
Chapter 3

Feature Level Fusion Using

Canonical Correlation Analysis

3.1 Introduction

This chapter provides the details about feature fusion based data-driven models for

EMG application. As mentioned in the previous chapter (Ch.1, Section 1.3.1), feature

fusion is considered to be the most effective in decision models, in which data itself

or features extracted from multiple input features are fused to reduce the variance in

the feature registration process and to span the information space. Such low order fea-

ture space always has much robustness in real-life applications, especially when the best

feature sets are unknown [12]. Thus, in present learning scenario, feature fusion is be-

coming one of the most effective ways of large-scale information embedding. Most of the

real world bio-medical inference system relies on evidences of multiple signals acquired

during investigation. This is due to the typical nature of complex biomedical signal

that usually make trivial single-set-based inferences. This chapter explicitly explores

the multi-view feature fusion for deriving more reliable decision model.

Decision models involve various steps including pre-processing, optimization

and parameter settings. Most important step is the initial information processing step

and so, more sophisticated signal processing means are needed in order to improve the

performance of the model. In pattern recognition paradigm, over the decades, dramatic

improvements have been made in feature extraction and classifiers. Various state-of-the-

art feature extraction methods have been developed or modified and applied to decision

models, which show steady improvement in this era (Ch.1, section 1.3.5). Still, there

exist many shortcomings and challenges which are yet to be addressed and overcome. It

is worth noting that decision outputs highly depend on the nature and quality of input

feature rather than the choice of classification models [92]. In addressing this issue,

the theoretical models have been developed and subsequently, various steps involved
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are narrated in an organized way. At the end of this chapter, the performances of

the proposed model with various formulated information criteria, are investigated and

compared with various state-of-art-methods to highlight the efficacy of the proposed

model.

3.2 More informative features

The study aims at incorporating large-volume signal(s) or feature information into the

initial framework of learning for obtaining more discriminant physiological or statistical

features, which are to be fused and embedded to the learning models. Our proposal

is to create multiple input features or multi-view features (MV) either using single or

multiple signals associated with a study group. It is due to fact that MVL relies on MV so

that it should have most physiologically relevant information and energy contents. Our

rationale is, therefore, that the MV covers large-volume information compared to the

specific signal feature and use of such feature using proposed method could presumably

avoid the feature biasing in the learning framework. It has the potential to be the basis

of the CCA-based learning.

Each time-window frame of specific signal (considering signal is the sum of

multiple time-window frames) is dissimilar in nature and contains different degree of

information. Therefore, first hypothesis induced herein, is that the MV derived from

multiple frames of a signal should have most physiologically relevant information and

energy contents about the underlying process. The second hypothesis is more gener-

alized version of the former and it aims to formulate the MVs using multiple signals

associated with a particular study group. The nature of signals depends on disease

profiles, subgroup of disease and age of subject and therefore, specific pre-defined may

not provide usable information to diagnose the disorders. As a consequence, learning

from such MVs could provide a more robust and effective solution for pattern recog-

nition tasks [1, 9, 45, 48, 49, 52]. This study focuses two aforementioned hypotheses in

sequential order (Case I and II analysis) and explore the subsequent improvement of

model performance with later over the former hypothesis.

Hypotheses employ statistically independent MV using DWT in conjunction

with directly evaluated MV. Unlike DWT methods, the proposed method used wavelet

only to transform input space and to evaluate domain independent MV. To the best of

author knowledge, it has not been used earlier in the context of quality improvement

via feature fusion technique. The reason for using DWT based MV in our method

is that synchronization of multi-domain features improves the generalization ability of

input space [7]. The analysis is carried out in MATLAB (The MathWorks, Inc., Natick,

United States) on an Intel (R) Xeon (R) machine (Precision T3500) with processor 2.8

GHz and 8 GB of RAM.
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Fig. 3-1: (a) Indicates three typical EMG patterns after scaling, i) myopathy (top), ii) ALS (middle)
and iii) normal (bottom), while corresponding filter signals are depicted in (b). Note that c = 9 is
normalized parameter. This signal processing steps improves SNR to ≈ 18%. Zoom subfigures A and B
of dotted portions in (a) and (b) indicate clarity of original and filtered signals.

3.3 Formulation of mult-view features: Case I analysis

(MVF-Case-I)

Typically users are interested in extracting knowledge from the signals to be analyzed,

however, recording signals often contaminate with noises. Therefore, time-course signal

can be categorized into two parts-signals that carry valuable information of phenomena

of interest and noise or interference (unwanted components). It can be expressed as

follows:

Y[n] = y[n] + η[n] (3.1)

y[n] and η[n], n = 1, . . . , N , indicate signal and noise contribution respectively. It is,

thus, essential to remove the artifacts from the signals before analysis. Signal processing

including filtering, transformations significantly helps detaching out such components
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Fig. 3-2: Decomposition of signals and generation of multi-dimensional features using uniform signals
sequences.

from the signals and makes feasible the analysis. However, for unknown frequency

distributions of signal as well as noise, an appropriate filter setting becomes difficult. In

such case, CCA-based method provides an effective solution.

The most energy contents of biomedical signals usually falls in the lower range

of frequency axis. As mentioned earlier (See, Ch.1, Section 2.4) for EMG signals, it falls

in the range of 0-1 kHz and its dominate energy concentrates in the range of 20-500 Hz.

The signals are filtered using a twenty-order Kaiser window based low pass filter with cut

off frequency of 0.5 kHz. Then these signals are re-sampled to an even number for ease

of analysis. It is seen that the signals have considerably high amplitude in terms of µV

and thereby, transformed them using X[.] = Y[n]/c± b, where c is user define constant,

can have any value in the range 0 < c ≤ max(||Y [n]||) and b is the scaling constant. Fig.

3-1 shows raw typical EMG signals and filtered signals. The filtered signal is uniformly

decomposed into a set of sequences [113] and then, taking equal number of sequences,

multi-dimensional feature matrices are formulated as-

X = [X1(i, j), X2(i, j), . . . , Xk(i, j)], Xn ∈ Rk×ni (3.2)

Here ni = n/L, L is the number of sequences and each row in Xk(i., ) represents the

consecutive signal sequences. Understanding of multi-dimensional feature as outlined in

Eq.(3.2) and Fig. 3-2. Symmetrical nature of decomposed signal sequences are visually

investigated using EMGLAB [114], which help visual investigation of dominated MUAPs

in a particular signal sequence, as well as ensures whether consecutive features retain

the morphological symmetry in terms of dominated MUAP or satellite MUAP or not.

It is important since the existence of correlation between pair of input and subsequent

low order features based on correlation can only provide key characteristic of high-

dimensional input features.

3.3.1 Canonical correlation analysis

CCA is widely used multi-data processing methods to analyze the mutual relationships

between two sets of variables [26, 27]. It finds two sets of low order projected vectors,
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one for each view, such that they are maximally correlated in mapping space, that can

be utilized to efficiently characterize the object.

Let us assume two multi-view feature matrices X1 and X2 as defined in Eq.(3.2).

However, for mathematical simplicity they are represented by X and Y . Therefore, PCA

is applied to the feature matrices [6]. As reported in [6], it can further avoid encountering

the singularity issue that occurs in many real-world small-size-problems. Then, mean of

each row from the PCA reduced matrices are removed to make centered data matrices.

Let us define two linear transformations, also known as canonical variates of feature

matrices X and Y ∗ as follows:

u = Ax1x1 + · · ·+Axkxk = ATxX

v = By1y1 + · · ·+Bykyk = BT
y Y

}
(3.3)

CCA finds weight vectors Ax = [A1, . . . , Aq] ∈ Rd×P and By = [B1, . . . , Bq] ∈ Rd×Q that

maximize the correlation ρ between the variate u and v by solving following optimization

problem [44].

max
Ax,By

ρ(u, v) =
E[uv]

E[u2]E[v2]
−→ ATxΣxyBy√

(ATxΣxxAx)(BT
y ΣyyBy)

(3.4)

where Σxx and Σyy are autocovariance matrices. Σxy and E[.] are cross-covariance

matrix of X and Y and mean respectively (Note that Σxx = ΣT
yy)
†. The overall covariance

matrix C that includes Σxx, Σxy, Σyx and Σyy, cover all feature information on their

associations. Optimization problem Eq.(3.4) is solved by using Lagrange multipliers

subjecting to ATΣxxA = BTΣyyB = 1. That means solving of this optimization problem

requires to solve following standard eigenvalue equations.

XY T (Y Y T )−1Y XTA = α2XXTA, (3.5a)

Y XT (XX)−1XY B = α2Y Y TB. (3.5b)

Here α2 is the diagonal matrix or square of canonical correlation with d non-zero ele-

ments. The solution gives a set of features pair corresponding to d-correlations which

are in descending orders, i.e., α1 ≥ α2, . . . ,≥ αd. The canonical correlations indicate

how close the projected vectors are in orthogonal subspaces as shown in Fig. 3-3. The

higher value of diagonal elements indicates close proximity of vectors of two subspace.

Intuitively, first few pairs show significant proximate behavior, i.e., they well-capture

the particular information from pair variable. Thus, the high dimensional feature is

well confined to a low-order structure that preserves most of the energy contents of the

sets. Moreover, to avoid over-fitting of model and singularity of both scatter matrices,

the algorithm is implemented with regularization parameters α and β‡ [115]. Nonethe-

∗For inputs X ∈ Rk×P and Y ∈ Rk×Q, CCA limits the feature dimension to the ranks of input
variables, i.e., d ≤ k = rank(X,Y ) (ni = Q,P )
†Σxx = XXT , Σyy = Y Y T , Σxy = XY T and Σyx = Y XT .
‡Although no theoretical guidelines exist for proper setting of regularization parameters. However,
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Fig. 3-3: Linear subspace of two sets of vectors. Correlation exists only between same indices pairs
vector, i.e., A1,B1, while it is zero for different indices pairs, i.e., A1, B2 due to orthogonality [21].
Dotted pairs have high correlation.

less, it does not transform the projections as Eq.(3.4) is independent of scaling to Ax

and By. Under regularization condition, the aforementioned Eq.(3.5a)-Eq.(3.5b) can be

generalized as-

XY T (Z2Z
T
2 )−1Y XTA = α2Z1Z

T
1 A, (3.6a)

Y XT (Z1Z1)−1XY TB = α2Z2Z
T
2 B. (3.6b)

Where Z1Z
T
1 = Σxx + αI and Z2Z

T
2 = Σyy + βI and I is identity matrix of same

dimension of Σxx and Σyy. Use of α and β improves the regularization of problem and

also avoids the over-fitting of model. It is worth mentioning that dimensionality, as

well as the noise level in the feature dataset, are usually high that arises during signal

acquisition or due to human activities. Furthermore, the feature vectors corresponding

to low order correlation are insignificant which also account for noise contribution and

not considered in this analysis. The aforesaid optimization problem can be solved by

using efficient singular value decomposition (SVD) technique [21]. Assume that X and

Y form unitary orthogonal bases for two linear subspaces (Fig. 3-3) and according to

the theory, the SVD of XTY ∈ Rd×d be-

XTY = UΛV T = [U1, U2]D[V1, V2]T = U1ΛdV
T

1 , (3.7a)

Ax = XU1, By = Y V1. (3.7b)

where U and V are two left and right singular orthogonal matrices of Σxy and Σyx

respectively§ Also XTU2 = 0 which infers that U2 falls in the null space of X, i.e.,

uncorrelated component [115]. The diagonal elements in D are in descending order

moderate parameter values are effective to maintain the balance of learning model and thereby we set
α= β = 0.5 empirically.
§D = diag(Λd, 0) is the diagonal matrix. According to the CCA, correlation exists only in-between

same indices pair vectors, say {A1, B1} and zero correlation in-between different indices pairs, say
{A1, B2}. Therefore, non-diagonal elements in D are zeros.
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and measure the canonical correlations between a pair of projected vectors given by

Eq.(3.7b). By reducing the feature dimensionality based on the degree of similarity in-

dex between two input features, the learning parameters can be further reduced, which

in turn reduces the computational cost. Such strategy promises to provide finer inter-

pretation of problems and a good breakthrough in many aspects of signal processing

era. Detail mathematical solution and proof of both regularized and non-regularized

problems using eigen-decomposition technique are given in [21].

3.3.2 Variability and stability analysis

This section aims to provide some ideas, perspectives, guidelines and key direction to

transform high dimensional feature into low order features based on measurement of nat-

ural changes in modality signals. Thus, there is an obvious interest in signal variability

and stability analysis. A well-accepted framework in statistical paradigm is adopted for

providing the striking evidence to the variations and consequent stability [116,117]. The

feature extraction and selection (FES) is directly related to signal variability, i.e., change

in morphology with time, shape and size etc. The obtained features can retain the most

latent information to be used for automated decision models for correct interpretation

with low computation burden [118].

The signal variability can be either intrinsic or extrinsic. In intrinsic variabil-

ity, a major endeavor in the biomedical field is understanding the changes in modality

signals. It is well-known that the nature of signal obtaining from the same modality the

diverse character for various study patterns. Even within same study pattern, there are

some inherent variability due to the dependency of signals on number of factors. Fur-

thermore, variability of data from specific time-window to the next are also prominent.

Therefore, interpretation of measurement based on specific signals or frames might be

difficult. In this context, MVL have been proven to be successful in covering a wide

range of modalities data. Beyond the strengths of MVL with respect to others, the pa-

rameter degeneracy and constraints are two major ambiguities. A systematic approach

to interact with modality data and understand the nature of changes is adopted using

the CCA. It finds reasonable statistics for fluctuation measurement and subsequently

allows to reduce the allowable uncertainties volume of features.

The basic mathematical preliminaries to provide a more accurate meaning to

this ideas are described here. The model in Eq.(3.2) provides a set of consecutive features

which can be expressed as follows:

F (x) = F (X1, . . . , Xk) (3.8)

The consecutive pairs {(X1, X2) . . . (Xk−1, Xk)} are applied for correlation evaluations,

based on which variations as well as stability of feature or signals are examined. It
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is referred to as variability within-subjective signals (VWS). The local variation, i.e.,

feature to feature variation, can be uniquely characterized from a correlation index r,

i.e. correlation matrix as shown in Eq.(3.9). The parameter values (i.e., r) are estimated

for all possible pairs and presented in matrix form, referred to as collective correlation

coefficient matrix (CCCM), where each row indicates the correlation profiles between

two sets of projected features of input features in transformed subspace. The number

of parameter value is limited by d = rank(Xk−1, Xk). The correlation matrix r is given

as follows:

r =


r1 0 . . . 0
...

. . .
...

0 . . . rd 0

0 0 . . . ri

 = Diag(r1, . . . , rd, ri) (3.9)

Where ri indicates the correction between pair of vector of same indices. To enrich the

analysis and understand the mechanism, graphical and overall correlations (OC) are

evaluated. Graphical analysis reveals the variations of local pair input features, while

the OCs indicate the overall quantitative deviation of pairs. Thus, we have looked at

k-features and for k/2 feature pair, k being even, the OC is evaluated.

Γk/2 =
d∑
i=1

r2
i (3.10)

Here Γk/2 indicates the OC. Any change in Γk/2, i.e., ∆ = Γ1 − Γ2 indicates close

similarity between two input feature vectors and lesser variation between two. This

indicates higher stability of features. This analysis is particularly carried out to evaluate

an appropriate feature dimension by avoiding unnecessary variance of feature space due

to unwanted features.

In certain scenario, the variations of signals are in terms of temporal energy pro-

files (i.e., rms value) extracting from time-frame of signals obtained using decomposition

method [58]. One possible difficulty with this approach is the choice of feature dimen-

sionality. Instead, a specific set of domain features were considered for analysis. Unlike

this, the adopted approach provides a well-define framework to draw the conclusions as

stated below.

i). It elaborates the latent information variation and its extension within same study

group patterns.

ii). A set of low order features corresponding to each set of correlation can be obtained,

which can be further reduced by imposing correlation threshold.

iii). It gives rise to realistic model with the proper guideline that enables true in-

teraction with the heterogeneous dataset which is not pre-known or sufficiently
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understood.

iv). CCA finds mutual information between features ignoring uncorrelated information.

For extrinsic variability study, the signals associated with subjects under same study

group which are often diverse, are considered. The acquisition setup provides recordings

at different resolution and further, it relies on recording sites, type of muscle, force

recruit to muscle (i.e., in case of EMG). Therefore, the uncertainty associated with

various signals might be different. In this case, information registration in decision

models relies on correlation or interaction among multiple signals belonging to various

subgroups of same study subject which is the most prevalent challenge in this scenario.

For this, we devised our experiment extracting feature sets of same order similar to

Eq.(3.8) for each subject separately and subsequently, a feature vector from one set Xk

is coupled with corresponding feature of other set Yk, i.e., {(X1, Y1) . . . (Xk, Yk)}. It

is referred to as the variability in intra-subjective signals (VIS). It would provide the

deviation of features of subgroup to next, from where signal variation from subgroup to

subrgoup under same study group could be concluded. In the proceeding section the

FES is widely explored based on VWS and VIS.

3.3.3 Feature extraction and selection (FES)

The most crucial endeavor to be undertaken in decision models is the FES. The term

feature extraction indicates the evaluation process of features from the input space using

mathematical transformation, while selection stands for the choice of appropriate fea-

tures from transformed domain that reflects the underlying phenomena [119]. So, FES

need to be an efficient, sensitive and intuitive so as to actively communicate between

two systems [1]. Often human play active roles in the choice of proper strategy or model

and also in the way it is used in practice. The latter implies that the design of the

model and FES procedure rely not only on theoretical scheme but also on suitability

and adaptability to the environment preferences.

Many well-known FES methods (decomposition and extraction) were employed

in EMG classification models (See, Ch. 2, Section 1.3.5, [60]). However, due to very

heterogeneous and complex nature of signals, many methods fail in extracting useful

information from signals. Work on various FES methods are in progress to incorporate

time-frequency, DWT [120, 121] or statistical features [58], however, prior to many re-

cent methods, e.g., [23], other methods such as TD, AR, AR+RMS and AR+RMS+TD¶

are also remarkable. Multi-DWT is often common in non-stationary signals [122, 123].

Despite massive work over the decades, very few methods are useful in practical appli-

cations, mainly due to inappropriate choice of FES method. The existing FES methods

have the limitations such as-

¶AR: Autoregressive coefficient, RMS: root mean square and TD: Time domain.
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i). Involvement of large number of assumptions, wherein some are unrealistic in nature

to the phenomena which results in undesirable outcomes [13].

ii). Excessive number of constraints and the high degree of freedom associated with

various models make them difficult in using real-life scenarios without the support

of expert personnel.

iii). Lack of explanation for reason of higher model performance, consideration of fea-

ture searched space, and reliability of methods, complexities etc.

Therefore, this section addresses a theoretical data-driven approach undertak-

ing the aforementioned perspectives. It is restricted to a three class EMG classification

problem. Within this, we adopted two-stage approaches; in the first case, CCA trans-

formation is applied in pairwise manner over all possible pairs of MV and subsequently

evaluated the transformed features for all pairs, and in the second case, DWT-based

MVs are evaluated and then subjected them for analysis. As discussed in the previous

section (See, Section 3.2), the choice of statistically independent features and subsequent

fused features improve the generalization ability of feature space.

The merits of the DWT have been discussed in Ch.1, Section 1.3.6. The DWT

transforms the signal x[n] of length N through a high-pass filter (H) and low-pass filter

(L) with impulses h[n] and g[n] respectively. In first level decomposition, filter outputs

give d1[n] and a1[n], which are known as detail and approximation. The output a1 is

further downsampled by 2 and pass through second set of filters as in Fig. 3-4. The

second level decomposition constitutes two frequency subband components similar to

previous set. These are mathematically expressed as-

d2[n] =

N/2−1∑
k=0

a1[k]h[n− k], (3.11a)

a2[n] =

N/2−1∑
k=0

a1[k]g[n− k]. (3.11b)

An appropriate choice of prototype or mother wavelet function that accurately fits the

application and signal is essential. This function determines the coefficients of high-pass

and low-pass filter of the DWT. As shown in [58], db2 of the Daubechies wavelet function

is efficient for EMG analysis. It further suggested that second level of decomposition

and use of coefficients are reasonable. It is proposed to use localized low-frequency

components for deriving the features since most energy contents of biomedical signals,

specifically EMG and EEG, usually fall in low frequency range ( e.g., 0-1 kHz for EMG).

The higher level of decomposition further narrow downs the localization of frequency

in subbands coefficients. The a2 components of all selected signals are used as input

signals to find DWT-MVs. Fig. 3-5 shows the approximate and detail coefficients for

three groups of subjects indicating DWT signal selection mechanism.
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Fig. 3-4: Two-level decomposition tree of a discrete signal of the DWT.
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Fig. 3-5: Second order wavelet approximate (a2) and detailed coefficients (d2) used to formulate
domain independent multi-view features for (a) ALS, (b) myopathy and (c) normal.

Pattern recognition algorithms use both local and global features extracted from

modality signals. The direct approach employs features from EMG signal-frame, while

MUAP-based method uses local or dominated MUAP features [58]. However, many

MUAPs are non-stationary and finding dominated MUAP from IP EMG is also difficult

task, which in fact requires domain expert. Albeit good results, MUAP based approaches

may not be so transparent to the clinical practice. Further, due to the within-signal

variation (intrinsic) and intra-signal variation (extrinsic), feature extracted from specific

time-window frame may fail in representing the underlying process. The proposed model

finds two set of features using independent input pair feature. FES module as shown in

Fig. 3-6 describes feature extraction scheme.
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Fig. 3-6: Diagram showing evaluation of two feature sets using each direct MV pair and DWT-MV
pairs. Two sets are statistically independent. f(w) indicates DWT transformation applied over direct
features to find DWT-MV.

3.3.4 Feature fusion and classification strategy

Data fusion or feature fusion provides more comprehensive solutions for many real-

world problems (See, [124–126] and references therein). It receives wide attention in

many applications [6,11] due to inherent feature extraction strategy using large-volume

data. Luo et al. in [127,128] introduced various levels of fusion and suitability of feature

fusion for data classification tasks. Followings are essential merits of feature fusion.

i). It create the framework that can handle large volume data available in many

real-worl problems.

ii). It enables interaction of multiple measurements or features (i.e., multi-view fea-

tures) of same or different modalities profiles.

iii). It provides low order discriminant features that convey more information of under-

lying phenomena [6], which are more suitable for machine learning applications.

The challenges inherent in many application domains [1] (and others) and in fusion tech-

nology [124,125], it is clear that the feature extraction and their fusion at an appropriate

level would completely describe a given phenomena and would be relevant to diagnosis

applications.

Alternative to the feature concatenation, we build a global fusion model using

two proactive-concatenation and summation techniques. The scheme as shown in Fig.

3-6 using model Eq.(3.7b) evaluates two sets of transformed features vectors, termed

as projected vectors (PV) or feature vectors (FV). The discriminate features are fused

using concatenation and summation techniques respectively, as follows:

φi = Zmi =

[
X?

Y ?

]
= diag

[
Ax By

]T [
X

Y

]
, (3.12a)

ψj = Zmj = X? + Y ? =

[
Ax

By

]T [
X

Y

]
, (3.12b)
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As defined in the section 3.3.1, Ax and By are weight vectors, and Zmi(j) is known as

local canonical correlation discriminant features (CCDF) of i(j)th subgroup (note that

m = k/2). In order to cover global features, new fusion models DMI and DMII with

single level fusion are evaluated. In other word, it gives single-domain feature fusion,

refer to as F = 1.

(DMI,F = 1)Φi = [Z1
i , . . . , Z

m
i ], (3.13a)

(DMII, F = 1)Ψj = [Z1
j , . . . , Z

m
j ]. (3.13b)

Dimension of fusion models relies on order selection of feature vectors Ax and By. How-

ever, the local features Zmi(j) is maintained at constant order to avoid difficulty in com-

bining them. For low dimensional case, the global features are obtained by juxtaposing

local CCDFs as in Eq.(3.13a)-(3.13b) and then used feature reduction technique. In

case of high dimensional CCDFs, mean of all local feature provides an appropriate solu-

tion. It is worth mentioning that the summation techniques, Eq.(3.12b) and Eq.(3.13b)

(i.e., ψj and Ψj) is superior to the concatenation techniques, Eq.(3.12a) and Eq.(3.13a)

(i.e., φi and Φi) due to low dimensional feature combinations. Thus, one can uniquely

define the low order model to comprehensively represent the discriminate information

extracting from input features via transformations. These strategies waive theoretical

bottlenecks, computational complexity and reduces time. However, the pros and cons of

various combination of features in applying them in real-time applications are discussed

in the context of EMG signal classification in the proceeding sections.

As discussed in previous section, the advocated scheme attempts to combine

domain independent features to improve the generalized ability of learning model. Fol-

lowing this principle, the domain independent features are fused similar to Eq.(3.12a)-

(3.12b) and then combined models are evaluated similar to Eq.(3.13a)-(3.13b) for F = 2,

as follows:

Z ′i
m

=


X?

...

Y ?
1

 = diag
[
Ax . . . Dy

]T 
X
...

Y f
2

 , (3.14a)

Z ′j
m

= X? + · · ·+X?
1 + Y ?

1 =


Ax
...

Dy


T 

X
...

Y f
1

 , (3.14b)

(DMI,F = 2)Φ′i = [Z ′i
1
, . . . , Z ′j

m
], (3.14c)

((DMII, F = 2)Ψ′j = [Z ′j
1
, . . . , Z ′j

m
]. (3.14d)

Here, X1 and Y1 are wavelet multi-view features of X and Y respectively. These fusions

are referred to as multi-domain fusions and obtained discriminant features are known as

global generalized CCDF (gCCDF). In evaluating the appropriate dimensional features,

DMI and DMII (for F = 2) are subjected to LDA analysis and transformed features are
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Chapter 3. Feature Level Fusion Using Canonical Correlation Analysis

evaluated based on LDA selection criteria.

3.4 Formulation of mult-view features: Case II analysis

(MVF-Case-II)

According to the second hypothesis as mentioned in the Section 3.2, this section provides

detail description of MV formulation unlike to the case I analysis and feature fusion

scheme to diagnose neuromuscular disorders. It is purely assumption free data-driven

based scheme. The core focus of this analysis is to extract features from more generalized

MV inputs and to fuse and embed to the classification models. It also focuses on

the effectiveness of the algorithm in the context of results obtained over various EMG

datasets and comparison with state-of-the-art-methods. Under this circumstance, two

high dimensional feature formulation strategies S-I and S-II are introduced, which will

be used independently to evaluate low order features for model learning. This scheme

is referred to as multi-view CCA (mCCA).

3.4.1 Strategy I (S-I)

A given dataset contains C subject groups and each group is divided into c subgroups.

Each subgroup consists of n subjects and employing q signals from each subgroup an MV

Xc is evaluated as shown in Fig. 3.7(a). In this way, we obtain the set of Xc, referred

to as XC to represent the subject group C. In order to find statistically independent

features, DWT is performed over each signal of Xc and using low-frequency components

independent feature matrix Xcω and subsequent set XCΩ are evaluated as-

Xc = [x1, . . . , xq]
T ∈ Rq×p (3.15a)

Xcω = [x̃1, . . . , x̃q]
T ∈ Rq×p̃ (3.15b)

XC = {X1, . . . , Xc};XCΩ = {X1ω, . . . , Xcω}. (3.15c)

Where xq in Eq.(3.15a) is the one-dimensional p samples and x̃q in Eq.(3.15b), is the

corresponding low frequency wavelet components. Two MV sets in Eq.(3.15c) are statis-

tically independent and the feature obtained from them by using effective way improve

the recognition performance. Each MV and its sample delayed version is highly corre-

lated [44]. Therefore, this pair-wise strategy is used for all possible pairs of two sets in

CCA transformation.
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3.4. Formulation of mult-view features: Case II analysis (MVF-Case-II)

Table 3.1: Single-domain MV and sMV according to the formulated S-I and S-II

Subject-groups Subgroup MV Sets of MV Total sMV (Pair)
[C] [for c] [S-I] [S-II]

ALS X1, X2, X3 (3) XC (1) 3×8 = 24 (12)
Myopathy X1, X2, X3 (3) XC (1) 3×8 = 24 (12)
Normal X1, X2, X3 (3) XC (1) 3×8 = 24 (12)

C= 3 Total c= 3+3+3 Total= 3 Total = 72 (36)

3.4.2 Strategy II (S-II)

In S-II, MVs in Eq.(3.15a)-(3.15b) are decomposed uniformly. Each signal is segmented

into a number of sequences with equal number of samples. Signal sequence and corre-

sponding sequences of other signals are embedded to template sub-MV (sMV) as shown

in Fig. 3.7(b). Similar to S-I, two independent sets of sMV are formulated as-

X̃c = {X̃1, . . . , X̃r}; X̃cω = {X̃1ω, . . . , X̃rω} (3.16)

Here X̃r and X̃rω indicate sMV obtained from the MV. In Eq.(3.15c), two sets of MVs

are derived from C while in Eq.(3.16), two new feature sets of sMV are derived from

c. The consecutive sMV retain their morphological symmetry owing to same subgroup

of unimodal data. Visual examination of signals with EMGLAB and MATLAB show

decomposed features retain their symmetry in terms of morphology. In such case, mCCA

can extract the relevant feature subsets from the pairs of consecutive sMV based on

correlation [21] leading to an efficient model. In S-I, low order features are evaluated

from the common subspace of MV and delay version, while in S-II these features are

extracted from the common subspace of consecutive sMV.

(a) (b)

Fig. 3-7: a) Generation of MVs and sMV from c subgroups of C subject groups according to S-I and
S-II respectively. Here n indicates number of subject in each subgroup and r indicates the number of
sMV from each MV, and b) evaluation of sMV from the MV as shown in Fig. 3.7(b) (a) using uniform
decomposition strategy. Each row in MV represents 1D EMG signal.
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3.4.3 Feature extraction and reduction

Table 3.1 shows the obtained MVs and sMVs for three study groups (See, Table 2.1)

using S-I and S-II. Mathematically, they are expressed as follows:

XC(MV ) = [X1, X2, X3]i=1,..,C (3.17)

Xc(sMV ) = [X̃1, . . . , X̃r] (3.18)

Here c = 3 (subgroups) and C = 3 (groups). For each group, 3 MVs are evaluated, one

for each subgroup using S-I as indicated by Eq.(3.17). In S-II, each MV is divided into

8 sMVs (i.e., r=8) and 24 (=3× 8) sMV are evaluated for each group (i.e., Eq.(3.18)).

Same way, DWT-MV and sMV are evaluated. In finding the MVs, various q‖ are selected

and optimal is estimated.

MVs and its corresponding sample delayed versions are pair-wisely projected

to the subspace and then, the features are evaluated using Eq.(3.4). Fig. 3-8(a) shows

the correlation over three pairs of MVs in ALS group that reveals the existence of high

correlation (i.e., r) between MV and delayed MV which also affirms the evidence of [44].

It is worth noting that number of CCA components is equal to the dimension of input

feature which is equal to 8. Here as per analysis, zero correlation corresponding to this

number indicates nonexistence of similarity between 8th-pair of feature. This way, three

feature sets are estimated for three subject groups corresponding to three correlation

profiles. mCCA finds another three feature sets using DWT-MV similar to Eq.(3.17).

Thus, for each group, six feature sets (= 2× 3) are evaluated in S-I.

In S-II, correlations are evaluated for consecutive pairs of sMV. Fig. 3-8(b)

shows the within-group sMV-correlation which reveals the suitability of highly correlated

features that capture intrinsic information of input features. In evaluating MV and sMV

similar to the Table 3.1, second order db2 wavelet function [58] is used and only low

frequency components An are employed while high frequency components Dn are ditched

from analysis. Most user interest energy contents of biosignals fall in lower frequency

scale. In this analysis, we obtained optimal signal value at q=8 and evaluate matrices

MV and sMV of dimension 8 × 258000 (S-I) and 8 × 32250 (S-II) respectively. Also,

correlation threshold is set at 7 and corresponding features are considered for analysis.

Thus, the proposed method reduces the feature dimensionality by using correlation

threshold and SVD. The work flow of the proposed method is shown in Algorithm 1.

3.4.4 Feature fusion, transformation and classification

Summation technique is more suitable due to dimensionality issue (See, Section 3.3.4).

Therefore, similar to Eq.(3.14b), the discriminant feature Zij for all possible pair input

‖ The value of q = 4, 6, 8 and 10 are chosen in this study
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Fig. 3-8: Mean correlation with SD as error bar between a) multi-view feature and its delayed version
(ALS), and b) Consecutive sub-multi-view in three study groups.

Algorithm 1: Feature fusion algorithm using S-I and S-II

Require: Select various value of q.
1: Finds MV and sMV using S-I and S-II
2: C −→ {1, . . . , c}
3: X(i) ∈ Rq×p ←− c
4: XC(1) = {X(i) ∈ Rq×p}ci=1 ←− C

5: Repeat 1-3 for X
C(1)
ω in DWT

6: Do SVD for XC(1) X
C(1)
ω −→ UΛV T

7: Compute −→ {Ax, By} & {Cx1, Dy1}
8: Do feature level fusion −→ {Zij} for each C,
9: Set transformation Φi −→ Zij + γI for γc = 0, γc 6= 0

10: Transform {Φi}c(C)
i=1 −→ LDA

11: Compute SW =
∑

cNc(µc − µ)(µc − µ)T ;
12: SB =

∑
x∈Cc(x− µc)(x− µc)

T

13: do optimization −→ det(W TSBW )

det(W TSWW )
;

14: Solve −→ S−1
W SB;

15: Find eigenvectors for d largest eigenvalue;

features (i.e., MV or sMV). The simplified version of aforesaid equation is as follows:

Zij =

4∑
t=1

Tt(u, v) = ATxX +BT
y Y + CTx1X1 +DT

y1Y1. (3.19)

where Tt is canonical variate and Zij is the gCCDF of {ij}th pair∗∗. Many prior successes

of multigroup feature fusion based method like [5, 29] motivated to implement such

scheme in our study. According to the Table 3.1, three and twelve gCCDFs are evaluated

for each study group using S-I and S-II respectively. Then, evaluated mean gCCDFs as

global measures, are transformed using the following proposed model.

Φi = Zij + γI. (3.20)

∗∗X1 and Y1 are transformed DWT MVs of input X and Y ; C and D are corresponding weight vectors
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Signal 

registration

Multi-view

Formulation

(S-I/S-II)

mCCA

Feature 

extraction 

and fusion

Transformation

1D EMG signals

Classification

Normal

ALS

Myopathy

Fig. 3-9: Proposed multi-view feature fusion based scheme for classifying EMG signals to diagnose
neuromuscular disorders. Initial signal registration stage involves multiple signals selection from the
available resource, processing and orientation of 1D signals into the form of multi-dimensional matrices,
followed by subsequent steps as discussed.

where γ and I are class indicator parameter and identity matrix respectively. The dimen-

sion of gCCDF was matched with I by padding zeros. This experiment is accomplished

with empirical value of γ = 0, 10, and 20 for normal, myopathy and ALS respectively.

It is done to further improve the generalization ability of features by enhancing the

separation margin in decision surface [129]. However, the experiment is also carried out

without using Eq.(3.20).

As mentioned in Ch.1, Section 1.3.2.1, feature reduction is an essential require-

ment in data mining and machine learning applications. In order to extract best feature

sets, the extracted feature space is further subjected to the LDA, which finds the lin-

ear transformation to set the best decision margin among feature clusters. It basically

utilizes class-structure information through minimizing within-class variance SW and

maximizing between-class variance SB [23].

SW =
∑
c

Nc(xi − µc)(xi − µc)T (3.21)

SB =
∑
x∈Cc

(µc − µ)(µc − µ)T (3.22)

where µc, µ and Nc indicate the sample mean of feature vectors, overall mean of the

entire sample set and the number of samples in class C respectively.

Fig. 3-9 shows the decision model based on feature fusion strategies S-I and

S-II. Use of LDA with k-nn avoids the iterative training and under or overfitting which

leads to higher generalization ability of model [23]. k-nn finds the euclidian distance

function between the feature in the test set and neighboring healthy and pathological

patterns in the training set. The pattern from the test set is categorized based on the

class labels of closer patterns.

3.4.5 Performance evaluation markers

To assess the performance, each dataset is partitioned into three subsets, 50% for train-

ing, 25% for validation and 25% for testing. The classifier has been supplied with

statistical features to be assigned any one of three classes-ALS, myopathy and normal.
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3.5. Results and discussion

To evaluate the model performance, we estimate the sensitivity (Sn), specificity (Sp)

and overall accuracy (OA). The OA is given as-

OA =
Numberofcorrectclassification

Totalnumberofclassification
× 100% (3.23)

Sn, Sp, Ac/OA as well as related parameters-positive predictive value (PPV), negative

predictive value (NPV) and error rate (ER) [130–132] demonstrate the balance and

efficacy of decision model. These typical parameters are extensively used for better

assessment of algorithm performances without going to the analysis. Usually, these

parameters are evaluated from the confusion matrix of results. Sn and Sp measure the

degree of positive cases (i.e., ALS, myopathy) and negative case (i.e., normal) correctly

classified.

Ac =
TP + TN

TP + TN + FP + FN
, Sn =

TP
TP + FN

, Sp =
TN

TN + FP
(3.24a)

PPV =
TP

TP + FP
, NPV =

TN
TN + FN

, ER = 1−Ac. (3.24b)

where TP and TN are number of positive and negative class identified correctly, FP is the

number of negative class identified incorrectly as positive class and FN is the number

of positive class identified incorrectly as negative class. In multi-label classification

problem, i.e., multiple diagnosis, class-specific Sn and Sp are also needed [133].

3.5 Results and discussion

3.5.1 MVF-Case-I

In order to investigate VWS and VIS as discussed in the Section 3.3.2, signals acquired

from various muscles under normal or disease profiles as outlined in Table 3.2, are

considered. This analysis mainly focuses on demonstrating heterogeneous nature of

signals that varies within or in-between intra-subgroup of same group and emphasizing

how it limits the dimension of feature space for appropriate realization of underlying

information.

3.5.1.1 Variability within-subjective signals (VWS)

Subject groups are partitioned into four different subgroups (e.g., A1-A4) depending on

sex, age, duration of disease as well as signal recording sites. However, healthy control

subjects have no sign of neuromuscular disorder as such disease duration is marked as

“zero”in Table 3.2.

From four observations or signals, six input features (i.e., k = 6) are evaluated
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Table 3.2: Statistics information of various muscles and study subjects of three groups. Note
that durations of normal subject group are zero for all cases.

Subject group Muscle a‡ Subgroup Label

ALS Abductor polliciesbrevis (AP) 56, 0.5, M A56MAP0.5 A1
Tibialis anterior (TA) 35, 5.0, M A35MT5 A2
Vastus lateralis (VL) 35, 5.0, M A35MV5 A3
Biceps brachii (BB) 67, 1.5, F A67MF0.5 A4

Myopathy Tibialis anterior (TA) 28, 12.0, M M28MT12 M1
Biceps brachii (BB) 44, 26.0, M M44MB26 M2
Biceps brachii (BB) 41, 2.0, F M41FB2 M3
Biceps brachii (BB) 26, 1.0, M M26MB1 M4

Normal Biceps brachii (BB) 23, 0, M H23MB0 H1
Biceps brachii (BB) 26, 0, M H26MB0 H2
Biceps brachii (BB) 29, 0, M H29MB0 H3
Biceps brachii (BB) 27, 0, F H27MF0 H4

‡ Muscle Age, duration (Years), sex (M/F)

(i.e., j = 1, 2, 3, 4). Then, the correlation between the consecutive features (i.e., X ∈
R10) is evaluated. Estimated correlations among their pairs {1,2}, {3,4} and {5,6} are

presented in γjIJ , which is referred to as CCCM (i.e., Eq.(3.25)). The notations I and J

represent group and subgroup respectively. Each row γjIJ(m., ) denotes the correlation

of consecutive features. However, due to space constraint, in each case only upto five

elements of correlations are shown in CCCMs in our case studies. More specifically, the

variation in correlations are more pronounced in graphical analysis, where correlation is

plotted against the projection dimension (i.e., d).

CCCM = γjIJ =


r11 r12 . . . r1d r1i

r21 r22 . . . r2d r1i

...
...

...
...

...

rm1 rm2 . . . rmd rmn

 (3.25)

ALS: Variations among the features of A1 in terms of correlation for four

random observations is shown in Fig. 3.10(a). In addition to that, quantitative measures

presented in CCCM also provide better understanding of these variations. Each plot

corresponding to each row of the CCCM indicates the correlation of input features pairs

extracted from specific signals. Consecutive rows of the CCCM denote the correlations

among the consecutive feature pairs. Indeed, it is suitable and flexible way to represent

underlying relationships. It is seen that γjIJ(1., ) 6= γjIJ(2., ) 6= γIJ
j(3., ) which reveals

the dissimilarities of features. It is obvious in many real-world phenomena, however,

beyond three to four columns, it is minimum with few exceptions. In other words,

transformed feature variation corresponding to lower order correlation are insignificant.

Furthermore, dissimilarities among the features conclude that various feature sets, even

extracted from same signal, share different nature and quality information. Therefore,
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there is an obvious challenge to devise suitable strategy for more elaborate solutions.

As is evident that the variations of signals within same subgroup are also promi-

nent (Fig. 3.10(a) and therein). Fig. 3.10(a)-(c) depicts similar statistical analysis in

A2-A3. Accordingly, the nature of transformed FVs will be different. Nonetheless,

the FVs corresponding to higher order correlation are more significant and overlapping

while lower order FVs deviating in nature and carry more orthogonal behavior as shown

in Fig. 3.10(d). For example, transformed feature-pairs [U1, V1] and [U2, V2] of pair

{3,4}, j = 2 with r = 0.99, 0.50 show coherent in nature, while other pair [U3, V3] with

low correlation r = 0.25 shows orthogonality (non-overlapping) character. This evinces

that the features with low correlation are less informative for correlation based analysis.

Furthermore, the stability of input feature-pairs can be examined from the closeness of

their correlation profiles. Low deviation between any two correlation profiles indicate

high stability of input feature-pairs and stationary nature of signals e.g., the feature

pairs-{3,4} and {5,6} w.r.t. {1,2} are more stable as indicated by the rows γ1
11(2., ) and

γ1
11(3., ) in γj=1

11 . (Eq.(3.26)). This analysis provides sharing information contents among

the features and thus, it helps to select appropriate features dimensionality. However, it

does not account the uncorrelated information between any two features. Experiment

has been carried out on more number of signals (i.e., j = 4 to 10) under same age-

group with common disease profile. However, no significant exception is seen. Besides

aforesaid estimations, the OCs are also evaluated using Eq.(3.10), which are found as

[1.2, 1.3, 1.3], [1.5, 1.5, 2.0], [1.3, 1.3, 1.5] and [1.5, 1.3, 2.6] for j=1, 2, 3, 4. Low values of

OCs are mainly due to similarities of lower order transformed features. Even though,

mean OC demonstrates significant extent of intra and inter signal variation.

γj=1
11 =

0.98 0.28 0.20 0.18 0.14

0.99 0.50 0.25 0.17 0.15

0.98 0.41 0.30 0.18 0.15

 , γj=2
11 =

0.97 0.46 0.44 0.40 0.30

0.98 0.69 0.56 0.54 0.42

0.98 0.61 0.59 0.48 0.44


(3.26)

Fig. 3.10(b) and Fig. 3.10(c) depict similar analysis in A2 and A3 respectively. In

A2, minimum variations for j = 2, 3, 4 and prominent variation for j = 3 are observed.

The OCs over all observations-[0.98, 0.58, 0.53], [0.97, 0.55, 0.46], [0.98, 0.60, 0.46] and

[0.98, 0.60, 0.36] are approximately equal. Furthermore, the mean distributions remains

approximately constant under same subgroup irrespective of j. Thus, it reveals that

signals are highly stable and more or less carries equal energy content. In such case,

inclusion multiple signals for feature extraction enhances learning parameters. Although,

the statistics for A2 and A3 are similar, they differ by recording sites, i.e., A2 and A3

signals were collected from muscle TA and muscle VL respectively. It indicates that

consistency might not depend on sites but on disease profile. The fluctuations in A4 are
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Fig. 3-10: Graphical representation of correlation profiles in CCCM for j = 1, .., 4 obtained correlation
analysis in (a) A1, (b) A2 and (c) A3 of ALS. (d) indicates clusters formed by transformed features
({U1, V1}, . . . , {U3, V3}) of input-feature pair{3,4} with j = 2. (Legend for (a)-(c) 1st pair-�; 2nd pair-?;
3rd pair-· and mean-©).

higher than that in A2 and A3 and less than that of A1. Further investigation on different

age subgroup with common disease profile confirms the fact. Thus, in ALS, under mild

or less severe cases, signal fluctuation from frame to frame (i.e., feature to feature)

is more prominent than severe cases irrespective of gender levels. The OCs on A4,

A2 and A3 are [1.5, 1.9, 2.1], [1.7, 1.9, 2.4], [1.4, 1.8, 2.1], and [1.5, 1.7, 1.9]; [1.7, 1.8, 2.3],

[1.8, 1.9, 1.8], [1.7, 1.7, 2.1], [1.5, 1.6, 1.7]; and [2.1, 1.9, 2.6], [1.6, 1.8, 1.5], [1.4, 1.8, 1.8],

[1.2, 1.5, 1.5] respectively, which also indication of extent of variations.

Myopathy: Fig. 3-11 shows variations in myopathy groups. It can be seen

that the variation in r among the features in these subgroups are smaller than that

of ALS. It is presumably due to significant dissimilarities among the features of two

dissimilar groups. A close inspection reveals that variations in r is significant only in

profile with higher disease duration. Mean r of M1 and M2 in Fig. 3.11(a) and Fig.

3.11(b) further corroborate the visual findings.

Normal: Fig. 3.12(a) and Fig. 3.12(d) evince that normal subgroup of aged 23

and 37 (i.e., H1 and H4) show significant variations, whereas it is similar in subgroups

of aged 26 and 29 aged (i.e., H2 and H3). In addition to that, the estimated OCs also
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Fig. 3-11: Graphical representation of correlation profiles in CCCM for j = 1, .., 4 obtained correlation
analysis in (a) M1, (b) M2, (c) M3 and (d) M4 of myopathy.

indicate the same. It is to be noted that the nature of variations in H4 are similar with

close aged-H2. Thus, the variations within signals are significant toward two extreme

age of subjects, but in case of the middle age, it is not so prominent. Thus, it infers

that signal variations of mayopathy and normal subgroups are symmetrical while ALS

subgroups are asymmetrical irrespective of disease duration. Further, it indicates the

dependency on the type of disease.

3.5.1.2 Variability in intra-subjective signals (VIS)

VIS is a technique to investigate how signals of one subgroup varies with signals of other

subgroups under the same group. It ensures whether it is necessary to consider multiple

signals of various subgroups or randomly selected signals for feature extraction or not.

Although such variations are obvious in many real-time of biomdical signals, VIS can

be used to properly utilize the available resource for evaluation of usable feature.

To implement VIS, the feature variables S1 (=4) of one age-matched are cor-

related with corresponding variables of other subcategories under same disease group

(e.g., ALS). Therefore, VIS is evaluated between corresponding pairs, as indicated by
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Fig. 3-12: Graphical representation of correlation profiles in CCCM for j = 1, .., 4 obtained correlation
analysis in (a) H1, (b) H2, (c) H3, and (d) H4 of healthy controlled group or normal.

r11, . . . , r44 in Table 3.3. The parameter µr indicates the mean correlation of four mea-

surements (i.e., horizontal mean), which is assumed as ideal reference to establish the

global variation. For example, between-subgroup feature variables are annotated with

code such as A25 which indicates features of ALS subject 2 of age 35 and subject 5 of

age 52. Table 3.3 show the variations among various possible combinations of features

which demonstrate the inter-feature variations. However, a close inspection reveals that

these variations are almost constant except in few cases. In ALS dissimilarities are seen

over features (i.e., signal frames), specifically in first and second rows (i.e., A25 and A56).

In case of equivalent age range, it is insignificant. Furthermore, it is evident that the

mean values are also approximately constant throughout the analysis. Similarly, small

variations are also observed in myopathy and normal groups. It is prominent from r22

in both cases. Thus, inter-subjective signals of myopathy and normal groups are more

stable than that of ALS groups.

3.5.1.3 Feature extraction, reduction and statistical validation

Selection of order of feature is one of the most important tasks in machine learning appli-

cations. In data fusion model, specifically in high dimensional analysis, data reduction
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3.5. Results and discussion

Table 3.3: VIS measurement in inter-subjective feature pairs in terms of pair correlations rii,
where i features.

Subject r11 r22 r33 r44 µr

A25 0.98,0.46,0.37,0.25 0.98,0.47,0.40,0.29 0.98,0.67,0.49,0.45 0.99,0.54,0.48,0.38 0.98,0.54,0.44,0.34
A56 0.99,0.45,0.27,0.26 0.99,0.53,0.48,0.36 0.99,0.72,0.54,0.44 0.99,0.72,0.49,0.45 0.99,0.60,0.44,0.38
A67 0.98,0.32,0.29,0.26 0.99,0.55,0.36,0.34 0.99,0.40,0.28,0.23 0.99,0.35,0.33,0.24 0.99,0.40,0.31,0.27
A37 0.98,0.35,0.27,0.22 0.98,0.33,0.25,0.17 0.99,0.31,0.30,0.29 0.99,0.33,0.29,0.28 0.98,0.33,0.28,0.24
A34 0.99,0.39,0.32,0.29 0.99,0.38,0.32,0.29 0.99,0.46,0.38,0.28 0.99,0.44,0.36,0.28 0.99,0.42,0.35,0.29
M14 0.99,0.23,0.23,0.17 0.99,0.26,0.22,0.18 0.99,0.27,0.22,0.21 0.99,0.32,0.25,0.21 0.99,0.27,0.23,0.19
M16 0.99,0.25,0.20,0.16 0.99,0.29,0.26,0.20 0.99,0.32,0.27,0.18 0.99,0.25,0.20,0.13 0.99,0.28,0.23,0.17
M23 0.99,0.32,0.25,0.23 0.99,0.32,0.31,0.24 0.99,0.33,0.23,0.20 0.99,0.29,0.25,0.21 0.99,0.32,0.26,0.22
M25 0.99,0.47,0.32,0.20 0.99,0.30,0.26,0.24 0.99,0.38,0.29,0.24 0.99,0.35,0.30,0.28 0.99,0.37,0.29,0.24
N56 0.99,0.48,0.39,0.25 0.99,0.39,0.27,0.22 0.99,0.47,0.37,0.28 0.99,0.47,0.35,0.27 0.99,0.45,0.35,0.26
N42 0.99,0.39,0.35,0.33 0.99,0.52,0.37,0.34 0.99,0.53,0.49,0.42 0.99,0.50,0.46,0.39 0.99,0.49,0.42,0.37
N41 0.99,0.37,0.33,0.30 0.99,0.48,0.32,0.30 0.99,0.37,0.33,0.26 0.99,0.36,0.34,0.27 0.99,0.40,0.33,0.28
N13 0.99,0.34,0.26,0.24 0.99,0.34,0.28,0.24 0.99,0.37,0.33,0.28 0.99,0.31,0.28,0.25 0.99,0.34,0.29,0.26

µ 0.99 0.37 0.30 0.24 0.99 0.40 0.32 0.26 0.99 0.43 0.35 0.29 0.99 0.40 0.34 0.28 0.99 0.40 0.32 0.27

σ2 0.0 0.01 0.003 0.002 0.00 0.01 0.012 0.04 0.004 0.02 0.01 0.01 0.0 0.02 0.01 0.01 0.0 0.01 0.01 1 0.004

A25-ALS(35-52), A56-ALS(52-56), A67-ALS(56-60), A37-ALS(60-61), A34-ALS(61-67), M14-MYO(26-28), M16-MYO(28-33),
M23-MYO(41-44), M25-MYO(44-63), N56-Nor(21-23), N42-Nor(26-27), N41-Nor(27-29), N13-Nor(29-37).

step is essential preprocessing step to avoid over-fitting of model as well as to form of

compression [125]. Focusing on open issue of choosing an appropriate order of feature,

VWS and VIS are addressed intending to extract latent information across the datasets.

As is evident, intuitively first few sets of features have significant proximate behav-

ior and can efficiently capture the underlying information from input variables. These

low dimensional feature preserve most of the energy contents in the form of statistical

measures which well-facilitate learning tasks.

This investigation provides an efficient solution that maximally reduces the

dimensionality and also retains the joint information. Following the feature-pair cor-

relation, the local feature dimensionality can be reduced based on correlation index

and subsequently evaluated collective features of all possible feature pairs using central

processing model would depict more meaningful measure. Based on aforementioned

analysis, four different combination of features (i.e., Type of feature) are derived for

subsequent investigations (See, Table 3.4). Type-I includes d-dimensional m pairs (i.e.,

m=k/2=3) features as a low dimensional view. For non-stationary bio-medical signals,

this type of feature depicts proper measure, despite having symmetry among various

time-frames or its feature representation upto a certain extent. Type-II includes R-

domain (i.e., 2) d-dimensional m pairs feature. It represents multiple replica of type-I

feature, i.e., combination of direct and DWT feature spaces, that improves quality of

obtained feature space. In case of high variations among signals, type-III retains more

information about the process, which includes S1 (i.e., 4) signals. In other words, type-

III is the combination of S1 number of type-II feature. For multiple modality data

analysis [13], type-IV would carry more physiological information. However, our study

does not address such analysis. The aforementioned joint feature representations are

intended to avoid the most common shearing information which unnecessarily increases

learning parameters. Proper choice of feature representation is essential both at local

and central fusions in order to avoid dimensionality issue.

Feature fusion enables providing a clear picture that capable of exploiting the

underlying structure of heterogeneous features and allow better interpretability. Al-
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Table 3.4: Proposed various combination of features along with the nature of signals.

Feature type Pattern Nature of profile [Symmetry/Asymmetry](Y/N)

Type-I d×m Y (e.g.,Fig. 3.11(c), Fig. 3.12(c) for j = 1, 3, 4)
Type-II R× d× m N (e.g., Fig. 3.10(a), Fig. 3.10(c))
Type-III S1× R× d× m N (e.g., Fig. 3.10(a) for j=2, 4)
Type-IV N× S1× R× d×m N (For multi-modalities data such as [13])

though all types of feature fusion eventually yield single feature frame, some relation-

ships are more suitable in the context of dimensionality and also allow to cover wide

range information. Therefore, this study focus on evaluating single form of discrimi-

nant features using first three feature representations stated in Table 3.4 with the help

of model Eq.(3.12a)-Eq.(3.13b) and Eq.(3.14a)-Eq.(3.14d). It is admitted that different

features, i.e., feature types are suitable for different input environments which have been

investigated later.

Concatenation or summation are two beneficial feature fusion techniques [5].

However, summation fusion is more efficacious due to dimensionality concern in com-

parison to the concatenation. Thus, DMII with F=1,2 is more superior to DMI. The

local CCDFs are estimated and then fused them through global fusion scheme. For

high dimensional case, i.e., mean of all local features are summarized as global features

(i.e., DMI and DMII) instead of juxtaposing them similar to Eq.(3.14a). Feature space

is then subjected to one-way analysis of variance (ANOVA) test which is performed in

MATLAB at 95% confidence level. It ensures whether the selected feature spaces are

statistically significant or not [133]. Following the analysis, 10-dimensional feature ma-

trices are chosen. In this analysis, any feature having p > 0.05 is considered insignificant

and removed from the feature space. However, it is worth noting that feature vectors

are standardized before fusion to avoid the diverge nature even extracted from the same

pattern [5, 32]. If A1, A2, .., Ad are feature vectors, then features are normalized by

Âij=A
i
j −E[Aij ]/σ,j = 1, .., d, Aij is the jth component of ith feature so that the normal-

ized feature has E[Âij ]=0 and variance i.e σ2=1 [134]. The effectiveness of the proposed

feature generation scheme is further corroborated by feature distribution as shown in

Fig. 3-13 and separability analysis as outlined in Table 3.5. Separability measures (SM)

among feature groups are estimated using two Fisher criteria that do not require the

Gaussian [135].

J1 =
trac(SB)

trac(SW )
, (3.27a)

J2 = trac(S−1
B SW ). (3.27b)

where SW and trac =
∑
aij , i = j (i.e., sum of diagonal elements), aij matrix elements,

are represent within-scatter matrix and trace of square matrix respectively. Larger

values of J1 and J2 indicate well-separation of features in decision surface. Thus, it

ensures minimum possibility of getting poor performance while applying the models for
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Fig. 3-13: Scatter feature distribution using LDA, a) two-class and b) three-class under scheme
Type-II (Here #1-ALS, #2-Myopathy and #3-Normal).

Table 3.5: Comparison of estimated J1 and J2 values with few reported methods. Highest
values are indicated by boldface.

Methods J1 J2

Conventional PSD based methods [136] 0.69 1.82
STFT and RVM [136] 0.74 4.57
Q-factor wavelet and spectral features [137] 2.0739 148.4636
Proposed feature model 3.987 149.0125

subsequent task. The SM in Table 3.5 shows that the features generated via fusion

strategy are well-separated and it passes the statistical null-hypothesis that have low-

dispersed scatter distribution.

3.5.1.4 Performance analysis of feature fusion based learning

Features Type-I, Type-II and Type-III are fused using DMI and DMII and obtained

global feature discriminant descriptors are further subjected to statistical models. The

significant features are embedded to learning model. The simplest k-nearest neighbors

(k-nn) which requires only tuning parameter k, is taken for inferences. Choice of k-nn

is due to wide popularity, ease of use and learning [58]. Optimum value of k is obtained

using inter-cross validation technique.

To evaluate the performance of fusion based data-driven models using cross-

validation technique, the dataset EMGN2001 is divided into three subsets as follows:

i). 2-class normal-ALS and normal-myopathy small dataset with 15 ALS, 15 normal

and 15 myopathy recordings.

ii). 2-class normal-ALS and normal-myopathy larger dataset with 50 ALS, 50 normal

and 50 myopathy recordings

iii). 3-class normal-ALS-myopathy larger database with 50 ALS, 150 normal and 50

myopathy recordings.
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Fig. 3-14: Algorithm performance in terms of accuracy with different choices of features in binary
two normal-ALS (a1-b1) and two normal-myopathy subject groups (c1-d1).

This partition is made similar to [58] for better comparison with this method and meth-

ods therein, and reasonable justifications. Additionally, the proposed method is also

validated using another dataset EMGGNRC collected from GNRC hospital, Assam, In-

dia during the period of 2014-2015.

Full scale model performance is first presented so as to give overview of changes

in performance with feature dimension. However, Table 3.6 shows results at optimum

feature dimension. Fig. 3-14 depicts the classification accuracy Ac of our algorithm. It

is seen that accuracies attain optimal level for a particular feature dimension (Fd) and

then gradually fall with Fd. In small dataset as in Fig. 3-14(a1), Type-II and Type-

III show similar recognition rate whereas Type-III provides an optimal recognition rate

as shown in Fig. 3-14(b1). It indicates that Type-III is more suitable in capturing

information from highly variational signal profiles such as in ALS. The algorithm with

Type-II yields good recognition rate in two binary datasets (i.e., normal and myopathy)

as shown in Fig. 3-14(c1) and 3-14(d1). Thus, it ensures the robustness of the proposed

scheme in small variation of profile. Nonetheless, in both cases, the algorithm with

Type-I yields low Ac which is mainly due to elimination of orthogonal features which is

affirmed from higher performances of Type-II and III features.

Fig. 3-15(a2)-(b2) show mean Ac in normal-ALS and normal-myopathy

datasets, and Fig. 3-15(c2) depicts the Ac in three-class dataset. It can be seen that

the method achieves optimal accuracy with type-II feature in three-class large dataset,

which is due to low order multi-domain discriminant features. Statistical paired t-test

that indicates significant group difference between ALS-myopathy and healthy control

groups, also supports the proposed model. In addition, the algorithm maintains the con-

sistency in performance with low deviation. It, thus, ensures the robustness of proposed

technique and it also suggests to avoid unnecessary features that do not contribute in
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Fig. 3-15: Algorithm performance in terms of mean accuracy (two normal-ALS group (a2); two
normal-myopathy subject group (b2)) and accuracy in three-class subject group.
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Fig. 3-16: Error rate of (a) DMI and (b) DMII in five groups of subject with three different features.

enhancing the performance.

Apart from quantitative markers as outlined in Table 3.6, PPVs on two smaller

groups are [0.87, 0.97, 0.99] and [0.86, 0.92, 0.81] respectively and it is [0.96, 0.97, 0.98] on

three-class group. These parameter increase up to 2.6% (Type-II) and 8.8% (Type-III)

in combined analysis. Similar inferences can be made from estimating NPVs as well. It

also indicates the superiority of Type-III and Type-II in small and large-class datasets.

It is to be noted that DMI with regularization and non-regularization provides quite

similar outputs in small dataset. However, in three-class large datset, it shows degraded

performance (i.e., 66.6% in Type-I, 83.3% in Type-II and 86.6% in Type-III). Fig. 3-

16(a) and Fig. 3-16(b) depict the recognition errors in DMI and DMII. Higher level

of error in DMII is presumably due to high feature dimensionality of DMII. These are

7.6% (DMI) and 9.3% (DMII) in small and large datasets respectively.

Table 3.6 shows the performance of our method as well as comparison with

relevant reported methods. It is to be mentioned that the results of our methods with

Type-II and III features are mainly compared with others since Type-I feature does not
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Table 3.6: Performence measurements in terms of percentage (%) and comparison with state-
of-art EMG methods.

Method Type of feature Study Group Sn Sp Ac

Direct DWT Max [138] [A,N] 87.00 98.30 95.50
Direct DWT ten Max [138] [A,N] 87.00 98.60 95.80
Direct AR+DWT [67] [A,N] 78.90 80.20 79.40
MUAP Morphological [64] [A,N] 48.65 97.00 79.10
dMUAP DWT [58] [A,N] 99.00 100 99.70
Our methodA Type-I [A,N] 88.30 77.50 84.80

Type− II [A,N] 96.50 99.00 97.50
Type− III [A,N] 99.65 96.65 98.10
Type-I [M,N] 91.30 80.00 88.65
Type− II [M,N] 94.00 94.95 96.50
Type-III [M,N] 83.30 74.30 80.50

Direct DWT Max [138] [A,M,N] 86.00a, 87.70b 82.70 87.60
Direct DWT ten Max [138] [A,M,N] 87.00a, 88.30b 89.00 89.40
Direct AR+DWT [67] [A,M,N] 60.90a, 70.00b 74.00 72.40
MUAP Morphological [64] [A,M,N] 53.50a,63.00b 83.00 71.40
dMUAP DWT [58] [A,M,N] 99.00a, 98.00b 100 99.50
Our methodA Type-I [A,M,N] 96.6a,90.0b 84.0 93.2

Type− II [A,M,N] 92.00a,96.00b 98.60 97.60
Type− III [A,M,N] 100a,82.00b 99.30 96.00

Our methodB Type-II [A,M,N] 100a, 100b 100 100

Note:-aSensitivity of ALS (SnA), bSensitivity of Myopathy (SnM), A-EMGN2001 and B-EMGGNRC .

include statistically orthogonal features. For better understanding of the efficacy and

superiority, the results for three features are outlined herein.

A close inspection of Table 3.6 manifests that proposed learning provides

promising performances which is also closer to [58]. Most of the cases, the proposed

method shows superior performances. Integrity of advocated method is due to well-

defined feature extraction and fusion strategy. It captured unique features that decreases

the learning complexity which in turn improves the recognition rates maintaining the

consistency over various datasets. High performance is presumably due to incorporation

of orthogonal features into global feature descriptors. In obtaining high performance,

signal decomposition strategy for formulating features plays a vital roles. Moderate level

of signal decomposition is more significant. Too small or too large signal decomposi-

tion fail in maintaining symmetry between consecutive pair of feature variables. In that

case, CCA fails in extracting valuable information. It is ensured by using EMGLAB

and MATLAB. Or method requires 38.485 s, 42.346 s and 71.814 s (mean over three

runs) for classification of two-class (small and large) and three-class problems, includ-

ing feature extraction. However, these are machine specific and they may vary with

classifier and machines. The performances over EMGGNRC that includes 60 recordings

(20 recording/subject group), are 100% (Ac) and 100% (Sn and Sp). This ensures the

consistency of algorithm over wide variety of real-time data.
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3.5.1.5 Comparison analysis: MVF-Case-I

This section briefly describes the performance of proposed method and compares with

various state-of-art EMG methods outlined by Doulah et al. [58]. Table 3.6 shows

results over two binary groups [ALS, myopathy], [myopathy, normal] and three-class

subject group [ALS, myopathy, normal] which are represented by [A, M], [M, N] and [A,

M, N]. It further includes type of feature and classifiers used by various methods.

The proposed method surpasses most of the previously reported methods except

dominated MUAP (dMUAP). However, dMUAP method is often tricky and requires

the guidance of domain experts. The adopted method achieves much higher accuracy

(i.e., 97.50%, 98.10%, 97.60%), sensitivity (i.e., 99.65%, 100a%) and specificity (i.e.,

99.00%, 98.60%) than the methods in [64, 67, 138]. Two sensitivities-SnA and SnM

for two positive cases-ALS and myopathy are evaluated separately, which show higher

values than the method in [58]. It is observed that our approach achieves optimal

accuracy under Type-III feature pattern in binary class and under type-II in three

level class. However, Type-III involves number of observations and hence, it requires

comparatively more processing time, therefore Type-II is more suitable and promising.

In achieving usable information from large data, the advocated model provides the well-

defined framework that leads to optimal performance with minimum variances. It, thus,

evinces the integrity of this learning framework.

It is worth mentioning that direct methods-DWT max, DWT ten max [138] and

MUAP methods-morphology, dMUAP [58, 64] utilize discriminant feature vectors from

each pre-defined signals. MUAP-based method [58] finds dMUAP which requires guid-

ance knowledge of morphological patterns associated with diseases. However, MUAPs

in ALS [54] are unstable and it is difficult to find the dMUAP. Futhermore, the nature of

MUAP may vary due to a) sub-class of disease; b) nature of force to recruit the muscle;

and c) clinical set-up [55, 83]. In such case, MUAP-based methods may not feasible for

analysis. Despite good results over specific dataset, some methods are lack in providing

consistent results over wide varieties of datasets. For example, DWT+AR based method

achieves an accuracy of 95.0% in neuopathy, myopathy and normal dataset, while it is

71.4% in ALS, myopathy, normal which could be due to bias in feature registration or

classifier. In contrast, our method is effective in utilizing multi-domain features using

feature fusion techniques for promising and consistent results.

3.5.2 MVF-Case-II

This section first demonstrates the variations of correlation between intra-subgroup MVs

outlined in Table 3.1 in Fig. 3-17. As is evident, low correlations indicate the significant

dissimilarities of signals used to formulate the MVs. It is due to the fact that MUAP

of EMG signal does not occur at same instances in different time-frames of signals.
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Furthermore, subgroups MVs are differed by age. This measurement makes clear that

signals in different subgroup of a given subject group are significantly different. Thus, it

is reasonable to make use of best possible information of multiple MVs for the complete

understanding of phenomena associated with study groups. Thus, it remains in favor of

the MV-based scheme advocated in the section 3.4.

Unlike MVF-Case-I, MVF-Case-II formulates two strategies S-I and S-II using

selection tree as in Fig. 3-7 in order to enhance more reliability and robustness of the

proposed feature fusion based model that can easily overcome the theoretical bottlenecks

of previous approaches.

3.5.2.1 Performance of the mCCA on real-time datasets

Fig. 3-18 shows wavelet components for optimal q = 8 which is obtained from perfor-

mance and statistical test. This optimum number is taken from each subgroup-two from

each subject (= 2×4) and discriminant features are evaluated (See, section 3.4.4). One-

way analysis of variance (ANOVA) is carried out at 95% confidence level and p=0.05

to assess the quality of features. Feature with p > 0.05 is discarded from feature ma-

trices. Moreover, two-way ANOVA indicates that there is no benefit in adding more

transformed feature while deriving discriminant vectors. A minimal drop of accuracy,

at p=0.05 is observed while increasing feature dimension from 7 to 8. Features are

subjected to LDA that finds optimum decision surface among the features. Table 3.7

and Fig. 3-19(b) show p-values of features and scatter distribution for S-II which show

higher discrimination ability of features in comparison to S-I features.

In order to obtain the best feature combinations for S-I and S-II, performances

are investigated on the training dataset of EMGN2001 in Table 3.8 over three repeated

measurements. As is evident, the D, E (S-II) and E (S-I) (not shown) show optimal

performance, which are (i.e., D (S-II) and E (S-I)) used for full-scale performance eval-

uation over three datasets independently using 3-fold cross-validations. It is seen that

method achieves promising results specifically with S-II over two and combined datasets

as shown in Fig. 3-20(a)-(c), whereas Fig. 3-20(d) depicts overall mean. However,
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Fig. 3-17: Mean correlation among intra-subgroup MVs for three subject groups-a) myopathy, b)
ALS and c) normal. Here X1, X2 and X3 indicate within-subject group MVs as outlined in Table 3.1.
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Fig. 3-18: Formulation of MV using DWT-coefficients approximate coefficients (a2) of (a) ALS, (b)
myopathy and (c) normal. Here d2 are the second level detailed coefficients obtained during wavelet
transformation. Unlike case I, this study employ multiple signals (i.e., q) in formulating the DWT-MVs.

results with S-I are also remarkable and comparatively better, especially, in EMGN2001.

SnA and SnM indicate the sensitivities for ALS and myopathy. With S-II, the algorithm

shows the highest performance over EMGGNRC . However, mean OA is 99.4%, and SnA,

SnM and Sp are 99.5%, 97.7% and 100% respectively (See, Fig. 3-20(d) S-II). In all

the cases, the classifier with S-II achieves promising results than that of S-I. Method

provides good individual accuracy in categorizing normal subjects.

The confusion matrix over EMGN2001+EMGGNRC in Table 3.9 and Fig. 3-21

shows individual class predicting ability of model with S-II. Our model fails in catego-

rizing only three cases (one ALS, two myopathies) while none of the control subjects is

misclassified. However, in EMGGNRC , the model accurately predicts the subjects (See,

Fig. 3-20(c)[S-II]). Thus, the promising results and low variance in outcomes apparently

indicate the reliability of the mCCA.

Results for q = 8 are ascertained from the performance assessment as shown

in Fig. 3-22 and statistical test. ANOVA test at p<0.001 suggests not to add more

than eight signals to avoid the computational burden. Ease of implementation and

feature selection which enable adopting various classification models, are another vital
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Table 3.7: p-values of selected features

Feature p-value (S-I) p-value (S-II)

f1 < 3× 10−3 < 1× 10−3

f2 < 2× 10−3 < 1× 10−3

f3 1× 10−3 < 2× 10−3

f4 0 < 2× 10−3

f5 < 3× 10−4 < 2× 10−3

f6 < 4× 10−5 8× 10−3

Table 3.8: Classification performance of feature combinations of S-II over training dataset of
the EMGN2001

Combination Feature SnA (SnM)(%) Sp (%) OA (%)

A f1 88.0 (78.6) 94.8 87.9
B f1, f2 88.0 (86.6) 96.9 93.1
C f1, f2, f3 93.3 (96.6) 96.6 95.5
D f1, f2, f3, f4 97.3 (97.3) 98.6 98.6
E f1, f2, f3, f4, f5 97.3 (97.3) 98.6 98.6
F f1, f2, f3, f4, f5, f6 93.3 (92.0) 98.2 95.5

consequences. It ascertains the benefits of MVs to extract relevant information from

intramuscular EMG. However, upon increasing the signals beyond eight there is a drop

of accuracy due to loss of useful data during the PCA. Use of more number of prin-

cipal components might provide high recognition rate. However, it will increase the

dimensionality of input spaces which in turn increases the complexity of feature. PCA

provides good feature clustering assuming variance in data [20]. However, large input

alters the feature clustering to a complex pattern which will degrade the performance of

the PCA. In this case, training the system with an alternative technique could provide

an efficient solution.

3.5.2.2 Reliability and scalability of the mCCA

The reliability of the mCCA is further explored in the context of the results obtained

using discriminant analysis (DA) model with linear and quadratic discriminant func-

tions [133]. Such extensive analysis affirms the reliability of the adopted feature extrac-

tion and fusion scheme since the specific model performance may not ensure the quality

of the feature. As is evident, the feature statistic followed by the promising results

in Fig. 3-20 ascertain the reliability of the scheme since the feature biasing is greatly

reduced.

For scalibility measure, the features extracted using the datasets of EMGN2001

is used to estimate the performance over the EMGGNRC as shown in Fig. 3-20(c)[S-

II], wherein OA, SnA, SnM and Sp are 100%. Also, the performance is assessed over

the EMGN2001+EMGGNRC . Fig. 3-23 shows the mean results over the datasets. It is
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Fig. 3-19: a) Figure showing working principle of LDA for C-class problem (=3) with C−1 dimension,
and b) feature distribution for S-II.
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Fig. 3-20: (a)-(c): classification results of our method with D (S-II) and E (S-I) combinations over
three datasets EMGN2001, EMGN2001+EMGGNRC and EMGGNRC , and (d): overall mean (i.e., of (a),
(b), (c)).

further ascertained in the context of two data sets obtained from the EMGGNRC itself.

Although there are no common samples in the datasets, no changes in the results are

observed ensuring the robustness and reliability of our proposed method.

3.5.2.3 Comparison Analysis: MVF-Case-II

This section also outlines the performances of various reported EMG methods and also

focuses on the limitations, inherent feature structures in the context of our approach.

In addition to that, the results of previously described strategy (i.e., MVF-Case-I) as

shown in Table 3.6 are also highlighted to explore the improvement of the MVF-Case-II.

This study focuses on direct and indirect comparisons. In direct-comparison, the results

of our algorithm are directly compared with the results of previous methods, whereas

in indirect-comparison relevant methods are implemented over our study dataset using

common classifier (i.e., k-nn).

Table 3.6 depicts direct comparison analysis. Methods [70, 78] employed DWT
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Table 3.9: Mean confusion matrix in terms of class-mean µC (output classsification mean)
and σ formulated from the results of the classifier with S-II. The diagnoal elements (boldface)
indicate the correct classification

Actual Predicted class-S-II

ALS Myopathy Normal

µC σ µC σ µC σ

ALS 69 1 0 0 1 0

Myopathy 1 1 68 1 1 1

Normal 0 0 0 0 170 0
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Fig. 3-21: Performance in terms of 3D confusion bars, wherein diagonal/off-diagonal elements indicate
the correct/false prediction rate. Vertical axis indicates accuracy and horizontal axes represent actual
and predicted outputs.

statistics for fuzzy-support vector machine (SVM) and particle swarm optimization

(PSO)-SVM and investigated results over dataset of 27 subjects reported in [79]. How-

ever, low order statistics may not be feasible for highly nonlinear data. SVM requires

optimal kernel parameters-C and γ for correct results and to ensure whether training

samples of each class are uniform or not. However, in real-world, the effect of training

samples are different. Methods [70,78] were derived from evolutionary algorithms which

deal with binary problems. Computational burden and lack of theoretical guarantees

are their inherent pitfalls. ESVM [79] selects kernel parameters using GA which involves

a number of steps and have high computational time for larger datasets. RF [80] takes

large memory and slow down the process in case of a large number of trees, lack of

explanation and tends to overfit for noisy data.

Features AR+RMS+TD [74] often introduce high dimension and also take ad-

ditional processing steps. AR+RMS and AR+RMS+TD give 28 and 44-dimensional

feature respectively. Large mixture number incur very high computational expense but

do not yield to good result for small data. Our study advocated the benefit of dis-
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Fig. 3-23: Mean results with DA (linear) and DA (Quadratic) model. Performances are measured
similar to the Fig. 3-20 using two different classifiers instead of k-nn.

criminant features for more reliable inferences. As is evident, the proposed method

specifically S-II choice, outperforms many state-of-art methods and it also achieves an

optimum accuracy of 100% in EMGGNRC . Quantitatively, it improves recognition rate

up to 2− 2.6% over the best value of reported method and it also maintains the consis-

tency in performance.

Fig. 3-24 shows the results of direct comparison. Our results (i.e., P1-P3) are

compared with implemented methods. Results of our preliminary small scale-MV study

is shown in R5. Methods [70, 78, 79] and [80] employed 15, 23, 23 and 27 features (i.e.,

mean, average power, SD and ratio) evaluated from study signals. As is evident, our

method is far superior to these methods. Reported methods show promising results over
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Fig. 3-24: Comparison of results in terms of SnA, SnM, Sp and OA (with ±σ as error) of various
state-of-the-art methods, R1: Fuzzy-SVM [70], R2: PSO-SVM [78], R3: E-SVM, [79], R4: RF [80], R5:
our preliminary small scale-MV with the proposed model as indicated by P1 [S-I] and P2 [S-II] for S-I
and S-II respectively. Here P3 [S-II] indicates the performance of the proposed method with S-II over
dataset EMGGNRC . Although reported methods are recalled by their original nomenclature, but, all
these methods employ k-nn as classification model instead of SVM, RF etc.
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Table 3.10: Performance comparison with the state-of-the-art-methods. Boladface indicates
the highest recogniation rate achieved by the proposed method.

Classification Model Feature used Study groups/subject OA

SVM [76] Frequency-feature 3/27 92.55

F-SVM [70] DWT-statistical feature 3/27 93.50

ESVM [79] DWT-statistical feature 2/27 97.00

PSO-SVM [78] DWT-statistical feature 2/27 97.40
RF [80] DWT-statistical feature 3/25 96.67

Proposed (S-I) mCCA-statistical feature 3/37 96.8
Proposed (S-II) mCCA-statistical feature 3/37 99.4
S-II [EMGGNRC ] mCCA-statistical feature 3/12 100

small dataset. However, in EMGN2001+EMGGNRC , they show degraded performance.

Our method improves recognition rate up to 3.6-4.2% over the results of reported meth-

ods.

Our method with S-II misclassified three cases which is presumably due to

the inherent similarity of signals, order selection or dissimilarity of extracted features

from the trained patterns. Integrity of advocated method is due to well-defined feature

extraction and fusion strategy. It captured unique features that decreases the learning

complexity which in turn improves the recognition rate. It requires average of 23.78 s

and 36.46 s for feature fusion of includes S-I and S-II respectively. For classification task,

it takes 2.1 s and 3.4 s. It is reasonable due to the incorporation of large information to

have better diagnosis value.

3.6 Conclusion

This chapter addressed data-driven approaches based on feature fusion model using two

independent multi-view feature generation schemes. In deriving decision making model

for classification, we argued an efficient noise-feature dimensionality reduction technique

based on variability and stability analysis of non-stationary EMG signals with an aid

of multivariate statistical model. Then, a new feature extraction module was developed

and subsequently a set of feature distributions were evaluated. The extracted feature

patterns were fused using two proposed two global fusion techniques Thus, it was proved

to be a useful benchmark for FES as a promising signal processing paradigm. Besides,

statistical tests one-way and two-way ANOVA were performed to validate the feature

space statistically. Finally, the proposed algorithm was investigated with two sets of

data-publicly available and GNRC database, namely EMGN2001 and EMGGNRC . The

outcomes of these investigations best fit with expert neurologists opinions. Finally, we

ended this section with some consequences or advantages of the proposed method over

previously reported methods, which are as follows:
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i). It is a reversible process which makes the proposed scheme as a useful benchmark

in reconstructing the signal after reduction of noise. Moreover, the scalability of

the approach is quite high.

ii). Feature synchronization using two independent methods avoid loosing important

information which are uncorelated between two set of feature. Hence, the possi-

bility of missclassification rate is significantly reduced.

iii). The method provides quantitative evaluation of correlation between two sets of

features which can be further extended to multiple sets of features. Thus, combined

quantitative analysis and visual description of correlations among features help

setting the threshold for reduction of feature dimensionality in order to avoid

computational bottleneck of model. This strategy further reduces the complexity

of learning process.

iv). Although its execution is time high for specific feature combination, but perfor-

mance is promising which is the vital requirement for viable algorithm.

In the second approach (i.e., MVF-Case-II), we adopted a another multi-view feature

generation scheme from EMG signal considering subjective age as one of important

feature biasing factor. Accordingly, a subspace learning based feature fusion model

which uses multi-view information extracted from EMG signal was developed. In this

scheme, two multi-view feature formulation strategies, namely, S-I and S-II, were pro-

posed and investigated the performance of the proposed model over various combinations

of datasets EMGN2001, EMGGNRC and EMGN2001+EMGGNRC .

The MVF-Case-II technique employs multiple signals through MV feature gen-

eration tree using strategies S-I and S-II. It significantly reduces the feature dimension-

ality with an aid of optimization technique and the results suggest that information

extracted from multi-view inputs yield an excellent mean recognition accuracy up to

99.4% with a specificity of 100% and sensitivities of 99.5% and 97.7%. Furthermore, the

model achieved 100% performance over EMGGNRC dataset. Admittedly, the classifica-

tion efficiency relies on multi-view extracted from multiple signals belonging to various

age-based subgroups of study subject groups. Furthermore, optimal signal selection for

multiple views creation was investigated and validated using statistical analysis which

revealed that no significant improvement in classification resulted from adding more than

eight signals. The investigation shows the signals belonging to various subgroup accord-

ing to age are significantly different. In view of such dissimilarities among the signals

or extracted features the second approach is more suitable. Thus, the overall outcomes

are encouraging and it envisages developing a graphical user interface which would be

simple, accurate and reliable enough for clinical usage. It further promotes investigation

with signals and development of reliable tool for quantitative decision support system. It

is interesting to investigate how robust edition of CCA, namely, discriminant correlation

analysis (DCA) play the role in enhancing the model performance and complexity by
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deploying feature discrimination function. The proposed operational framework is not

an alternative approach to replace the doctor in any way but can support and enhance

the diagnosis process so as to take early alarm of patient health status for quick diagno-

sis. Thus, it promotes the implementation of such advance signal processing method in

clinical and home care environments (i.e., portable devices based health monitoring) to

improve the quality of life. The proceeding chapter will explore the extension of CCA

(i.e., DCA) to further meliorate the algorithm performance and focus on reduction of

theoretical bottlenecks for ease of implementation in various application domains.
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