

43,000, respectively, while lower incidences of envenomings were estimated for central 

Europe and central Asia (100 to 200 cases). Further, the data suggested that highest 

number of deaths occur in South Asia (14,000), West sub-Saharan Africa (1,500), East 

sub-Saharan Africa (1,400), and Southeast Asia (790). In addition, country-wise 

distribution of snakebite suggests that highest incidences are reported from India 

(81,000), followed by Sri Lanka (33,000), Vietnam (30,000), Brazil (30,000), Mexico 

(28,000), and Nepal (20,000) [50]. Nevertheless, accurate numbers on snake 

envenoming and death are difficult to estimate due to inadequate reporting and record-

keeping [27,50] (Mukherjee, A.K., unpublished data). Therefore, given the grave 

scenario of snake envenomation around the globe, the paucity of reliable snakebite data 

is both astonishing and alarming. Methods for reporting and record-keeping on 

morbidity and mortality due to snake envenomation in health facilities should be 

standardized and optimized in order to address and tackle this serious problem [50,51] 

(Mukherjee, A. K., unpublished data). 
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Fig. 1.1. Regional estimates of envenomings due to snakebite (low estimate) (adapted from Kasturiratne et al. [50]). 
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1.4 Epidemiology of snakebite in India 

India is reported with the highest incidence of snake envenoming (81,000) as well as 

mortality (11,000) [50]. Mortality data from the Million Death Study (2001-03) conducted by 

the Registrar General of India and the Centre for Global Health Research provided the first 

ever direct estimate of 45,900 annual snakebite deaths in India [22]. 

The majority of snakebite deaths were reported from the rural areas (97%) during the 

monsoon months of June to September, were more frequent in males (59%) than females 

(41%), and highest in the age group of 15–29 years (25%) [22]. Further, annual mortality was 

highest in the state of Uttar Pradesh (8,700) followed by Andhra Pradesh (5,200) and Bihar 

(4,500) (Fig. 1.2). Other Indian states that were also inflicted with significant snakebite 

mortalities were Madhya Pradesh (4,000), Maharashtra (3,200) and West Bengal (3,000). 

However, it is very unfortunate that there is no snakebite mortality and morbidity data in the 

northernmost and north-eastern states of the country which are inhabited by several 

venomous snake species (Fig. 1.2). 

In Asia, RV bites account for a heavy toll of mortality; envenomation by which is 

responsible for 70% and 40% of snakebite incidences in Myanmar and Sri Lanka, 

respectively. While in western India (WI) these numbers are 20.8%, the highest incidence of 

RV envenomation has been recorded in eastern India (EI) [13,52,53]. Nevertheless, snakebite 

data in India are fragmentary because less than 40% of snakebite patients attend to hospitals 

[52]. Regardless, the Russell’s Viper is a major source of snakebites and is considered as a 

category-I medically important snake in the Indian subcontinent. Further, occurrence and 

mortality is only part of the picture: a significant (but unknown) number of envenomings 

result in permanent morbidities, such as loss of limbs, digits and/or function, and these effects 

can debilitate a victim for life. 
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Fig. 1.2. Estimated deaths and standardized death rates in Indian states with high prevalence 

of snakebite mortality (adapted from Mohapatra et al. [22]). The vertical bars represent the 

state wise estimated deaths (in thousands). AP-Andhra Pradesh, BR-Bihar, CG-Chhattisgarh, 

GJ-Gujarat, JH-Jharkhand, KA-Karnataka, MP-Madhya Pradesh, MH-Maharashtra, OR-

Orissa, RJ- Rajasthan, TN-Tamil Nadu, UP-Uttar Pradesh, WB-West Bengal. 

 



Proteomic analysis of Indian Russell’s Viper (Daboia russelii) venom and its immunological profiling against 
commercial antivenom 

 

Chapter I Page 7 

 

1.5 The Indian RV (Daboia russelii) - a category I medically important snake 

1.5.1 Systemic classification of RV 

The following is the systemic classification of RV (D. russelli). 

Kingdom: Animalia 

Subkingdom: Bilateria 

Infrakingdom: Deuterostomia 

Phylum: Chordata 

Subphylum: Vertebrata 

Infraphylum: Gnathostomata 

Superclass: Tetrapoda 

Class: Reptilia 

Order: Squamata 

Suborder: Serpentes 

Infraorder: Alethinophidia 

Family: Viperidae 

Subfamily: Viperinae 

Genus: Daboia 

Species: Daboia russelii 

 

1.5.2 The distinctive features of RV 

RV, commonly known as ‘Daboia’ (in Hindi) or ‘Chain viper’, is named after Dr. 

Patrick Russell, a Scottish surgeon and naturalist who described many of the Indian snakes. 

The genus name ‘Daboia’ is adapted from a Hindi word that translates to ‘that lies hidden’ or 

‘the lurker’. The size of this snake varies from medium to large; RV can grow up to 180 cm 

and averages about 100 cm with a flattened and triangular head which is distinct from the 

neck and its snout blunt, and rounded (Fig. 1.3). The scales are keeled; several distinctive 

bright chain patterns, the body color is typically yellowish to brown and the pattern is 

composed of dark, round spots black and white edges which are important features helpful 

for their easy recognition [21,24]. The underside is white in the western India, partly dotted in 

the south-eastern India and deeply spotted in the north-eastern race of this species of snake. 
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China, Indonesia, and Taiwan. In addition, Tsai et al. [59] reported the presence of two types 

of Russell’s Viper based on the occurrence of either Asparagine (Asn, N) or Serine (Ser, S) at 

the N-terminus of the phospholipase A2 (PLA2) isoenzymes. The venoms of D. r. formosensis 

(Taiwan), D. r. siamensis (Thailand and Burma) and D. r. russelii (Pakistan) containing 

PLA2s having an Asn residue at the N-terminus were classified under one type, while D. r. 

pulchella (southern India and Sri Lanka) represents the other type, whose venom contains 

PLA2s with an N-terminal Ser residue [59]. 

 

 

Fig. 1.4. General distribution of the RV (Daboia russelii) on the Indian sub-continent 

(adapted with permission from ©World Health Organization, 2009; retrieved from 

http://apps.who.int/bloodproducts/snakeantivenoms/database/Images/SnakesDistribution/Lar

ge/map_Daboia_russelii.pdf). 

1.5.4 Venom delivery apparatus in RV 

The venom delivery apparatus of venomous snakes is comprised of a primary venom 

gland, a duct with an accessory gland, and fangs for venom delivery. Venom glands are 

modified parotid salivary gland which consist of three major cell types - basal cells, conical 

mitochondria-rich cells, and secretory cells, which produce the venom [60]. Venom flows 

from the venom gland to the fangs via a duct and an accessory gland. It has been reported that 
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the accessory gland is under voluntary control and snakes can and do control the amount of 

venom that is released during envenomation [60]. Nevertheless, the precise function of the 

accessory gland was debatable and believed to play a judicious role to prevent extraneous 

loss of toxin secretions [60]. However, a recent proteomic study has demonstrated that 

Bothrops jararaca accessory venom gland is not likely an important but an ancillary source 

of toxins such as phospholipase A2, C-type lectin-like proteins, metalloprotease, serine 

protease, nerve growth factor, vascular endothelial growth factor, cysteine-rich secretory 

protein, and L-amino acid oxidase [61]. 

The venom delivery system of venomous snakes is divided into two categories - rear-

fanged and front-fanged envenomation systems [62,63]. The rear-fanged (opisthoglyph) is 

found in most of the members of the Colubridae family [28]. The front-fanged system is 

further classified into two types - the proteroglyph system found in Elapidae snakes and the 

solenoglyph system present in members of the Viperidae family (Fig. 1.5). In the solenoglyph 

system as in the case of RV, the fangs are tubular, long and positioned on a short and highly 

movable maxilla. Further, the compressor muscles that originate distant to the ventral side of 

the braincase aids the movements of the palato-maxillary arches during a strike [64]. This 

particular design of the Viperid venom delivery system enables efficient venom delivery 

upon strike, thereby injecting large quantities of venom into the victim or prey. 

  

Fig. 1.5a. A live specimen of Russell’s Viper with venom oozing out of its fangs (Photo © 

Usman Ahmad, 2009). b. Position of the venom gland with the accessory gland and their 

primary and secondary ducts, and fang in a Viperid snake (adapted from Deufela and Cundall 

[64]). 
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More than 90% of RV venom (RVV) is comprised of proteins and polypeptides, and 

it possesses a characteristic yellow color due to the presence of FAD, a cofactor of the L-

amino acid oxidase enzymes. The pH of an aqueous solution of RVV is acidic (~5.8), while 

its specific gravity ranges from 1.03 to 1.07 [65,66]. 

1.5.5 Pathophysiology and clinical manifestations of RV envenomation 

An adult RV possesses approximately 200-225 mg of venom in its glands, and so 

bites to prey or a victim can result in large amounts of venom being injected [67]. The LD50 

values of RVV (in mice) ranges from 0.7 (i.v.) to 10 mg/kg (i.p.) depending upon the 

geographic source of the venom; the EI RVV being the most lethal [13,68]. At the onset of 

RV envenomation, victims experience extreme pain at the bite site, followed by rapid 

swelling, local ecchymosis, and intense blebs over the affected extremities [13,53,69,70]. 

Similar to other Viperid venoms, RVV is also hemotoxic in nature and affects the blood 

vascular system by provoking haemostatic disturbances, including rapid thrombosis and 

hypofibrinogenemia that ultimately results in consumption coagulopathy and incoagulable 

blood [13,53]. In addition to haemostatic disturbance, RV envenomed patients also manifests 

necrosis, blistering, capillary permeability, hypotension, and systemic bleeding including 

bleeding from gums, hematuria, and haemoptysis [13]. Further, acute renal failure (ARF) is a 

persistent clinical symptom of RV envenomation, and the management of RV-induced 

nephrotoxicity is a serious concern. Patients must undergo repeated dialysis, and antivenom 

therapy fails to mitigate the problem of nephrotoxicity in RV bite patients [71]. Notably, 

apart from these common clinical symptoms, RV bite patients from Sri Lanka, southern 

India, and to some extents, western India exhibits neurotoxic symptoms. Notably, clinical 

reports on RV envenomation in Sri Lanka clearly suggest the limited efficacy of Indian 

antivenom in reversing the neuro-myotoxic symptoms and systemic poisoning [72]. These 

differences in severity of neurotoxicity as well as antivenom efficacy are associated with 

variation in RVV composition due to geographic location. 

1.6 Mass spectrometry - an integral tool in the field of snake venom proteomics and 

antivenomics 

For several decades mass spectrometry was confined to the analysis of small and 

thermostable molecules due to the dearth of technological advancements in soft ionization 

and conversion of ionized molecules in condensed phase to gaseous phase with minimal 
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fragmentation [73,74]. However, the developments of matrix-assisted laser 

desorption/ionization (MALDI) [75] and electrospray ionization (ESI) [76] techniques in the 

late 1980s could overcome the constraints of ionization and made proteins accessible to mass 

spectrometry analysis. Since then, mass spectrometry has been an integral component in 

biological research and has evolved substantially to tackle the challenges presented by protein 

and proteome analysis. 

Mass spectrometers are fascinating instruments that accurately measure the molecular 

mass of a protein and provide structural information such as amino acid sequence or the type 

of post-translational modifications (PTM), which ultimately results in the identity of the 

target protein. In the former case, intact proteins are ionized and analyzed, usually in a single-

stage mass spectrometer, for determination of its molecular mass. On the contrary, for 

determination of amino acid sequence and PTM, the protein is first digested with a 

proteolytic enzyme, preferably trypsin that cleaves specifically at the C-terminal of lysine and 

arginine amino acid residues, to generate peptide fragments [77]. Thereafter, these tryptic 

fragments are ionized and analyzed in a multi-stage mass spectrometer. As depicted in Fig. 

1.6, a typical mass spectrometer consists of three parts: 

1. Ion source: that generates gaseous ions from the protein or the tryptic fragments being 

studied. 

2. Mass analyzer: that resolves the generated ions according to their characteristics mass-to-

charge ratio (m/z). 

3. Detector: that detects the ions and records the relative abundance of the resolved ionic 

species. 

 

Fig. 1.6. A schematic diagram of a typical mass spectrometer. 

Although several types of ion sources are used in mass spectrometry, nevertheless, 

soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) and 

Mass 
analyzer

Ion 
detector

Ion 
source

Data 
system

Inlet

Ion sorting
Ion 

detection

Gas phase 
ions

Vacuum 
pumps

Mass 
spectrum

Sample 
introduction



Proteomic analysis of Indian Russell’s Viper (Daboia russelii) venom and its immunological profiling against 
commercial antivenom 

 

Chapter I Page 13 

 

electrospray ionization (ESI) are primarily opted for analyzing protein samples [74]. 

Typically, mass analyzers use either static or dynamic fields, and electric or magnetic fields; 

however, in mass spectrometers designed specifically for performing tandem mass 

spectrometry (MS/MS), two or more mass analyzers can also be fused. In biological research, 

mass spectrometers are generally equipped with time-of-flight, quadrupole mass filter, linear 

quadrupole ion-trap, orbitrap and hybrid (combination of two or more analyzers) mass 

analyzers [73,74]. The schematic diagram of an LTQ orbitrap hybrid mass spectrometer is 

shown in Fig. 1.7. 

 

Fig. 1.7. Schematic diagram of an LTQ hybrid mass spectrometer (Thermo Fisher Scientific, 

Bremen, Germany) containing linear ion trap and orbitrap mass analyzers (adapted from 

Gross [78]). 

Detector, the final element of the mass spectrometer, is usually an electron multiplier.  

Nonetheless, other detectors such as ion-to-photon and Faraday cup detectors are also used. 

When an electron hits the surface of the detector, it records the charge or the current 

produced in the event and subsequently converts it into a mass spectrum, representing ions as 

a function of m/z [79]. Thereafter, the raw MS/MS data recorded by the mass spectrometer is 

fed into database search engines, for example, MASCOT, PEAKS, Proteome Discoverer, and 

Morpheus, to deconvolute the mass spectra and search the existing databases for establishing 

protein identity [80-83]. 

From the inception of modern snake venom research, which deals with intensive 

biochemical studies of venoms and dates back to the late 50’s [84], it was known that venom 

toxin arsenal comprises of several proteins, polypeptides and proteinaceous components [85]. 

With the advent of biochemical assays and protein separation techniques the venom 

complexity was gradually fathomed [13,14,68,86-89]. However, this approach has a major 

limitation of identification and quantification of the non-enzymatic snake venom 
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components. Nevertheless, with the recent advancements in the field of mass spectrometry, 

robust database search algorithms, and powerful venom de-complexing strategies, proteomic 

studies have shed light on several snake venom proteomes. This vast array of data has helped 

to understand the complex organization as well as the pathophysiological role of snake 

venom components [4,90,91]. Further, the application of proteomic tools for identification of 

the poorly immunogenic venom toxins (antivenomics) has provided valuable and relevant 

information for the development of potent antivenoms [38,92,93]. 

1.7 Apyrase, a neglected class of nucleotide hydrolytic enzyme of snake venoms 

RVV comprises a myriad of different enzymatic and non-enzymatic proteins [35,37] 

which primarily targets the blood vascular system of victim or prey [13,68,94]. However, the 

presence of enzymes in snake venoms which are acclaimed to cause distinct adverse effects 

other than the haemostatic imbalance is also reported [35,37]. Examples are nucleotidases 

responsible for catalyzing the hydrolysis of adenosine triphosphate (ATP), adenosine 

diphosphate (ADP) and adenosine monophosphate (AMP), termed as ATPase, ADPase and 

AMPase, respectively, to release inorganic phosphates [87,95]. Several nucleotidases of other 

than snake venom origin termed apyrase, can cleave both ATP as well as ADP in a 

decreasing order of preference. The apyrase, a Ca2+-activated enzyme, sequentially catalyzes 

ATP to ADP and then ADP is further catalyzed to AMP [96]. Both ATPase and ADPase play 

important roles in many biological processes including the modulation of neural cell activities 

[97], prevention of intravascular thrombosis [96,98], and regulation of immune responses 

[99]. 

Purines, a class of multi-toxin plays a pivotal role in prey immobilization by inducing 

hypotension and vascular permeability via the activation of A1 (neuronal), A2 (vascular 

smooth muscle) and A3 (mast cell) receptors [100,101]. These multi-toxins are integral 

components of snake venoms [102] or are generated by hydrolysis of ATP, ADP and AMP 

by venom 5’-nucleotidase, endonucleases, ATPase, ADPase, apyrase, phosphodiesterase, 

phosphomonoesterase, and NADase [100,101,103]. Although biochemical analysis has 

unambiguously indicated the occurrence of ATPase and/or ADPase enzyme(s) in numerous 

snake venoms [13,37,104], there were no reports on purification and characterization of 

ATPase, ADPase or apyrase enzyme from snake venoms, hitherto they remained as an 

untapped RVV component. Their low abundance in venom, transient stability, and sensitivity 
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to denaturing agents are the major bottlenecks that have been encountered in the isolation and 

detailed biochemical and pharmacological characterization of apyrases and nucleotidases 

[96]. Therefore, knowledge of such enzymes from RVV will contribute to our understanding 

about the rationale of their presence in RVV as well as their role in the pathophysiology of 

RV bite. 

1.8 Gap in the study 

A few studies have provided valuable information on RVV composition and its 

variation across different geographic locales of India [13,68]. However, these studies were 

primarily based on biochemical analysis of RVV; therefore, they were associated with the 

major limitation of identification and quantification of the non-enzymatic components of 

RVV. In addition, several proteins and peptides belonging to diverse snake venom protein 

families were also purified and characterized extensively from India RVV [16,17,94,105-

114]. Nevertheless, a comprehensive analysis of the venom proteome of RV from different 

geographic location of India by proteomic approach was pending. Further, assessment of 

neutralization potency and immunological cross-reactivity of commercial antivenom towards 

RVV and identification of poorly immunogenic toxins of RVV (antivenomics) from different 

regions of India was also not attempted. This is a very important prerequisite for assessing the 

potency of commercial polyvalent antivenom manufactured in one part of the country to treat 

the snake envenomation in another part of the country. 

1.9 Aim and objectives of the present study: 

The present study has been designed to investigate the venom proteomes of RV from 

different parts of India by proteomic analysis. Further, we tried to correlate the venom 

composition with the differences and severity of clinical manifestations post RV 

envenomation in different parts of the country. The present study also aims to assess the 

immunological profiles of commercial PAVs against the RVV samples. In addition, isolation, 

purification, and biochemical and pharmacological characterization of an apyrase enzyme 

from RVV were also undertaken in this study. Accordingly, the following objectives were set 

for the present investigation: 

1. Proteomic analysis of Russell’s Viper venom (RVV) from three different geographical 

locations of India. 
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2. Correlation of RVV proteomics data with biochemical and pharmacological properties of 

RVV and clinical manifestations of RV bite. 

3. Determination of the degree of immunological cross-reactivity between RVV of different 

geographical location of India with commercial polyvalent / monovalent antivenom 

(antivenomics). 

4. Biochemical and pharmacological characterization of an apyrase enzyme from RVV. 
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