CONTENTS

Abstract	i
Declaration by the candidate	v
Certificate of the supervisor	<u>vi</u>
Certificate of the external examiner and ODEC	<u>vii</u>
Preface	<u>viii</u>
Acknowledgement	<u>x</u>
Contents	<u>xi</u>
List abbreviations and symbols used	<u>xiii</u>
List of figures	<u>xix</u>
List of schemes	<u>xxii</u>
List of tables	<u>xxiii</u>

Chapter 1: General introduction

1.1 MOTIVATION	1.1
1.2 HISTORY AND DEVELOPMENT OF PHOTOVOLTAICS	1.1
1.3 CLASSIFICATION OF SOLAR CELLS	1.5
1.4 DEVICE STRUCTURE AND WORKING PRINCIPLE OF DSSCS	1.14
1.5 SOLAR CELL PERFORMANCE PARAMETERS	1.27
1.6 OBJECTIVES	1.31
1.7 PLAN OF RESEARCH WORK	1.32
1.8 REFERENCES	1.34

Chapter 2: A Highly Stable and Efficient Quasi-Solid-State Dye Sensitized Solar Cell Based on Poly(methyl methacrylate)/Polyaniline Nanotube Gel Electrolyte

2.1 INTRODUCTION	2.1
2.2 EXPERIMENTAL	2.2
2.3 RESULTS AND DISCUSSION	2.5
2.4 CONCLUSION	2.11
2.5 References	2.12

Chapter 3: A Highly Stable and Efficient Quasi-Solid-State Dye Sensitized Solar Cell Based on Poly(methyl methacrylate)/Carbon Black Polymer Gel Electrolyte with Improved Open Circuit Voltage

3.1 INTRODUCTION	3.1
3.2 EXPERIMENTAL SECTION	3.2
3.3 RESULTS AND DISCUSSION	3.3
3.4 CONCLUSION	3.15
3.5 References	3.16

Chapter 4: Effect of Photoluminescent Carbon Dots on the Efficiency of Dye Sensitized Solar Cell with Poly(methyl methacrylate) Based Polymer Gel Electrolyte

4.1 INTRODUCTION	4.1
4.2 EXPERIMENTAL SECTION	4.2
4.3 RESULTS AND DISCUSSION	4.3
4.4 CONCLUSION	4.15
4.5 References	4.16

Chapter 5: Polyaniline Nanotube/Reduced Graphene Oxide Aerogel as Efficient Counter Electrode for Quasi-Solid-State Dye Sensitized Solar Cells

5.1 INTRODUCTION	5.1
5.2 Experimental	5.2
5.3 RESULTS AND DISCUSSION	5.4
5.4 CONCLUSION	5.19
5.5 References	5.20

Chapter 6: Conclusion and Future Scope

6.1. CONCLUSION	6.1
6.2. FUTURE SCOPE	6.3