LIST ABBREVIATIONS AND SYMBOLS USED

Α	geometric area of the electrode
Ag	Silver
AgCl	Silver chloride
AM	air mass
APS	Ammonium persulfate
BET	Brunauer-Emmett-Teller
BJH	Barrett–Joyner–Halenda
BPO	Benzoyl peroxide
cm ⁻¹	per centimetre
$cm^3 g^{-1}$	cubic centimetre per gram
<i>C</i> *	bulk concentration of triiodide species
C_1	capacitive element 1
C_2	capacitive element 2
$C\mu$	chemical capacitance
$C\mu$, $_{CE}$	chemical capacitance at the counter electrode/electrolyte interface
CB	carbon black
CD	carbon dot
CdS	Cadmium sulphide
CdTe	Cadmium telluride
CIGS	Copper indium gallium selenide
Cu(In,Ga)Se ₂	Copper indium gallium diselenide
D	direct radiation
D	diffusion coefficient of triiodide ions
D'	power density at the Sun's surface
DLS	dynamic light scattering
DSSC	dye sensitized solar cell
$E^{\circ\prime}$	formal potential
E_A	activation energy
E_{bg}	electrical bandgap
E_{bghj}	bandgap of the hetero-junction
E_C	conduction band edge of the semiconductor
E_F	energy of the quasi-Fermi level of the semiconductor
E_{redox}	redox potential
E_{opt}	optical bandgap

E_{PP}	peak-to-peak separation voltage
EIS	electrochemical impedance spectroscopy
EM	electromagnetic
F	Faraday constant
FE-SEM	field emission scanning electron microscope
FF	fill factor
FTIR	Fourier transform infrared
FTO	fluorine doped tin oxide
g	gram
G	global
GO	graphene oxide
GOS	graphene oxide nanosheet
GW	gigawatt
h	hours
h	Plank constant
H_O	solar irradiance
H _{Sun}	distance of the object from the Sun
H_2O_2	Hydrogen peroxide
H_2PtCl_6	Chloroplatinic acid
H_2PtI_6	Iodoplatinic acid
H_2SO_4	Sulfuric acid
HCl	Hydrochloric acid
НОМО	highest occupied molecular orbital
HRTEM	high resolution transmission electron microscope
Hz	Hertz
Ι	intrinsic
I ⁻	iodide
I ₃ -	triiodide
I_2	Iodine
Ι	net current
I_D	diode current
I_D/I_G	ratio of intensities of D and G bands in Raman spectrum
I_L	photogenerated current
Io	dark saturation current
I_P	peak current
I_{Pa}	anodic peak current density
I_{Pc}	cathodic peak current density

Isc	short-circuit current
IEA	International Energy Agency
IPCE	incident photon-to-current efficiency
ITO	Indium tin oxide
I-V	current-voltage
J_0	exchange current density
J_{lim}	limiting current density
J_{max}	maximum current density
J_{SC}	short-circuit current density
J-V	current density-voltage
k	Boltzmann constant
Κ	Kelvin
K'	constant in Randles-Sevcik equation
$k_{e\!f\!f}$	rate constant
kJ mol ⁻¹	kilojoules per mole
kW m ⁻²	kilowatt per square metre
KBr	Potassium bromide
KI	Potassium iodide
KMnO ₄	Potassium permanganate
KRICT	Korea Research Institute of Chemical Technology
L	thickness of the polymer gel electrolyte
LE	liquid electrolyte
Li ⁺	Lithium ion
LiClO ₄	Lithium perchlorate
LiI	Lithium iodide
LUMO	lowest unoccupied molecular orbital
m	metre
Μ	molar
mg	milligram
$m^2 g^{-1}$	square metre per gram
min	minutes
mL	milliliter
mmol	millimolar
mV	millivolt
mV s ⁻¹	millivolt per second
mW cm ⁻²	milliwatt per square centimetre
MHz	megahertz

MMA	Methyl methacrylate
MPI	1-Methyl 3-propylimidazolium iodide
n	number of electrons involving in the charge transfer process
n_c	free electron density at the conduction band of the semiconductor
nm	nanometre
N_2	Nitrogen
N_C	density of accessible state of the semiconductor's conduction band
N3	cis-Bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato
	ruthenium(II)
N719	Di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-
	dicarboxylato) ruthenium(II)
NaBH ₄	Sodium borohydride
Na ₂ CO ₃	Sodium carbonate
NaNO ₃	Sodium nitrate
NMP	N-methyl 2-pyrrolidone
OCVD	open-circuit voltage decay
Ox-1	oxidation peak 1
Ox-2	oxidation peak 2
Pin	power of the incident light
PAni	Polyaniline
PAniNT	Polyaniline nanotube
PCE	photoconversion efficiency
PEDOT	Poly(3,4-ethylenedioxythiophene)
PEDOT:PSS	Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
PEG	Poly(ethylene glycol)
PEO	Poly(ethylene oxide)
PGE	polymer gel electrolyte
PL	photoluminescence
PMMA	Poly(methyl methacrylate)
Pt	Platinum
PtI ₄	Platinum(IV) iodide
PV	photovoltaic
PVP	Polyvinylpyrrolidone
q	charge
rGO	reduced graphene oxide
rGOA	reduced graphene oxide aerogel
rpm	rotations per minute

R	universal gas constant
R_b	bulk resistance of the polymer gel electrolyte
R _{CT}	charge transfer resistance at the electrolyte/photoanode interface
$R_{CT,CE}$	charge transfer resistance at the electrolyte/counter electrode interface
$R_{CT,Pt}$	charge transfer resistance at the electrolyte/Pt counter electrode interface
R_S	series resistance
R_{SH}	shunt resistance
R _{Sun}	radius of the Sun
R_W	Warburg impedance
RB	round-bottom
Red-1	reduction peak 1
Red-2	reduction peak 2
S	seconds
S cm ⁻¹	Siemens per centimetre
SCE	standard calomel electrode
SEM	scanning electron microscope
SI	Système international (d'unités) or the International System of Units
SQL	Shockley-Queisser limit
STP	standard temperature and pressure
Т	absolute temperature
TBP	t-Butyl pyridine
TCO	transparent conducting oxide
TEM	transmission electron microscope
TiCl ₄	Titanium tetrachloride
TiO ₂	Titanium dioxide
UNIST	Ulsan National Institute of Science and Technology
UV	ultraviolet
UV-vis	ultraviolet-visible
V	voltage
V	Volt
V_{max}	maximum voltage
Voc	open-circuit voltage
Wmax	peak frequency of the semicircle in the lower frequency regions of the
	Nyquist plot
wt%	weight percentage
W m ⁻²	Watt per square metre
XRD	X-ray diffraction

XPS	X-ray photoelectron spectroscopy
Z'	impedance (real)
Ζ"	impedance (imaginary)
Z907	cis-Bis(isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato)(4,4'-di-
	nonyl-2'-bipyridyl) ruthenium(II)
°C	degree Celsius
η	efficiency
heta	elevation angle
λ_{ex}	excitation wavelength
λ_{max}	maximum absorption wavelength
μm	micrometre
ν	frequency
v'	scan rate
σ	ionic conductivity
$ au_{e\!f\!f}$	electron lifetime
$\Omega \ cm^{-2}$	Ohm per square centimetre

LIST OF FIGURES

Chapter 1: General introduction

Figure 1.1. Solar radiation spectrum on the Earth's surface	1.2
Figure 1.2. Air mass calculated from the zenith point	1.2
Figure 1.3. Growth of world's photovoltaic market	1.4
Figure 1.4. Variation of efficiency with bandgap of different semiconductor materials	1.5
Figure 1.5. Band diagram of a p-n junction solar cell under irradiation of light	1.6
Figure 1.6. Cross-section of a basic monocrystalline silicon solar cell	1.7
Figure 1.7. Band energy diagram of p-i-n junction under irradiation of light	1.8
Figure 1.8. A typical structure of a thin film solar cell	1.9
Figure 1.9. Energy level diagram of an excitonic solar cell under illumination of light	1.10
Figure 1.10. A typical device structure of an organic solar cell	1.11
Figure 1.11. Crystal structure of the perovskite (CH ₃ NH ₃ PbI ₃)	1.13
Figure 1.12. Architecture of two different types of perovskite solar cells	1.13
Figure 1.13. Efficiencies of different kinds of PV cells	1.14
Figure 1.14. Device structure of a typical DSSC	1.15
Figure 1.15. Molecular structure and ultraviolet absorption spectrum of N719	1.17
Figure 1.16. Processes involved during the working of a typical DSSC under light	1.26
Figure 1.17. Circuit diagram of a solar cell	1.28
Figure 1.18. I-V characteristic curve of a solar cell under illumination of light	1.28
Figure 1.19. Effect of resistances on the shape of the <i>I-V</i> characteristic plot	1.29
Figure 1.20. Equivalent circuit diagram of the resistances of a typical DSSC	1.31

Chapter 2: A Highly Stable and Efficient Quasi-Solid-State Dye Sensitized Solar Cell Based on Poly(methyl methacrylate)/Polyaniline Nanotube Gel Electrolyte

Figure 2.1. FTIR absorption spectra of PMMA, PAniNT and PMMA/PAniNT polymer	
blend with 0.30 wt% of PAniNT	2.5
Figure 2.2. SEM images of PMMA/PAniNT polymer blend with 0.30% of PAniNT	2.6
Figure 2.3. J-V characteristics of various DSSCs employing liquid electrolyte and different	rent
PGEs	2.7
Figure 2.4. Temperature dependence of ionic conductivities of different PGEs under ap	plied
bias potential of 0.75 V	2.8
Figure 2.5. Nyquist plots of the DSSCs employing liquid electrolyte and different PGEs	S
under irradiation	2.9

Figure 2.6. J_{SC} and V_{OC} values for different DSSCs with PGEs and liquid electrolyte for upto1000 h of testing2.11

Chapter 3: A Highly Stable and Efficient Quasi-Solid-State Dye Sensitized Solar Cell Based on Poly(methyl methacrylate)/Carbon Black Polymer Gel Electrolyte with Improved Open Circuit Voltage

Figure 3.1. FE-SEM images of PMMA/CB polymer blend with 0.57 wt% of CB with	out
electrolyte, and different PMMA/CB based PGEs	3.4
Figure 3.2. J-V characteristics of various DSSCs employing liquid electrolyte and diff	ferent
PGEs	3.5
Figure 3.3. Temperature dependence of ionic conductivity of different PGEs	3.6
Figure 3.4. Chemical capacitance of liquid electrolyte and different PGEs with variou	S
applied potentials	3.7
Figure 3.5. J-V characteristics of the DSSCs employing liquid electrolyte and PGEs u	nder
dark condition	3.8
Figure 3.6. EIS plots of the DSSCs employing liquid electrolyte and different PGEs u	nder
irradiation	3.9
Figure 3.7. Electron lifetime and rate constant for the charge recombination at the	
photoanode with different weight percentages of CB in PMMA matrix	3.10
Figure 3.8. IPCE spectra of the PGEs with different wt% of CB	3.11
Figure 3.9. UV-vis spectra of PGEs with different wt% of CB	3.12
Figure 3.10. Diffusion coefficient of the I_3^- ions and w_{max} values of the liquid electroly	rte
and different PGEs	3.14
Figure 3.11. J_{SC} and V_{OC} values of the DSSCs fabricated with liquid electrolyte and	
different PGEs during 1000 h of testing	3.14

Chapter 4: Effect of Photoluminescent Carbon Dots on the Efficiency of Dye Sensitized Solar Cell with Poly(methyl methacrylate) Based Polymer Gel Electrolyte

Figure 4.1. TEM and HRTEM micrographs, and particle size distribution of CDs	4.4
Figure 4.2. FTIR spectra of CD, PMMA and CD/PMMA	4.4
Figure 4.3. Deconvoluted XPS curves of the green emitting CDs	4.5
Figure 4.4. UV-vis absorption spectrum of CDs	4.6
Figure 4.5. PL emission spectrum ($\lambda_{ex} = 420$ nm) with a florescent digital image of CDs,	and
PL spectra of the prepared CDs under different wavelengths of excitation	4.6
Figure 4.6. UV-vis spectra of N719 dye and PGEs with varying amount of CDs	4.7

Figure 4.7. J-V characteristics of the fabricated DSSCs	4.8
Figure 4.8. Chemical capacitance at the interface between the photoanode and differen	t
electrolytes	4.10
Figure 4.9. EIS plots of the DSSCs under irradiation of light	4.11
Figure 4.10. Tafel plots of the fabricated DSSCs	4.12
Figure 4.11. IPCE plots of the DSSCs	4.13
Figure 4.12. J-V characteristics (dark conditions) and OCVD profiles of different DSS	Cs
	4.14
Figure 4.13. V_{OC} and J_{SC} values of the different DSSCs during 1000 h of testing	4.14
Chapter 5: Polyaniline Nanotube/Reduced Graphene Oxide Aerogel as Eff Counter Electrode for Quasi-Solid-State Dye Sensitized Solar Cells	icient
Figure 5.1. FTIR spectra of PAniNT, GO, rGOA and PAniNT/rGOA	5.5
Figure 5.2. Raman spectra of PAniNT, GO, rGOA and PAniNT/rGOA	5.6
Figure 5.3. XRD patterns of PAniNT, GO, rGOA and PAniNT/rGOA	5.6
Figure 5.4. SEM micrographs of GO, rGOA and PAniNT/rGOA, and TEM micrograph	hs of
rGOA and PAniNT/rGOA	5.7
Figure 5.5. N_2 adsorption/desorption isotherms of rGOA and PAniNT/rGOA with the	
corresponding pore size distribution	5.8
Figure 5.6. Cyclic voltammograms of rGOA, PAniNT, PAniNT/rGOA and Pt electrod	es
	5.9
Figure 5.7. Cyclic voltammograms of PAniNT/rGOA electrode at different scan rates,	and
the relationship between peak current densities and the square root of the s	can
rate for Ox-1/Red-1	5.10
Figure 5.8. Cyclic voltammograms of PAniNT/rGOA electrode for 100 cycles	5.11
Figure 5.9. Tafel plots of Pt, PAniNT/rGOA, rGOA and PAniNT electrodes for the	
symmetrical dummy cells	5.12
Figure 5.10. J-V characteristics of DSSCs fabricated with PAniNT, rGOA, PAniNT/rC	ЪОА
and Pt counter electrodes, and PAniNT/rGO aerogel electrodes with different	ent
PAniNT content in rGOA	5.13
Figure 5.11. Photovoltaic parameters of DSSCs fabricated with PAniNT/rGOA counter	r
electrodes of different thicknesses	5.15
Figure 5.12. Comparison between performances of DSSCs fabricated with PAniNT/rC	ίΟA
counter electrode employing liquid electrolyte and PGE in terms of J - V	
characteristics and chemical capacitances at the photoanode/electrolyte	5.16
Figure 5.13. Long-term stability of DSSCs over a period of 1000 h in terms of J_{SC} and	V_{OC}

values	5.17
Figure 5.14. Nyquist plots of EIS data of the DSSCs fabricated using Pt, PAniNT/	rGOA,
rGOA and PAniNT counter electrodes under irradiation of light	5.18

LIST OF SCHEMES

Chapter 3: A Highly Stable and Efficient Quasi-Solid-State Dye Sensitized Solar Cell Based on Poly(methyl methacrylate)/Carbon Black Polymer Gel Electrolyte with Improved Open Circuit Voltage

Scheme 3.1. Energy bands and surface states of DSSCs employing liquid electrolyte and

PGE

3.12

Chapter 4: Effect of Photoluminescent Carbon Dots on the Efficiency of Dye Sensitized Solar Cell with Poly(methyl methacrylate) Based Polymer Gel Electrolyte

Scheme 4.1. Role of CDs in enhancing the photoconversion efficiency of DSSCs 4.10

LIST OF TABLES

Chapter 2: A Highly Stable and Efficient Quasi-Solid-State Dye Sensitized Solar Cell Based on Poly(methyl methacrylate)/Polyaniline Nanotube Gel Electrolyte
Table 2.1. Photovoltaic parameters of the DSSCs employing liquid electrolyte and different
PGEs 2.7
Table 2.2. EIS parameters of the DSSCs employing liquid electrolyte and different PGEs
under irradiation 2.9
Chapter 3: A Highly Stable and Efficient Quasi-Solid-State Dye Sensitized Solar Cell Based on Poly(methyl methacrylate/Carbon Black Polymer Gel Electrolyte with Improved Open Circuit Voltage
Table 3.1. Photovoltaic parameters of the DSSCs employing liquid electrolyte and different
PGEs 3.5
Table 3.2. EIS parameters of the DSSCs employing liquid electrolyte and different PGEs
3.9
Chapter 4: Effect of Photoluminescent Carbon Dots on the Efficiency of Dye Sensitized Solar Cell with Poly(methyl methacrylate) Based Polymer Gel Electrolyte
Table 4.1. Photovoltaic performances of the fabricated DSSCs4.8
Table 4.2. Electrochemical impedance and Tafel data of DSSCs fabricated with different
PGEs 4.11
Chapter 5: Polyaniline Nanotube/Reduced Graphene Oxide Aerogel as Efficient Counter Electrode for Quasi-Solid-State Dye Sensitized Solar Cells
Table 5.1. Electrochemical parameters of different electrodes derived from CV
measurements 5.11
Table 5.2. J_0 and J_{lim} data for the symmetrical dummy cells of different types of electrodes
5.12
Table 5.3. Photovoltaic parameters for the DSSCs employing different counter electrodes
5.14
Table 5.4. R_S , $R_{CT,CE}$ and R_{CT} data for the DSSCs fabricated with different counter electrodes
5.18
Table 5.5. Chemical capacitance at the counter electrode/electrolyte interface of symmetrical
dummy cells with 0.75V applied bias 5.19