LIST OF ABBREVIATION AND SYMBOLS

%	percentage
% T	transmittance percentage
0	degree
°C	degree centigrade
ASTM	American Society for Testing and Materials
BD	1,4-butandiol
bis-MPA	2,2-Bis(hydroxymethyl)propionic acid
BPA	bisphenol A
CD	carbon dot (s)
cm	centimeter(s)
CNT	carbon nanotubes
COD	chemical oxygen demand
d	interlayer distance
DB	degree of branching
DP	degree of polymerization
DMAc	N,N-dimethylacetamide
DMF	N,N-dimethylformamide
DMSO	dimethyl sulfoxide
DSC	differential scanning calorimetry
EMI	electromagnetic interference shielding
EtOH	ethanol
eV	electronvolt
F	Faraday
f-GO	functionalized graphene oxide
FTIR	fourier transform infrared
g	gram(s)
GO	graphene oxide
GPa	giga pascal
GPC	gel permeation chromatography
h	hour(s)
HBGE	glycerol based hyperbranched epoxy

HBGP	glycerol based hyperbranched polyol
HPE	hyperbranched polyester(s)
HRTEM	high resolution transmission electron microscope
Hz	hertz
IR	infrared
J	Joule
k	rate constant
k ₁	pseudo first order rate constant
k ₂	pseudo second order rate constant
k _F	Freundlich constants
kg	kilogram(s)
kJ	kilojoule
kL	Equilibrium Langmuir constant
kPa	kilopascal
kV	kilovolt
m	meter(s)
MB	methylene blue
min	minute(s)
mL	milli litre(s)
mm	milli meter(s)
mmol	milimole
MO	Methyl orange
mol	mole(s)
MPa	megapascal
MW	microwave
MWCNT	multiwalled carbon nanotube
n	order of diffraction
Ν	Newton
nm	nanometer
NMR	nuclear magnetic resonance
OD	optical density
OMMT	organically modified montmorillonite
PAA	poly(amidoamine)

PEGpoly(ethyleneglycol)PETpoly(ethyleneterepthalate)PLphotoluminescenceqeadsorption capacityQYquantum yieldRcorrelation coefficientRBCred blood cellsRGOreduced graphene oxideRhBrodamine blue	Pas	pascal second
PLphotoluminescenceqeadsorption capacityQYquantum yieldRcorrelation coefficientRBCred blood cellsRGOreduced graphene oxideRhBrodamine blue	PEG	poly(ethyleneglycol)
qeadsorption capacityQYquantum yieldRcorrelation coefficientRBCred blood cellsRGOreduced graphene oxideRhBrodamine blue	PET	poly(ethyleneterepthalate)
QYquantum yieldRcorrelation coefficientRBCred blood cellsRGOreduced graphene oxideRhBrodamine blue	PL	photoluminescence
Rcorrelation coefficientRBCred blood cellsRGOreduced graphene oxideRhBrodamine blue	q _e	adsorption capacity
RBCred blood cellsRGOreduced graphene oxideRhBrodamine blue	QY	quantum yield
RGOreduced graphene oxideRhBrodamine blue	R	correlation coefficient
RhB rodamine blue	RBC	red blood cells
	RGO	reduced graphene oxide
	RhB	rodamine blue
s second(s)	S	second(s)
SAED selected area electron diffraction	SAED	selected area electron diffraction
SEM scanning electron microscope	SEM	scanning electron microscope
TDI2,6-toluene diisocyanate	TDI	2,6-toluene diisocyanate
TEM transmission electron microscope	TEM	transmission electron microscope
T _g glass transition temperature	T _g	glass transition temperature
TG thermogravimetric	TG	thermogravimetric
TGA thermogravimetric analysis	TGA	thermogravimetric analysis
THF tetrahydrofuran	THF	tetrahydrofuran
TLC thin layer chromatography	TLC	thin layer chromatography
T _m melting temperature	T _m	melting temperature
TMS tetramythylsilane	TMS	tetramythylsilane
UTM universal testing machine	UTM	universal testing machine
UV ultraviolet	UV	ultraviolet
V volume of the solution	V	volume of the solution
VOC volatile organic compounds	VOC	volatile organic compounds
W watt (s)	W	watt (s)
WHPE water dispersible hyperbranched polyester	WHPE	water dispersible hyperbranched polyester
WHBP water soluble hyperbranched polyester	WHBP	water soluble hyperbranched polyester
wt weight	wt	weight
XRD X-ray diffraction	XRD	X-ray diffraction
δ chemical shift	δ	chemical shift
θ diffraction angle	θ	diffraction angle

λ	wavelength
μg	micro gram(s)
μL	micro liter(s)
μm	micro meter(s)

Table No.	Table legend	
1.1.	Different polybasic and monobasic acids with their structures and	
	applications	
1.2	Names, structures, and applications of a few polyols	
1.3	A few polybasic aromatic as well as aliphatic acids and anhydrides used	
	for the polyester preparation	
1.4	Methods of preparation and applications of different types of CD-based	
	nanohybrid	
1.5	Polyester nanocomposites, their preparative method and salient features	
2A.1	Composition of WHBP	
2A.2	Physical properties of HBGP and HBGE	
2A.3	Physical properties of hyperbranched polyester resins	
2A.4	Curing characteristics and mechanical properties of the WHBP	
	thermosets	
2A.5	Chemical resistance (weight loss %) of hyperbranched polyester	
	thermosets in different chemical media	
2B.1	Composition of reactants for the synthesis of polyesters	
2B.2	Physical properties of polyesters	
2B.3	Performance characteristics of WHPE30, WHPE40 and WHPE50	
2B.4	Chemical resistance (weight loss %) of polyester thermosets in different	
	chemical media	
3.1	Performance characteristics of the nanocomposites	
3.2	Performance of different catalysts in Aza-Michael addition reaction	
3.3	Effect of catalyst (PFGN1) loading for Aza-Michael addition reaction	
3.4	Aza-Michael addition of different amines and α , β -unsaturated	
	compounds in presence of PFGN1 as the catalyst	
3.5	Results of the recycling experiment	
4.1	Performance characteristics of PCD0 and its nanocomposites	
4.2	Change in weight (%) of the PCD0 and its nanocomposites in different	
	chemical media	
5.1	Performance characteristics of the nanocomposite	
5.2	Kinetic parameters of the nanocomposites obtained from different	

LIST OF TABLES

models

- **5.3** Isotherm constant for adsorption of Pb(II) by PCCN5 using Langmuir and Freundlich models
- **6A.1** Pseudo first order rate constant at different initial concentrations of phenol
- **6B.1** Performance characteristics of WHPE and the nanocomposites

LIST OF FIGURES

Figure No.	Figure legend
1.1	Formation of polyester by a polycondensation reaction
1.2	Different classes of nanomaterials
1.3	Different approaches for the preparation of GO
1.4	Different preparative routes for CDs
2A.1	FTIR spectra of HBGE and HBGP
2A.2	(a) 1 H and (b) 13 C NMR spectra of HBGP
2A.3	FTIR spectra of WHBP0 and WHBP16
2A.4	(a) A representative ¹ H NMR and (b) 13 C NMR spectra of WHBP16
2A.5	Variations of shear viscosity of WHBP against (a) time, (b) temperature, (c)
	plot of $\ln \eta vs 1/T (1/K)$ and (d) variations of shear viscosity vs shear stress
2A.6	Stress-strain profiles of the thermosets
2A.7	(a) DSC, (b) TG thermograms and (c) dTG curves of the WHBP thermosets
2A.8	Growth curves of (a) Pseudomonas aeruginosa and (b) Bacillus subtilis on
	WHBP thermosets
2A.9	Representative SEM images of (a) control (without bacterial strain),
	degraded thermosets of (b) WHBP16 and (c) WHBP7 against Pseudomonas
	aeruginosa and (d) WHBP16 against Bacillus subtilis
2B.1	(a) Variations of acid value with time and (b) plot of $(1-p)^{-1}$ vs time and (c)
	plot of $1/(1-p)^2$ vs time for polyesters
2B.2	FTIR spectrum of WHPE50
2B.3	¹ H NMR spectrum of WHPE50
2B.4	¹³ C NMR spectrum of WHPE30
2B.5	T, L and D units of (a) WHPE50 and (b) WHPE40
2B.6	Stress-strain profiles of the thermosets
2 B. 7	(a) TG thermograms and (b) DSC curves of the thermosets
2 B. 8	Growth curves of (a) Pseudomonas aeruginosa and (b) Bacillus subtilis for
	WHPE30, WHPE40 and WHPE50

2B.9	SEM images of WHPE50 after biodegradation by (a) Pseudomonas
	aeruginosa, (b) Bacillus subtilis and (c) control
2B.10	Bar diagrams of absorbance against concentration of thermosets for anti-
	hemolylic activity assessment
3.1	(a) FTIR spectra, (b) XRD patterns and (c) Raman spectra of GO and f-GO
3.2	(a) TEM images GO and (b)-(d) TEM images of f-GO at different
	magnifications for morphological observation, (e) HRTEM images at 2 nm
	for layer observation and (f) SAED pattern of f-GO
3.3	(a) FTIR spectra of PGN0.1 and PFGN1, and (b) representative XRD pattern
	of PFGN0.5
3.4	(a)-(d) Representative TEM images of PFGN1 at different magnification, (e)
	layer observation of f-GO in the nanocomposite and (f) SAED pattern
3.5	(a, b) SEM images of fractured surface of the nanocomposite and (c, d) TEM
	images of the nanocomposite under low magnification
3.6	(a) Stress-strain profiles of the thermosets and (b) comparison between fitting
	results of Halpin–Tsai model and the experimental data
3.7	(a) TG thermograms of GO and f-GO, (b) TG thermograms and (c) DSC
	curves of the nanocomposites
3.8	Bacterial growth curves for the nanocomposite against Pseudomonas
	aeruginosa bacterial strain
3.9	SEM micrographs of (a) control and (b-d) degraded thermosetting
	nanocomposite (PGGN0.5)
3.10	(a) ¹ H and (b) ¹³ C NMR of 3-(diethylamino) propanenitrile
3.11	(a) ¹ H and (b) ¹³ C NMR of 3-(diethyamino) 2-methyl methyl ester
3.12	(a) 1 H and (b) 13 C NMR of 3-(phenylamino)propanenitrile
4.1	TEM images at different magnifications (a) 20 nm, (b) 10 nm, (c) 5 nm
	(inset: lattice fringe of CD), (d, e) particle size distribution histograms and
	(f) EDX pattern of CD
4.2	FTIR spectrum, (b) XRD pattern and (c) Raman spectrum of CD

4.3	XPS spectra of CD (a) survey spectrum of CD with three major peaks of
	carbon, oxygen and nitrogen; XPS high resolution survey spectra of (b) C_{1s} ,
	(c) O_{1s} , (d) N_{1s} and (e) S_{2p} regions of CD
4.4	(a) UV-vis spectrum of CD, wavelength dependent (b) down- and (c) up-
	conversion PL spectra and (d) PL spectra of CD at different wt%
4.5	(a) FTIR spectra and (b) XRD patterns of the nanocomposites
4.6	TEM images of (a) PCD1, (b) PCD0.1 (with SAED pattern as inset), (c) PCD
	0.5 and (d) lattice fringe
4.7	Variations of shear viscosity against (a) time at constant stress and
	temperature, (b) temperature under constant stress and (c) shear rate under
	constant temperature
4.8	Variations of (a) G' and (b) G" with frequency and the variations of (c) G'
	and (d) G" with temperature for PCD0, PCD0.1, PCD0.5 and PCD1
4.9	(a) Photographs for transparency and (b) transmittance spectra of PCD0 and
	its nanocomposites
4.10	(a) UV-visible spectra of the nanocomposites, (b) films of PCD0.1, PCD0.5
	and PCD1 under visible light, short UV (254 nm) and long UV (365 nm),
	wavelength dependent (c) down- and (d) up-conversion PL spectra of PCD1
4.11	(a) Stress-strain profiles and (b) variation of Young's modulus with CD
	content for PCD0 and its nanocomposites
4.12	(a) TGA thermograms and (b) DSC curves of PCD0 and its nanocomposites
4.13	(a) Growth curves and (b-d) SEM images of degraded films of PCD0.5,
	PCD1 and control respectively by Pseudomonus argeunosa bacterial strain
4.14	(a) Growth curves and SEM images of degraded films of (b) PCD0.5, (c)
	PCD1 and (d) control by Bacillus subtilis
4.15	(a) Time-dependent UV absorption spectra of formaldehyde solutions during
	sunlight irradiation, (b) degradation curves of the aqueous solutions of
	formaldehyde by the nanocomposite films, (c) fitting degradation kinetic
	curves and (d) photocatalytic efficiency of nanocomposite
4.16	Photographs showing the discoloration of methylene blue by (a) PCD0.5 and
	(b) PCD1

	List of Figures
5.1	(a) FTIR spectra and (b) XRD patterns of bentonite clay and clay@CD
	nanohybrid
5.2	(a) FTIR spectra and (b) XRD patterns of the nanocomposites
5.3	(a-c) Representative TEM images of PCCN1 at different magnification, (d)
	SAED pattern and (e, f) lattice fringes
5.4	(a) Stress-strain profiles and (b) TGA thermograms of the thermosetting
	nanocomposites
5.5	(a) Bacterial growth curves of the nanocomposites against <i>Pseudomonus</i>
	aerogunosa bacterial strain, and (b, c) SEM images of the degraded PCCN1
	and (d) PCCN5
5.6	(a) Transmittance spectra of the thermosetting nanocomposite, and (b and c)
	wavelength dependent down- and up conversion photoluminescence spectra
5.7	(a) Plot of $1/q_e vs 1/C_e$ (Langmuir isotherm), (b) plot of $logq_e vs logC_e$
	(Freundlich isotherm) and (c) recyclability of PCCN5
5.8	(a) UV-vis spectra of RhB with respect to time in presence of nanocomposite,
	(b, c) kinetics data plots for photocatalytic degradation and (d) removal (%)
	after recycling of the catalyst
6A.1	TEM images of CD@TiO ₂ at (a) 50 nm, (b) 10m, (c) 5 nm; and (d-f) lattice
(\mathbf{h}, \mathbf{a})	fringes of TiO_2 and (g) EDX map of CD@TiO ₂
6A.2	(a) TEM and (b) SEM images of CD/TiO ₂
6A.3	SEM images at two different magnifications (\mathbf{a}, \mathbf{b}) for bare TiO ₂ ; and (\mathbf{c}, \mathbf{d})
6A.4	for CD@TiO ₂ nanohybrid $3D$ Surface plot of the penchybrid
6A.5	3D Surface plot of the nanohybrid(a) FTIR spectra and (b) XRD patterns of the nanomaterials
6A.6	(a) TG thermograms and (b) DTG curves of bare TiO ₂ , CD/TiO ₂ and
0A.0	(a) TO thermograms and (b) DTO curves of bare 110_2 , CD/ 110_2 and CD@TiO ₂
6A.7	(a) UV-vis spectra of bare TiO_2 and $CD@TiO_2$ and wavelength dependent
01107	(b) down- and (c) up-conversion PL spectra of CD@TiO2
6A.8	Plots of UV absorbance against wavelength for degradation of paraoxon
	pesticide at different times in presence of (a) CD@TiO ₂ , (b) CD/TiO ₂ , (c)
	CD and (d) bare TiO ₂ nanomaterials

	List of Figures
6A.9	Plots of UV absorbance against wavelength for degradation of (a-c) benzene
	and (d-f) phenol at different times in presence of $CD@TiO_2$, CD/TiO_2 and
	bare TiO ₂ nanomaterials respectively
6A.10	Degradation curves of aqueous solution of (a) benzene, (b) pesticide and (c)
	phenol and fitting degradation kinetic curves for (d) benzene, (e) pesticide
	and (f) phenol by TiO_2 nanohybrids
6A.11	(a) Plot of ln (C ₀ /C) vs time for photocatalytic degradation of phenol at
	three different concentrations of phenol and (b) Variation of reciprocal of rate
	constant vs different initial concentrations of phenol
6 B. 1	(a, b) FTIR spectra of nanohybrid and the nanocomposite, and XRD patterns
	of (c) WHPE and (d) the nanocomposites
6B.2	(a-c) TEM images of PCTN2.5 at different magnifications, (d, e) lattice
	fringes and (f) SAED pattern
6B.3	Rheological behavior of the nanocomposites. Variations of shear viscosity
	against (a) time and (b) temperature under constant stress, variations of (c) G'
	and (d) G'' with frequency and variations of (e) G' and (f) G'' with
	temperature
6 B.4	(a) Stress-strain profiles of the nanocomposites and (b) image of tensile test
	showing >200 strain
6B.5	(a) TG thermograms and (b) DSC curves of the nanocomposites
6B.6	(a) UV-vis spectrum of PCTN1, (b, c) emission of different colors under
	visible, short and long UV light by the nanocomposite, band gaps of (c) TiO_2 ,
	(d) $CD@TiO_2$ and (e) PCTN2.5
6 B. 7	Coated filter paper under (a) visible light and (b) UV light (365 nm)
6 B. 8	PL characteristics of the nanocomposites: Wavelength dependent down-
	conversion PL spectra of (a) PCTN1, (b) PCTN0.5 and (c) PCTN2.5; and
	wavelength dependent up-conversion PL spectra of (d) PCTN1, (e) PCTN0.5
	and (f) PCTN2.5
6B.9	Transmittance spectra of the nanocomposites

6 B.1 0	Anti-fogging behavior of the nanocomposites. (a) Visual transparency of bare
	and coated (PCTN2.5) glass slides after super-cooling and, bare and PCTN1
	coated glass slides (b) before anti-fogging test and (c) after anti-fogging test
6B.11	Photos of (a, b) PCTN0.5 under 70 and 76% humidity respectively; (c)
	PCTN1 and (d) PCTN2.5 under 76% humidity; (e) PCTN2.5 and (f) bare
	glass slide over boiling after stored at -20°C
6B.12	Water droplets on (a) PCTN0.5, (b) PCTN1 and (c, d) PCTN2.5 surface
	showed the superhydrophobicity behavior
6B.13	Anti-icing behavior of the nanocomposites. Coated and uncoated glass slides
	with (a, b) PCTN0.5, (c, d) PCTN2.5 and (e, f) coated and uncoated
	aluminum plates with PCTN2.5
6 B.1 4	Droplets freezing and icing-delay time for the three nanocomposite surfaces:
	(a , b) PCTN2.5, (c) PCTN0.5 and (d) PCTN1 at -15 °C
6B.15	Self-cleaning behavior of the nanocomposites. UV-vis absorption spectra of
	(a) mixed dye in presence of PCTN2.5, (b, c) BPA (d, e) pesticide and (f, g)
	phenol in presence PCTN2.5 and PCTN0.5 respectively under sunlight
	irradiation
6B.16	Degradation kinetics of (a, b) MB and MO, (c) BPA, (d) pesticide and (e)
	phenol
6B.17	(a, b) Photocatalytic efficiency for degradation of MO and MB, (c) color
	changes at different time intervals of sunlight exposure of coated and
	uncoated stones and (d) images of removal of dye powder by water droplet
	with time
6B.18	Reduction activity of the nanocomposite. (a) UV-vis spectra of 4- NP with
	time, (b) plots of $\ln A_t/A_0$ vs time and (c, d) UV-vis spectra and images of 4-
	NP after 1 min with excess amount of PCTN2.5
6B.19	Bacterial growth of the nanocomposites against (a) <i>P. aeruginosa</i> and (b) <i>S.</i>
	<i>aureus</i> and the zone of inhibition test results of the nanocomposite against (c)
	S. aureus, (d) K. pneumoniae, (e) B. subtilis and (f) P. aeruginosa
6B.20	Separation of crude oil and water from their mixture by the nanocomposite.
	Images of (a) crude oil and water mixture, (b-d) separation of the

components at different times by coated (**b** and **c**) and uncoated filter papers (**d**), (**e**) UV-vis spectra, (**f**, **g**) microscopic images of feed and the filtrate and (**h**) separation efficiency of the nanocomposite membrane

Scheme No.	Scheme legend
1.1	Scheme for synthesis of HPE and WHPE
2A.1	Preparation of HBGP
2A.2	Synthesis of WHBP
2A.3	Possible cross-linking reactions of polyester with HBGE and PAA
2B.1	Synthesis of WHPE
2B.2	Possible cross-linking reaction of hyperbranched polyester with HBGE and PAA hardener
3.1	PFGN1 catalyzed-Aza-Michael addition reaction
3.2	Schematic route for functionalization of GO (f-GO) from graphite (Photos of GO and f-GO in different solvents)
3.3	Fabrication route of WHPE/f-GO nanocomposite
3.4	Plausible interactions occurred during cross-linking reaction of the nanocomposite with HBGE and PAA
3.5	Schematic representation of slippage of graphene layers
3.6	Biodegradation of WHPE nanocomposite in presence of bacterial strain
4.1	Scheme for synthesis of CD
4.2	Proposed scheme for fabrication of WHPE/CD nanocomposite
4.3	Possible cross-linking reactions of WHPE/CD nanocomposite with HBGE and PAA hardener
4.4	Proposed mechanism for formaldehyde degradation
5.1	Preparation of the nanohybrid
5.2	Fabrication of clay@CD-based WHPE nanocomposite
5.3	Plausible interactions in the cross-linking process among the components
6A.1	Synthesis of $CD@TiO_2$ nanohybrid and its emission of different colors
	under UV light
6A.2	Photocatalytic mechanisms for pesticide, benzene and phenol by
	CD@TiO ₂ nanohybrid
6 B. 1	Proposed scheme for fabrication of WHPE/CD@TiO2 nanocomposite
6B.2	The plausible cross-linking reactions occurred during formation of the
	thermosetting nanocomposite
6B.3	Mechanism for photocatalytic degradation of organic contaminants by
	the nanocomposite under sunlight