List of Tables

Table	Caption	Page No.
Table 1.1	Comparison of different properties of EDL capacitors	13
	and pseudocapacitors	
Table 3.1	Some physical properties of the materials used in synthesis	71
Table 3.2	SRIM data for 85 MeV C ⁶⁺ ions in different	82
	nanocomposite systems	
Table 4.1	Characteristic IR bands of PPyNTs, RGO and their	104
	assignments	
Table 4.2	Characteristic micro-Raman bands of PPyNTs, RGO and	105
	their assignments	
Table 4.3	$T_{\text{onset}},~T_{\text{rpd}}$ and % of degradation at 700 °C of RGO,	108
	PPyNTs and RGO-PPyNTs nanocomposites	
Table 4.4	Fitting parameters to Kaiser equation for PPyNTs and	109
	RGO-PPyNTs nanocomposites with different RGO	
	concentrations	
Table 4.5	Specific capacitance, energy density, power density,	113
	coulombic efficiency, equivalent series resistance (R_s)	
	and charge transfer resistance (R_{ct}) of PPyNTs and RGO-	
	PPyNTs nanocomposites	
Table 5.1	Characteristic IR bands of 40 wt. % RGO-PPyNTs	126
	nanocomposite and their assignments	
Table 5.2	Characteristic micro-Raman bands of 40 wt. % RGO-	128
	PPyNTs nanocomposite and their assignments	
Table 5.3	$T_{\text{onset}},T_{\text{rpd}}$ and % of degradation at 800 °C of pristine and	130
	irradiated 40 wt. % RGO-PPyNTs nanocomposites with	
	different fluences	
Table 5.4	Fitting parameters to Kaiser equation for pristine and	132
	irradiated 40 wt. % RGO-PPyNTs nanocomposites with	
	different fluences	

Table 5.5	Contact angles of water and diiodomethane, values of	136
	total surface energy (Y_s^{Total}) and its polar (Y_s^p) and	
	dispersive (Y_s^d) components of pristine and irradiated 40	
	wt.% RGO-PPyNTs nanocomposites obtained by	
	OWRK method	
Table 5.6	Specific capacitance, energy density, power density,	139
	coulombic efficiency, equivalent series resistance (Rs)	
	and charge transfer resistance (R_{ct}) of pristine and	
	irradiated 40 wt. % RGO-PPyNTs nanocomposites with	
	different fluences	
Table 6.1	Characteristic IR bands of PAniNTs, RGO and their	153
	assignments	
Table 6.2	Characteristic micro-Raman bands of PAniNTs, RGO	154
	and their assignments	
Table 6.3	T_{onset},T_{rpd} and % of residue at 800 $^{\circ}C$ of RGO, PAniNTs	157
	and RGO-PAniNTs nanocomposites	
Table 6.4	Fitting parameters to Kaiser equation for PAniNTs and	158
	RGO-PAniNTs nanocomposites with different RGO	
	concentrations	
Table 6.5	Specific capacitance, energy density, power density,	162
	coulombic efficiency, equivalent series resistance (R_s)	
	and charge transfer resistance $\left(R_{ct}\right)$ of PAniNTs and	
	RGO-PAniNTs nanocomposites	
Table 7.1	Characteristic IR bands of 40 wt. % RGO-PAniNTs	174
	nanocomposite and their assignments	
Table 7.2	Characteristic micro-Raman bands of 40 wt. % RGO-	176
	PAniNTs nanocomposite and their assignments	
Table 7.3	$T_{\text{onset}},T_{\text{rpd}}$ and and % of degradation at 800 $^{\circ}\text{C}$ of pristine	178
	and irradiated 40 wt. % RGO-PAniNTs nanocomposites	
	with different fluences	
Table 7.4	Fitting parameters to Kaiser equation for pristine and	180
	irradiated 40 wt. % RGO-PAniNTs nanocomposites with	
	different fluences	

- **Table 7.5**Contact angles of water and diiodomethane, values of
total surface energy (Y_s^{Total}) and its polar (Y_s^p) and
dispersive (Y_s^d) components of pristine and irradiated 40
wt.% RGO-PAniNTs nanocomposites obtained by
OWRK method
- Table 7.6Specific capacitance, energy density, power density,
coulombic efficiency, equivalent series resistance (R_s)
and charge transfer resistance (R_{ct}) of pristine and
irradiated 40 wt. % RGO-PAniNTs nanocomposites with
different fluences

187

183

List of Figures

Figure	Caption	Page No.
Figure 1.1	Schematic of a conventional capacitor	2
Figure 1.2	Schematic of an aluminium electrolytic capacitor	3
Figure 1.3	Schematic of (a) discharging and (b) charging	5
	processes of a secondary battery	
Figure 1.4	Schematic of a proton exchange membrane fuel cell	7
Figure 1.5	Ragone plot of different electrochemical energy	8
	storage devices	
Figure 1.6	Block diagram of classification of supercapacitors	10
Figure 1.7	Schematic of charge storage process in electric double	11
	layer capacitors	
Figure 1.8	Schematic of charge storage process in	12
	pseudocapacitors	
Figure 1.9	Graphene: a two-dimensional monolayer sheet of	20
	carbon	
Figure 1.10	Chemical structures of some significant conducting	25
	polymers	
Figure 1.11	Schematic representation of p-doping and n-doping of	26
	conducting polymers	
Figure 1.12	The four different redox states of polyaniline	29
Figure 1.13	Formation of polaron, bipolaron and soliton in trans-	30
	polyacetylene	
Figure 2.1	Schematic of (a) charging and discharging processes in	44
	an EDL capacitor and (b) their corresponding electric	
	potential profiles	
Figure 2.2	EDL models, (a) Helmholtz model, (b) Gouy-	45
	Chapman model, and (c) Stern model	
Figure 2.3	Triangular voltage waveform applied to the working	54
	electrode	

Figure 2.4	Representation of CV of (a) ideal EDL capacitor, and	55
	(b) pseudocapacitor	
Figure 2.5	(a) Constant current reversal cyclic	56
	chronopotentiometry; Representation of GCD curve	
	for (b) EDL capacitor, and (c) pseudocapacitor	
Figure 2.6	Typical shape of Nyquist plot. Inset shows the	59
	equivalent circuit for the Nyquist plot comprising of a	
	semicircle	
Figure 2.7	Impedance behavior of a supercapacitor cell. Inset	60
	shows the corresponding equivalent circuit for the	
	Nyquist plot	
Figure 2.8	Schematic representation of different types of nitrogen	63
	adsorption-desorption isotherms	
Figure 3.1	Block diagram of synthesis of PPyNTs via reactive	72
	self-degrade MO-FeCl ₃ template method	
Figure 3.2	Schematic illustration of the formation of RGO	73
Figure 3.3	Block diagram of synthesis of RGO via modified	74
	Hummers' method	
Figure 3.4	Block diagram of synthesis of RGO-PPyNTs	75
	nanocomposites via in-situ reduction method	
Figure 3.5	Schematic illustration of formation of RGO-PPyNTs	75
	nanocomposites	
Figure 3.6	Block diagram of synthesis of PAniNTs via reactive	76
	self-degrade MnO ₂ NTs template method	
Figure 3.7	Block diagram of synthesis of RGO-PAniNTs	77
	nanocomposite by in-situ reduction method	
Figure 3.8	Schematic diagram showing the principle of	78
	acceleration of ions in a Pelletron	
Figure 3.9	Photographs of (a) Materials Science (MS) beam line	80
	and (b) the high vacuum irradiation chamber at IUAC,	
	New Delhi, India	
Figure 3.10	High resolution transmission electron microscope	83
	(JEOL, model JEM-2100)	

Figure 3.11	Scanning electron microscope (JEOL, model JSM- 6390 LV)	84
Figure 3.12	X-ray diffraction measurement unit (D8 Bruker AXS)	86
Figure 3.13	Typical XRD pattern (a) of a semi-crystalline polymer	87
	and (b) showing the superposition of crystalline peaks	
	and an amorphous hump	
Figure 3.14	Photograph of FTIR spectrometer (Perkin Elmer,	88
	model spectrum 100).	
Figure 3.15	Photograph of micro-Raman spectrometer (Renishaw	89
	inVia)	
Figure 3.16	Photograph of thermogravimetric analyzer (Perkin	90
	Elmer, model STA 6000)	
Figure 3.17	Photograph of two-probe current-voltage measurement	91
	system (Keithley, model 2400-C)	
Figure 3.18	Photograph of four-probe conductivity measurement	92
	set-up (SES Instruments, Roorkee, India, model DFP-	
	02)	
Figure 3.19	Set-up used for measurement of N_2 adsorption-	93
	desorption isotherms (Quantachrome, model NOVA	
	1000E)	
Figure 3.20	Set-up used for measurement of contact angle (Data	94
	Physics, model OCA 15 EC)	
Figure 3.21	Photograph of Autolab PGSTAT302N	95
	potentiostat/galvanostat (Metrohm Autolab,	
	Netherlands)	
Figure 4.1	SEM images of (a) RGO, (b) PPyNTs and RGO-	100
	PPyNTs nanocomposites with (c) 5 wt. %, (d) 10	
	wt.%, (e) 20 wt. % and (f) 40 wt. % of RGO	
Figure 4.2	HRTEM micrographs of (a) RGO nanosheets, (b)	101
	PPyNTs and (c) 10 wt.% RGO-PPyNTs	
	nanocomposite	

Figure 4.3	 (i) X-ray diffractograms of (a) PPyNTs, (b) RGO, (c) GO and (d) graphite; (ii) XRD patterns of RGO- PPyNTs nanocomposites with (a) 5 wt. %, (b) 10 wt.%, (c) 20 wt. % and (d) 40 wt. % of RGO 	102
Figure 4.4	FTIR spectra of (a) PPyNTs and RGO-PPyNTs nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. %, (e) 40 wt. % of RGO and (f) RGO	103
Figure 4.5	Micro-Raman spectra of (a) PPyNTs and RGO- PPyNTs nanocomposites with (b) 5 wt. %, (c) 10 wt.%, (d) 20 wt. %, (e) 40 wt. % of RGO and (f) RGO	104
Figure 4.6	TG and derivative of TG curves of (a) RGO, (b) PPyNTs and RGO-PPyNTs nanocomposites with (c) 5 wt. %, (d) 10 wt. %, (e) 20 wt. % and (f) 40 wt. % of RGO	107
Figure 4.7	 (i) I-V characteristics and (ii) Kaiser equation fitted positive sides of I-V characteristic curves of (a) PPyNTs and RGO-PPyNTs nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. % and (e) 40 wt. % of 	108
Figure 4.8	RGO CV curves at different voltage scan rate of (a) PPyNTs and RGO-PPyNTs nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. % and (e) 40 wt. % of RGO	111
Figure 4.9	(i) GCD curves of (a) PPyNTs and RGO-PPyNTs nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. % and (e) 40 wt. % of RGO at a current density of 0.5 A g ⁻¹ ; (ii) GCD curves of 40 wt. % RGO-PPyNTs nanocomposite at a current density of (a) 0.5 A g ⁻¹ , (b) 1 A g ⁻¹ and (c) 1.5 A g ⁻¹	112
Figure 4.10	(i) Nyquist plots of (a) PPyNTs and RGO-PPyNTs nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. % and (e) 40 wt. % of RGO (Inset shows equivalent circuit) and (ii) Magnified view of the Nyquist plot in Z' range of 0 to 60 Ω	114

- Figure 4.11 (i) Variation of specific capacitance with cycle number 115 of (a) PPyNTs and RGO-PPyNTs nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. % and (e) 40 wt. % of RGO; (ii) CV curves with increasing cycle number of 40 wt. % RGO-PPyNTs nanocomposite
- Figure 5.1FESEM images of 40 wt. % RGO-PPyNTs122nanocomposite (a) pristine, and irradiated with fluenceof (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} , (e) 1.3×10^{13} ions cm⁻² at a magnification of 25 kx; FESEMimages of 40 wt. % RGO-PPyNTs nanocomposite (f)pristine, and irradiated with fluence of (g) 1.3×10^{13} ions cm⁻² at a magnification of 100 kx
- Figure 5.2 HRTEM micrographs of 40 wt. % RGO-PPyNTs 124 nanocomposite (a) pristine, and irradiated with fluence of (b) 2.2×10^{12} and (c) 1.3×10^{13} ions cm⁻²
- Figure 5.3 X-ray diffractograms of 40 wt. % RGO-PPyNTs 124 nanocomposite (a) pristine, and irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3 $\times 10^{13}$ ions cm⁻²
- Figure 5.4 FTIR spectra of 40 wt. % RGO-PPyNTs 126 nanocomposite (a) pristine, and irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻²
- Figure 5.5(i) Micro-Raman spectra of 40 wt. % RGO-PPyNTs127nanocomposite (a) pristine, and irradiated with fluenceof (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻²; (ii) Variation of disorder parameter(I_D/I_G) with irradiation fluence
- **Figure 5.6** (i) TG curves (Inset shows magnified TG curves) and 129 (ii) derivative of TG curves of 40 wt. % RGO-PPyNTs nanocomposite (a) pristine, and irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻²

Figure 5.7	(i) I-V characteristics and (ii) Kaiser equation fitted	131
	I-V curves of 40 wt. % RGO-PPyNTs nanocomposite	
	(a) pristine, and irradiated with fluence of (b) 6×10^{10} ,	
	(c) 3.6 \times 10 11 , (d) 2.2 \times 10 12 and (e) 1.3 \times 10 13 ions	
	cm ⁻²	
Figure 5.8	N_2 adsorption-desorption isotherms of 40 wt. $\%$ RGO-	134
	PPyNTs nanocomposite (a) pristine, and irradiated	
	with fluence of (b) 2.2×10^{12} and (c) 1.3×10^{13} ions	
	cm ⁻² . The insets show the corresponding pore size	
	distribution curves	
Figure 5.9	Water contact angles of 40 wt. % RGO-PPyNTs	135
	nanocomposite (a) pristine, and irradiated with fluence	
	of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3	
	$\times 10^{13}$ ions cm ⁻²	
Figure 5.10	CV curves at different voltage scan rate of 40 wt. %	137
	RGO-PPyNTs nanocomposite (a) pristine, and	
	irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} ,	
	(d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm ⁻²	
Figure 5.11	(i) GCD curves of 40 wt. % RGO-PPyNTs	139
	nanocomposite (a) pristine, and irradiated with fluence	
	of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3	
	$\times 10^{13}$ ions cm ⁻² at a current density of 0.5 A g ⁻¹ ; (ii)	
	GCD curves of 2.2×10^{12} ions cm ⁻² irradiated RGO-	
	PPyNTs nanocomposite at a current density of (a) 0.5	
	A g^{-1} , (b) 1 A g^{-1} and (c) 1.5 A g^{-1}	
Figure 5.12		141
	nanocomposite (a) pristine, and irradiated with fluence	
	of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3	
	$\times 10^{13}$ ions cm ⁻² (Inset shows equivalent circuit) and	
	(ii) Magnified view of the Nyquist plot in Z' range of	
	6-15 Ω	

Figure 5.13 (i) Variation of specific capacitance with cycle number 143 of 40 wt. % RGO-PPyNTs nanocomposite (a) pristine, and irradiated with fluence of (b) 6×10^{10} , (c) $3.6 \times$ 10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻²; (ii) CV curves with increasing cycle number of 40 wt. % RGO-PPyNTs nanocomposite irradiated at a fluence of 2.2×10^{12} ions cm⁻² Figure 6.1 HRTEM micrographs of (a) RGO nanosheets, (b) 150 PAniNTs and RGO-PAniNTs nanocomposites with (c) 5 wt. %, (d) 20 wt. % and (e) 40 wt. % of RGO Figure 6.2 X-ray diffractograms of (a) PAniNTs and RGO-150 PAniNTs nanocomposites with (b) 5 wt. %, (c) 10 wt.%, (d) 20 wt. %, (e) 40 wt. % of RGO and (f) RGO Figure 6.3 FTIR spectra of (a) PAniNTs and RGO-PAniNTs 152 nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. %, (e) 40 wt. % of RGO and (f) RGO Figure 6.4 Micro-Raman spectra of (a) PAniNTs and RGO-153 PAniNTs nanocomposites with (b) 5 wt. %, (c) 10 wt.%, (d) 20 wt. %, (e) 40 wt. % of RGO and (f) RGO Figure 6.5 TG and derivative of TG curves of (a) RGO, (b) 155 PAniNTs and RGO-PAniNTs nanocomposites with (c) 5 wt. %, (d) 10 wt. %, (e) 20 wt. % and (f) 40 wt. % of RGO Figure 6.6 (i) I-V characteristics and (ii) Kaiser equation fitted 157 positive sides of I-V characteristic curves of (a) PAniNTs and RGO-PAniNTs nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. % and (e) 40 wt. % of RGO Figure 6.7 CV curves at different voltage scan rate of (a) 160 PAniNTs and RGO-PAniNTs nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. % and (e) 40 wt. % of RGO

Figure 6.8	(i) GCD curves of (a) PAniNTs and RGO-PAniNTs	161
	nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20	
	wt. % and (e) 40 wt. % of RGO at a current density of	
	0.5 A g ⁻¹ ; (ii) GCD curves of 40 wt. % RGO-PAniNTs	
	nanocomposite at a current density of (a) 0.5 A g^{-1} , (b)	
	1 A g^{-1} and (c) 1.5 A g^{-1}	
Figure 6.9	(i) Nyquist plots of (a) PAniNTs and RGO-PAniNTs	163
	nanocomposites with (b) 5 wt. %, (c) 10 wt. %, (d) 20	
	wt. % and (e) 40 wt. % of RGO (Inset shows	
	equivalent circuit) and (ii) Magnified view of the	
	Nyquist plot in Z' range of 0 to 65 Ω	
Figure 6.10	(i) Variation of specific capacitance with cycle number	164
	of (a) PAniNTs and RGO-PAniNTs nanocomposites	
	with (b) 5 wt. %, (c) 10 wt. %, (d) 20 wt. % and (e) 40	
	wt. % of RGO; (ii) CV curves with increasing cycle	
	number of 40 wt. % RGO-PAniNTs nanocomposite	
Figure 7.1	HRTEM micrographs of 40 wt. % RGO-PAniNTs	171
	nanocomposites (a) pristine, and irradiated with	
	fluence of (b) 6×10^{10} , (c) 2.2×10^{12} and (d) $1.3 \times$	
	10^{13} ions cm ⁻²	
Figure 7.2	X-ray diffractograms of 40 wt. % RGO-PAniNTs	172
	nanocomposites (a) pristine, and irradiated with	
	fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12}	
	and (e) 1.3×10^{13} ions cm ⁻²	
Figure 7.3	FTIR spectra of 40 wt. % RGO-PAniNTs	173
	nanocomposites (a) pristine, and irradiated with	
	fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12}	
	and (e) 1.3×10^{13} ions cm ⁻²	
Figure 7.4	(i) Micro-Raman spectra of 40 wt. % RGO-PAniNTs	175
	nanocomposites (a) pristine, and irradiated with	
	fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12}	
	and (e) 1.3×10^{13} ions cm ⁻² ; (ii) Variation of disorder	
	parameter (I_D/I_G) with irradiation fluence	

- Figure 7.5 (i) TG curves (Inset shows magnified TG curves) and (ii) derivative of TG curves of 40 wt. % RGO-PAniNTs nanocomposites (a) pristine, and irradiated with fluence of (b) 6 \times 10 10 , (c) 3.6 \times 10 11 , (d) 2.2 \times 10^{12} and (e) 1.3×10^{13} ions $cm^{\text{-}2}$
- Figure 7.6 (i) I-V characteristics and (ii) Kaiser equation fitted 179 of 40 % I-V curves wt. **RGO-PAniNTs** nanocomposites (a) pristine, and irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻²
- N2 adsorption-desorption isotherms of 40 wt. % RGO-181 Figure 7.7 PAniNTs nanocomposites (a) pristine, and irradiated with fluence of (b) 2.2×10^{12} and (c) 1.3×10^{13} ions cm⁻². The insets show the corresponding pore size distribution curves
- Figure 7.8 Water contact angles of 40 wt. % RGO-PAniNTs 182 nanocomposites (a) pristine, and irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻²
- Figure 7.9 CV curves at different voltage scan rate of 40 wt. % 184 RGO-PAniNTs nanocomposites (a) pristine, and irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻²
- (i) GCD curves of 40 wt. % RGO-PAniNTs Figure 7.10 186 nanocomposites (a) pristine, and irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻² at a current density of 0.5 A g⁻¹; (ii) GCD curves of 2.2×10^{12} ions cm⁻² irradiated RGO-PAniNTs nanocomposite at a current density of (a) 0.5 A g $^{\text{-1}}$, (b) 1 A g $^{\text{-1}}$ and (c) 1.5 A g $^{\text{-1}}$

177

- **Figure 7.11** (i) Nyquist plots of 40 wt. % RGO-PAniNTs 188 nanocomposites (a) pristine, and irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻² (Inset shows equivalent circuit) and (ii) Magnified view of the Nyquist plot in Z' range of 4.5-13 Ω
- Figure 7.12(i) Variation of specific capacitance with cycle number189of 40 wt. % RGO-PAniNTs nanocomposites (a)pristine, and irradiated with fluence of (b) 6×10^{10} , (c) 3.6×10^{11} , (d) 2.2×10^{12} and (e) 1.3×10^{13} ions cm⁻²;(ii) CV curves with increasing cycle number of 40wt.% RGO-PAniNTs nanocomposite irradiated at afluence of 2.2×10^{12} ions cm⁻²

List of Abbreviations

Abbreviation	Meaning
μR	Micro-Raman
AC	Activated carbon
BET	Brunauer-Emmett-Teller
BJH	Barrett-Joyner-Halenda
CNT	Carbon nanotubes
СР	Conducting polymer
CV	Cyclic voltammetry
DI	Deionized water
EDL	Electric double layer
EDLC	Electric double layer capacitance
EIS	Electrochemical impedance spectroscopy
FESEM	Field emission scanning electron microscopy
FTIR	Fourier transform infrared spectroscopy
GCD	Galvanostatic charge-discharge
GO	Graphene oxide
GO-PAniNTs	Graphene oxide-polyaniline nanotubes
GO-PPyNTs	Graphene oxide-polypyrrole nanotubes
HRTEM	High resolution transmission electron microscopy
ITO	Indium tin oxide
IUAC	Inter University Accelerator Centre
I-V	Current-voltage
MeV	Mega electron volt
MnO ₂ NTs	Manganese oxide nanotubes
МО	Methyl orange
MO-FeCl ₃	Methyl orange-Ferric chloride
nA	Nano-ampere
OWRK	Owens, Wendt, Rabel and Kaelble
PAni	Polyaniline
PAniNTs	Polyaniline nanotubes

PEDOT	Poly (3,4-ethylene dioxythiophene)
PPy	Polypyrrole
PPyNTs	Polypyrrole nanotubes
PTh	Polythiophene
RGO	Reduced graphene oxide
RGO-PAniNTs	Reduced graphene oxide-polyaniline nanotubes
RGO-PPyNTs	Reduced graphene oxide-polypyrrole nanotubes
SDFCL	SD fine chemicals limited
SEM	Scanning electron microscopy
SHI	Swift heavy ion
SNICS	Source of negative ions by cesium sputtering
SRIM	Stopping ranges of ions in matter
SRL	Sisco Research Laboratory
TG	Thermogravimetric
TGA	Thermogravimetric analysis
TMOs	Transition metal oxides
XRD	X-ray diffraction

List of Symbols

Symbol	Meaning
η	Coulombic efficiency
C_{sp}	Specific capacitance
G_0	Low field conductance
R _{ct}	Charge transfer resistance
R _s	Equivalent series resistance
S _e	Electronic energy loss
S _n	Nuclear energy loss
Tonset	Onset decomposition temperature
$T_{ m rpd}$	Rapidest decomposition temperature
V_0	Voltage scale factor
X_c	Crystallinity percentage
Z_{W}	Warburg impedance
σ	Conductivity
ρ	Resistivity