
Chapter 4

Feature fusion using multi-view

discriminant correlation analysis

4.1 Introduction

For complete knowledge of the phenomenon of interest, thorough analysis of availability

of multiple responses is mandatory requirement. As mentioned in Ch.3, analysis of such

high dimensional multi-view associated with high impact-biomedical, commercial, social,

military and environmental applications, promotes deriving efficient methodologies [1].

At present, such studies are of high demand and reach far beyond pure academic interest.

The previous chapters have already addressed a mathematical framework incorporating

multiple domains multi-view feature fusions with an aid of CCA and mCCA. With

wide prospective on multi-class learning, this chapter aims at establishing a novel multi-

domain multi-view DCA (mmDCA) fusion based data-driven model generalizing DCA,

which is inherently capable of incorporating the class association in the feature space

unlike CCA or mCCA. DCA contains similar theoretical formulation with the CCA with

exception of feature discriminant function [6]. mmDCA extends the theory of DCA

to find the multiple domain canonical variates summarizing the correlation structures

among the multiple input features by linear transformation. In contrast to the DCA

where correlation between pair feature is maximized and well separated, it, in addition,

optimizes the criterion function between features in multiple domain independently to

obtain maximum overall correlation and more meaningful structure corresponding to

same phenomena.

The adopted model eliminates the between-class correlations and restricts the

correlations within the classes. Additionally, it has the ability to decorrelate feature

vectors which are common to different classes within each feature sets. Such design

focus in the early phase of learning helps mobilizing the performance rather than the

conventional multi-step approaches that require tuning or standardization of parameters
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Chapter 4. Feature fusion using multi-view discriminant correlation analysis

to meet the objective. In addition, the adopted approach does not encounter small-

sample size problems that usually occur in many real-world problems. To the best

of author’s knowledge, no such approach has been put forwarded in literature. The

chapter identifies many shortcomings in current approaches like class-structure or class

association, complexity, performance, reliability for real-time implementation, adaption

to noise and signal processing method.

The elaborated well-defined framework is to gain benefit over wide-scale learning

scenario. Extensive experimental investigations on EMG data demonstrate the effective-

ness of adopted method that outperforms many state-of-the-art methods. In addition

to previously mentioned issues, the proposed model aims at the best achievable error

rate, interpretability, uniqueness and requirement of straightforward approaches.

4.2 Key ingredients

As stated earlier, the CCA does not take into account the orthogonal components which

may play a dominating role in pattern recognition tasks. As a remedial measures, our

feature fusion approach via DWT+CCA aims to synchronize domain independent fea-

tures with directly evaluated features in order to maintain the integrity of good learning

approach. The proposed mmDCA scheme is implemented to extract a sets of local fea-

tures, which will be termed as local generalized CCDFs and to fuse all discriminant

evaluations in a synchronized manner after incorporation of class-specific information

into the corresponding feature sets. It is believed that the mmDCA will become more

reliable and it can overcome the shortcoming of the previously described strategies.

To avoid computational and theoretical bottlenecks, many generalized versions

such as MCCA and method in [34, 139]. However, these methods do not expose the

integral relationship among the multi-set variables and the constraints do not guarantee

that the transformed variables are statistically uncorrelated [30]. MICCA [29] precisely

expresses the integral correlation among multi-set features. Nonetheless, it pursues an

iterative approach that reduces its efficiency. Most recently, sparse representation has

garnered interest for both reconstructive and discriminative tasks [140–142]. The main

assumption of these models is that a query sample belonging to a specific class can be

viewed with a linear combination of the training samples from that class. Thereby, it

searches for a sparse vector having non-zero elements only in the indices corresponding

to that class. It does not follow the principle of feature fusion that requires formulating

single feature vector to be utilized in any classification model as mentioned in [143].

Nonetheless, Joint Sparse Representation classification is regarded as a fusion technique

that creates multiple corresponding dictionaries each using training samples of a modal-

ity. Taking the query consisting of multiple modalities, it attempts to evaluate joint

sparse vectors that share the same sparsity pattern and have non-zero values only in the
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Fig. 4-1: Block diagram of proposed scheme for input process measrement. Here F (x)c represents
function of dMV features generated from sMV features corresponding to m.

indices corresponding to a mutual class in multiple modalities. That is, it utilizes train-

ing samples of the same class from the different modalities to reconstruct the query data.

The authors in [144] introduce a multimodal task-driven dictionary learning algorithm

that improves the performance of this approach.

Although previous chapters have already addressed the methodologies of MVL

and exemplified, in order to further meliorate algorithmic performance incorporating

multiple factors, a new model, namely, mmDCA is addressed with comprehensive details.

4.3 Multi-view feature generation scheme

In addition to the previously described schematic representation of MV learning net-

work (Ch.3, Fig. 3-5), in the same vein, a more generalized mathematical framework

is important and possibly required for better concrete meaning. The proposed model

as shown in Fig. 4-1 tediously examines the intelligent integration of information that

evolves underlying phenomena and advanced inference logic. As is evident in the pre-

vious chapter (Ch. 3, Section 3.4), the multi-view generations are based on nature of

subjective signals, e.g., age of subjects, disease profiles (i.e., mild, severe), duration and

instrumental setting. Taking a dominating factor like age that influence the distribution

of data patterns in signals, the previous experiment have already argued for an efficient

support framework and accordingly it achieved the goal. Despite the achievements, this

chapter discusses another approach using robust edition of CCA that includes class in-

formation for a true interaction of the signals inherently associated with subject groups

at the ground level.

4.3.1 Multi-view direct feature

This section describes feature extraction scheme similar to the Fig. 3-7 of previous chap-

ter. A given dataset includes C input processes and each process contains signals which
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Fig. 4-2: Diagram shows feature generation scheme by segmenting the high dimensional feature
matrix sMV∈ Rp×n formulated from a relevant set of signals. Each row represents 1D EMG signal
of 11.2 s duration. Here, X1, . . . , Xi indicate equally decomposed multiview features formulated using
undertaking strategy. p and n represent number of signals and samples in each signals.

Table 4.1: Categorical partition of studied subject groups and sMV which are function of dMV
features. Note that j = 1, 2 represents two domains raw+mmDCA and raw+DWT+mmDCA.

Category Groups Age range Sub-views
[C] [G] [Year] [Decomposition]

ALS G1(X1(1), . . . , Xm(1))∀j 35-52,53-61,62-67 F (x)1 = [X1, . . . , Xi]∀j
Myopathy G2(X2(1), . . . , X2(c))∀j 19-26,28-41,44-63 F (x)2 = [X1, . . . , Xi]∀j
Normal Gc(X

1(c), . . . , Xm(c))∀j 21-26,27-29,29-37 F (x)c = [X1, . . . , Xi]∀j

are recorded at same or different experimental conditions. To ensure more diversity in

dataset entry, each process is partitioned into GC subgroup depending on a given condi-

tion which varies with the process. From each GC , m feature matrices Xm(C), referred

to as sub-multi-view (sMV) are evaluated and it is extended to all processes as shown

in Fig. 4-1. The sMV is further decomposed uniformly to evaluate decomposed-MV

(dMV) feature as shown in Fig. 4-2, where each row indicates 1D-signal with sam-

ples xpn. The reason of decomposition is to find inherent mutual information between

two consecutive features using CCA or DCA while dissimilar components due to noise

sources are eliminated.

4.3.2 Multi-view DWT feature

Recalling the Section 3.3.3, Ch. 3 that explains the use of second level DWT with

db2 [58], it aims to use localized low-frequency components for deriving the features

since most energy contents of biomedical signals, specifically EMG and EEG, usually

fall in low frequency range, e.g., 0-1 kHz for EMG [16]. The higher level of decomposition

further narrow downs the localization of frequency in subbands coefficients. The low

frequency a2 components of all selected signals are used as input signals to find DWT-

sMV and dMV similar to section 4.3.1.

As mentioned earlier, the hypothesis is, therefore, to create a set of MV or

dMV by employing multiple signals through a specific strategy which could have most

physiologically relevant information and energy contents. The mathematical formulation
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used herein is only a concatenation of a more general idea that applied to data sets.

Nonetheless, it is worth mentioning that the decomposed vectors, X1 ∈ Rq×p, X2 ∈ Rq×p

with p samples each, do not necessary to have same dimensional vectors. It is only

for ease of implementation and to maintain the integrity of our approach (note that

P =
∑

i p = n samples). It is natural to incorporate dimension reduction strategy in

case of large dimensional input features before mmDCA. However, it does not lose the

generalization ability of input space, in fact, it controls the complexity and ascends the

learning ability curtailing the parameters setting.

4.4 Feature fusion using mmDCA

Recalling the within-sets covariance matrices Σ11 and Σ22 and between-set covariance

matrix of views Σ12 are of dimension q× q∗. The overall covariance matrix Σ containing

all information on association between pairs of variables is as below:

Σ =

[
Cov(X1) Cov(X1, X2)

Cov(X2, X1) Cov(X2)

]
=

[
Σ11 Σ12

Σ21 Σ22

]
(4.1)

It is to be noted that in case of inconsistent pattern vectors, the understanding of the

relationships between these two sets of feature vectors from this matrix is quite difficult

task [145]. CCA handles this issue efficiently by subspace transformation as described

in the previous Chapter (Ch. 3, Section 3.3.1), which finds sets of transformation and

corresponding eigenvalue matrix α2 with d = rank(X1, X2) ≤ min(p, q) non-zero ele-

ments with descending ordered correlations. Here p and q represent number of rows and

columns in the feature matrices. With an appropriate choice of dimensionality, the sub-

space features are fused using Eq.(3.13b)-(3.14a) to find the gCCDFs as comprehensive

statistics of underlying information of pair features. In case of large number of MVs or

dMVs, then the gCCDFs evaluating from all possible pairs of features are necessary with

the help of the Eq.(3.14b)-(3.14c). For the case of low deviation among the gCCDFs

stored in DMI and DMII, second level fusion, i.e., F=2 as defined in the section 3.3.4,

the global mean gCCDFs is more suitable in context of complexity and dimensional-

ity concerns. If the order choice of d in evaluating the gCCDFs is low, then the DMI

and DMII, F=2 provide more concrete meaning. Even in case of large dimensionality of

DMI and DMII, feature reduction techniques help transforming them to low dimensional

vectors. The integrity of adopted CCA-based fusion schemes is made clear to users by

demonstrating the performance in previous studies. However, some important issues for

the sake of being well multi-classification task are needed to be explored further.

Singularity and ignorance of class information are two disputable issues in CCA-

based learnings. Singularity issue can be handled efficiently by introducing regulariza-

∗Σ12 = ΣT21 = XT
1 X2, Σ11, Σ22, Σ12 and Σ21 are presented as Σxx, Σyy, Σxy and Σyx according to

the input feature vectors X and Y in chapter 3, Section 3.3.1
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tion or combination of both PCA and CCA/mCCA, i.e., PCA+CCA/mCCA [?]. Based

on class-information, the dimension reduction techniques, also known as visualized tools

such as LDA, SOFM, determine an effective feature distribution in decision surface with

enhanced class separation margin. In case of feature vectors obtained from CCA space

for various objects may have the possibility of similarities among different class specific

feature vectors that causes overlapping of feature clusters and degradation of model

performance.

In this contrast, in a two-stage approach LDA + CCA/mCCA, CCA/mCCA

fails to preserve the properties achieved in LDA+CCA. However, the reverse case

CCA/mCCA+LDA copes the class structure efficiently (Ch. 3, Section 3.5.2.1). In

such case, LDA work only over the information preserved by CCA or mCCA. Un-

like CCA/mCCA and DCA, the advocated model simultaneously makes the correlation

among features and decorrelation between different group features in multi-domains (i.e.,

j = 1, 2). Thus, it could fulfill the requirement for efficient design module. The combi-

nation of correlation analysis and discriminant analysis has also been utilized in earlier

work [21] and [146]. However, problem definition and formulation are different from the

adopted approach. For instance, Kim et al. [21] addresses cross-view face recognition

systems by using correlation analysis, wherein it aims to find the correlated features

from feature vectors of the various domains.

4.4.1 Preliminaries and theoretical approach

Given a data matrix X with n columns is composed of samples collected from C separate

classes of dataset and ni columns corresponding to ith class. Sample and global mean

of feature matrix are x̄i and µ respectively. To separate the class within the feature set,

it is required to maximize the between-scatter matrix SB.

SBx1 =
∑
c

ni(∇i)(∇i)T = ΦbxΦT
bx, (4.2a)

Φbx(p×C) = [
√
n1(x̄i − µ), . . . ,

√
nC(x̄i − µ)]. (4.2b)

where† ∇i = x̄i − µ. In case of large feature vectors in comparison to the classes C,

the solution to the RHS of Eq.(4.2a) can be evaluated using mapping technique which

involves C × C covariance matrix [6]. To ensure well-class separation, the symmetric

positive semi-definite matrix ΦT
bx1Φbx1 is diagonalized as-

P T (ΦT
bx1Φbx1)P = Λ̄ (4.3)

where P is the orthogonal eigenvector and Λ̄ is the diagonal matrix having real non-

negative eigenvalues in descending order. Let QC×r matrix contain first r non-zero

†where x̄i =
1

ni

∑n
j=1 ixij and µ =

1

n

∑c
i=1 nix̄i
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eigenvectors which correspond to the largest eigenvectors of P .

QT (ΦT
bx1Φbx1)Q = Λr×r (4.4)

The most significant eigenvectors of SBx1 can be found by mapping: Q −→ Φbx1Q.

That is (Φbx1Q)TSBx1(Φbx1Q) = Λr×r. Wbx1 = Φbx1QΛ1/2 transformation utilizes SBx1

to reduce X1 from p to r, i.e.,

W T
bx1SBx1Wbx1 = I, (4.5a)

X́1r×n = W T
bx1(r×n)X1(p×n). (4.5b)

X́1 is the transformed pattern of X1, where classes are well separated. There are at

most C − 1 nonzero eigen vectors. Following the same principle, second feature variable

X2 is mapped to X́2, where transformed matrix Wbx2 uses the between-class scatter

matrix for the second modality profile SBx2 and minimizes dimension from q to r (see

Eq.(4.6a)-(4.6b)).

W T
bx2SBx2Wbx2 = I, (4.6a)

X́2r×n = W T
bx2(r×q)X2(q×n). (4.6b)

The modified version ´Φbx1 and ´Φbx2 of dimension r × C are orthogonal matrices and

´Φbx1
T ´Φbx1 and ´Φbx2

T ´Φbx2 are diagonally dominating in nature, i.e., if aij are the matrix

elements, then ∀i,|aii| >
∑

i 6=j |aij |. The non-diagonal elements are close to zero, i.e.,

aij −→ 0,i 6= j and diagonal elements tends to one, i.e., aii −→ 1. In CCA, it is

necessary to ensure that feature vectors in one set have nonzero correlation only with

their corresponding feature vectors in the other set for which the between-set covariance

matrix (Σ̄12) of the mapped feature vector sets is diagonalized using SVD.

¯Σ12(r×r) = UΣV T ⇒ UT Σ̄12V = Σ. (4.7)

Σ is a diagonal matrix. It is to be mentioned that rank(X̃1, X̃2) = r and ¯Σ12(r×r)

form non-degenerate pattern‡. Let Wcx1 = UΣ−1/2 and Wcx2 = V Σ−1/2 so that

W T
cx1Σ̄12Wcx2 = I which utilizes the between-set covariance matrix. Finally transforma-

tion for X1 and X2 are as follows:

X?
1 = W T

cx1X̄1 = W T
cx1W

T
bx︸ ︷︷ ︸X1 = Wx1X1, (4.8a)

X?
2 = W T

cx2X̄2 = W T
cx2W

T
bx2︸ ︷︷ ︸X2 = Wx2X2. (4.8b)

where Wx1 = W T
cx1W

T
bx1 and Wx2 = W T

cx2W
T
bx2 signify the transformation of X1 and X2

respectively. Further, the between-class scatter matrix of transformed pattern is still

diagonalized, i.e., SBx1? = W T
cx1W

T
bx1SBx1Wbx1︸ ︷︷ ︸Wcx1 =

∑
i,i aii. Now similar to CCA

approach as mentioned in Chapter 3 (i.e, Ch. 3, section 3.3.4), the FVs are fused to

‡ ¯Σ12(r×r) = X̄1X̄2
T
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obtain discriminant features which can be expressed mathematically as:

ϑ(X1, . . . , X
w
2 ) =

d∑
i=1

d∑
i=1

Θ(X1, X2)⊕ ζ(Xw
1 , X

w
2 ) (4.9)

=
d∑
i=1

d∑
i=1

Θ(X?
1 , X

?
2 )⊕ ζ(X?w

1 , X?w
2 ) (4.10)

= Πd
i=1∆(A, . . . ,D)⊗ σ(X1, . . . , X

w
2 ) (4.11)

where Θ(•) and ζ(•) are statistically independent multi-domain feature functions, and

⊕ indicates fusion of features. Furthermore, ∆(.) and σ(.) are two independent feature

functions.

4.4.2 Proposed mmDCA-based learning

The proposed scheme incorporates all locally evaluate features using multi-domain DCA

and to combine them into a single form of discriminant vector that could provide un-

derlying phenomena associated with the formulated variables from the available data.

This way, it handles a complex nonlinear problem into a simple correlation based prob-

lem. According to the formulation under discriminant framework, the mmDCA finds

two sets of transformed features-one directly from the pair dMV of direct feature func-

tion F (X) = f(X1, . . . , Xj) and other from the corresponding dMV in wavelet trans-

formed space F (W ) = f(X1(w), . . . , Xj(w)). Finally, mmDCA combines information

through feature fusion strategy. Thus, explicit coupling of these information as shown

in Eq.(4.11) without a prior assignment of individual is a cornerstone for preceding

broad information towards logical inference to make the formulation natural, efficient

and intuitive as possible.

Fig. 4-3 shows the block diagram of generalized scheme of mmDCA. It extends

the theory of DCA to find the multiple domains canonical variates summarizing the

correlation structures among the multiple variables by linear transformation. It includes

the class-structure information to the feature space so as to enhance the discriminant

ability of the learning models. It also maximizes the between-class feature matrices

SBs of transformed features and diagonalizes the individual SB to ensure well class-

separation. Finally, it finds two sets of feature transformations for each pair input by

simplifying Eq.(4.8a)-(4.8b) as-

ū = AxX; v̄ = ByY ; (Wi = Ax, By;X1 = X,X2 = Y ) (4.12)

The transformed diagonalized features have high correlation only with their own features

and are subjected to feature fusion strategy similar to the CCA. Similarly mmDCA eval-

uates other sets of feature using DWT-dMV features and finally, fuses using summation
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Fig. 4-3: (a) EMG signals S1-S6 of a given process are arranged in order to find the features X1, . . . , Xj
for mmDCA analysis. Features are then transformed using DWT to obtain X1(w), . . . , Xj(w). F(X)
and F(W) represent two sets of independent features which are subjected for the model in the second
layer, and (b) two-level decomposition tree of the DWT is used to formulate F(W).

technique as shown in Eq.(3.14a) to find single feature vector as-

Zij =

4∑
t=1

Tt(ū, v̄) = ATxX +BT
y Y + CTu1U1 +DT

u2U2 (4.13)

Terms Tt(.) and Zij indicate canonical variate and generalized canonical correlation dis-

criminant features (gCCDF) of {i, j}th dMV pair; C and D are weight vectors of wavelet

domain dMVs. This synchronized feature mode improves the learning ability of mod-

els [7]. The discriminant features are evaluated for all consecutive input pairs of dMV.

Compared with DCA, the proposed mmDCA copes multi-domain large-scale inputs into

gCCDFs, based on which more favorable statistics can be evaluated to effectively predict

and diagnose various nonlinear processes.

In evaluating DWT features, iterative decomposition is restricted upto second

level as per guidance of possible frequency range of signals and further, higher frequency

d2 components are discarded from the analysis. Fig. 4-3 shows the two-stage feature

evaluation scheme and DWT components for each study group C is shown herein. It is

further aim to establish correlation of MV or dMV features for validation of proposed

feature extraction scheme and to extract suitable features for analysis.

4.5 Results and discussion

4.5.1 sMV and dMV feature evaluation

In order to find the features according to our proposed model as shown Fig. 4-1, the

study subject groups are divided into a number of subgroups in Table 4.1. Then, sMV
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Fig. 4-4: Second order wavelet components (A2, D2) for three categories subgroups of ALS, a)
subgroup 1 (age: 35-52), b) subgroup 2 (age: 53-61) and c) subgroup 3 (age: 62-67)
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Fig. 4-5: Second order wavelet components (A2, D2) for three categories subgroups of myopathy, a)
subgroup 1 (age: 19-26), b) subgroup 2 (age: 28-41) and c) subgroup 3 (age: 44-63)

and dMV features are evaluated for analysis and fusion to find the discriminant features.

Each subject group is divided into three subgroups (i.e., m=3) according to

the age of subject as outlined in simplified Table 4.2. Each subgroup comprises of two

subjects with large signals. Three sMVs corresponding to three age-based subgroups

are evaluated. From each sMV, eight dMVs (i.e., j=8) are obtained as shown in Fig.

4-2. This way, 24 dMVs are evaluated for each study group. In the same way, an equal

number of dMV are evaluated using DWT-sMV. Fig. 4-8-Fig. 4-6 show various DWT

components of various subgroup signals. In finding the sMV, p=8 signals are selected

taking two signals from each subgroup and remaining two signals are randomly selected

from the subgroups (= 2 × 3 + 2). This optimal choice is estimated using statistical

test (p < 0.05) during performance assessment. The dimensions of sMV and dMV are

8× 258000 and 8× 32250 respectively.
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Fig. 4-6: Second order wavelet components (A2, D2) for three categories subgroups of normal, a)
subgroup 1 (age: 21-26), b) subgroup 2 (age: 27-29) and c) subgroup 3 (age: 29-37)

Table 4.2: Evaluation of sMV and dMV for three processes

C/Gc Age range [Year] sMV dMV

ALS 35-52, 53-61, 62-67 X1(1), X2(1), X3(1) (3) 3×8 = 24

Myopathy 19-26, 28-41, 44-63 X1(2), X2(2), X3(2) (3) 3×8 = 24

Normal 21-26, 27-29, 29-37 X1(3), X2(3), X3(3) (3) 3×8 = 24

C/Gc= 3 Total m= 3+3+3 Total=3+3+3 Total = 72

4.5.2 Suitability of features: correlation analysis

In correlation based process measurement method it is necessary to ensure whether

selected features are correlated or not [6] to get an idea about the suitability for such

measurement. Therefore, we estimate the correlations among various dMV features for

three respective subgroups. Correlation measures are being carried out for age-based

sMV features as shown Fig.4-7(a). It indicates that age-based sMV features have less

correlation due to wide dissimilarities of the data pattern in features. In other words,

it infers that observations forming the sMVs highly depend on subject age and profile

of disorder. Fig.4-7(b) indicates that dMV features of respective groups are highly

correlated and of similar nature except for the normal case. Thus it remains in favor

of the feature generation scheme of the dMV advocated in this work. In estimating the

correlations eight observations are considered. Two from each subgroup and other two

are randomly selected from the subgroups for this analysis (= 2× 3 + 2). This optimal

choice is further supported by statistical test (p < 0.05) during performance assessment.

83



Chapter 4. Feature fusion using multi-view discriminant correlation analysis

2 4 6 8
0

0.1

0.3

0.5

C
or

re
la

tio
n 

( 
ρ 

)

Correlation components
(a)

 

 

sMV [ALS] (X1,X2,X3(1))

sMV [Myopathy] (X1,X2,X3(2))

sMV [Normal] (X1,X2,X3(3))

0 2 4 6 8
0

0.4

0.8

1

C
or

re
la

tio
n 

( 
ρ 

)

Correlation components 
(b)

 

 

dMV (ALS)

dMV (Myopathy)

dMV (Normal)

Fig. 4-7: a) Mean correlation among sMV feature within same subject groups. The sMV features,
Xm(1), Xm(2), and Xm(3) fall in the age range of [35-52, 53-61, 62-67] for ALS, [19-26, 28-41, 44-63] for
myopathy and [21-26, 27-29, 29-37] for normal, and b) Mean correlations among the consecutive dMV
features for three classes.

Table 4.3: SM evaluation in terms of l1 and l2. Highest values are indicated by boldface.

Methods l1 l2
Conventional PSD based methods [136] 0.69 1.82
STFT and RVM [136] 0.74 4.57
Q-factor wavelet and spectral features [137] 2.0739 148.4636
Our previous model 3.987 149.0125
mmDCA 8.675 155.321

4.5.3 Order selection and separability evaluation

Using Eq.(4.13) the features are evaluated for all values of m. Four gCCDFs are eval-

uated for each value of m and consequently twelves gCCDF are evaluated for each

categorical input process. Thus, total gCCDFs is 24, twelves from each domain anal-

ysis. In other words, domain ×m× pairs= 2 × 3 × 4=24. However, the discriminant

features are evaluated using correlation threshold at six based on the analysis as in

Fig.4-7. Then, features are transformed using the linear transformation Eq.(3.20). The

group-specific mean gCCDFs are further subjected to linear discriminant analysis that

minimizes within-class variance and maximizes between-class variance to attain optimal

features [16]. A ANOVA test is carried out and shows that all the selected features

have p-value less than 0.05. Most of the selected have p-value < 1 × 10−4 and other

have very close to zero. The p-values of features obtained without aforementioned linear

transformation are also statistically significant.

Fig.4-8 shows the box-plot feature distribution that have discriminant capabil-

ity. Further, SM in terms of l1 and l2 is also calculated in Table.4.3 using Eq.(3.27a)-

(3.27b) (Section 3.5.1.3). As is evident, the SM is higher than previously described

approach in Chapter 3 and in spite of being overlapping, feature vectors provide good

inter-class variation and intra-class separability. Thus, the mmDCA provides better

discriminant features to achieve robust performance while integrates with classification

models.
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Fig. 4-8: Box-plot feature distribution of selected features for classification task using mmDCA.

4.5.4 Performance of mmDCA on real-time datasets

For performance evaluation, the dataset EMGN2001 is partitioned into three subsets-

training set (50%), validation set (25%) and test set (25%). The performance is inves-

tigated by integrating simple classifier k-nn with the best feature combination obtained

using inter-cross validation technique. The classifier has been supplied with discriminant

features to be assigned any one of three input processes or patterns. With this combi-

nation, the mean accuracy obtained is 98% with a specificity of 99.30% and sensitivities

of 97.61% and 97.14% (SnA and SnM). The results showed a fairly good linear separa-

bility of data or features obtained from the proposed mmDCA scheme. Furthermore,

to show capability features in large-scale information, two additional simple prediction

models-normal densities based linear classifier (LDC) and quadratic classifier (QDC) are

also integrated with the scheme. Table.4.4 shows the performances of various prediction

models in terms of markers with manual annotations. It shows improved prediction per-

formance with higher values of other parameters on the same data sets. Furthermore,

results are very close to each other which evince the superiority of the mmDCA. The

average run times shown in Table.4.4 are also reasonable.

In multiple process prediction systems, the higher value of the individual pa-

rameter is essential in addition to the accuracy. For example in our case, specificity is

used to show prediction rate of the negative case (normal process) while sensitivity is

used to show prediction rate of positive cases (ALS and myopathy). However, for all

positive cases, all these parameters give the details about the model performance. The

proposed method performs very well irrespective classifies, which are presumably due

to the fact that they significantly remove the redundancy in feature data set and estab-

lishment of high quality low order features that have low variance in feature registration

stage. The inclusion of class association of features, the feature space have inter-class

marginal in terms of SM results in improvement of accuracy as compared to our previous

method. The overall outcomes are uniform and reasonable for practical implications. It

is, thus, conclude that use of multi-domain-multi-view fusion models are promising and

significantly improves the reliability.
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Table 4.4: Mean performances of various integrated data-driven schemes and processing time.

Models Spµ SnAµ SnMµ ACµ Run-time
(%) (%) (%) (%) (in seconds)

mmDCA+kNN 99.30 97.61 97.14 98.00 45
mmDCA+LDC 99.43 98.09 98.57 98.60 23
mmDCA+QDC 99.58 98.50 97.59 99.03 33
mmDCA+QDC [EMGGNRC ] 100 100 100 100 21
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Fig. 4-9: Scatter distribution of features of the mmDCA for various groups features, A, B and E
(#A-ALS, #B-Myopathy and #E-Normal).

4.5.5 Reliability and Scalability of the mmDCA

The features distribution in Fig.4-8 and Fig.4-9 obtained from the mmDCA and subse-

quent performance measurement in Table.4.4 clearly evince the reliability of the mmDCA

based assessment scheme. As is evident, the scatter distributions of various combina-

tion of features have higher separation margin (i.e., l1 = 8.675 and l2 = 155.321) and

low feature dispersion which are fundamental requirements for accurate process pre-

diction [48]. Large coverage of available input space and extracted low order feature

structure carrying more information about the process with significant p-statistic make

the mmDCA more reliable for real-time assessment and accurate prediction. It is to

be mentioned that the proposed model has well-defined feature extraction and fusion

strategy that significantly improves the learning ability of model. Furthermore, free

from assumptions and ease of assessability promote to implement for many industrial

process assessment schemes such as-quality assessment and prediction [147, 148], false

prediction [149,150], diagnosis [151,152] in various domains.

The scalability of the mmDCA is evaluated dealing with a new dataset of

EMGGNRC that is not used for aforementioned measurement. The obtained features

using EMGN2001 is used to evaluate the performance over the EMGGNRC . For each

input process, a set of gCCDFs are estimated using method in section 4.3 taking three

sets of randomly selected samples from EMGN2001 and their means are used for analy-

sis. The accuracy obtained by the optimal model with this feature space is 100% with a

specificity of 100% and sensitivities of 100%. The optimal model performance is due to

low order discriminant features and presumably due to small database of EMGGNRC . It
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is worth to be mentioned that despite reduction of noises up to a significant level, some

inherent noises are obviously in signals of EMGGNRC . However, these noises have low

impact on model performance as per the principles of CCA and mmDCA. To further

ascertain the effectiveness of the proposed methodology, measurement is also carried out

with two data sets obtained from EMGGNRC . However, in both cases similar results are

obtained indicating the robustness of the mmDCA.

4.5.6 Comparative analysis

This section briefly outlines various EMG diagnosis methods and provides the com-

parison of results with our results. It further focuses on addressing various nonlinear

process assessment methods widely used in industrial domain to highlight the efficacy

of the proposed method.

4.5.6.1 Diagnosis of neuromuscular disorders

Inherent limitations, theoretical bottlenecks and computational complexities of various

methods have already being addressed in the Section 3.5.2.3. For instance, the method

in [76] requires optimal radial basis kernel function parameters which are tricky. Some

method takes large memory and slow down the process [80] while others, specifically

DWT-method and MUAP-based methods often face difficulties in finding proper wavelet

coefficients that accurately match dominated MUAP. Some model provides good accu-

racy level, however in some case it fails to maintain balance values of other markers,

e.g., method [154] reported Sn of 64.29% for neuopathy with high accuracy. Despite

potential impacts, model inherent limitations make them unsuitable for real-time appli-

cations. Besides, they did not address the use of large data using feature fusion model.

However, big data usage is essential for reliable healthcare intelligence [2]. Most of these

studies focused on statistical models to obtain key statistics for process monitoring. Use

of large data using fusion model is a good choice for reliable system.

In the context of performance markers, our method shows promising results as

compared to many state-of-the-art method. Furthermore, it is simple and easy to under-

stand for different real-world applications which are similar to our studies. Effective use

of data through use of discriminant formulation leads to a promising inference system

that outperforms many reported methods outlined in Table.4.5. Thus, use of nonlinear

data associated with medical process accomplished in the experiment and logical infer-

ences also ensures the possible real-time implementation of our algorithm for various

complicated process monitoring in industrial applications. Such algorithm has potential

values in the process industry and medical field.
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Table 4.5: Performance comparision with various EMG support models in terms of biomarkers.

Methods Year Class Sn1 (Sn2) Sp Ac
(%) (%) (%) (%)

Subasi [70] 2012 3 94.50, 95.75 95.25 97.67
Subasi [155] 2013 2 98.00, 99.00 95.25 97.40
Kamali et al. [57] 2014 3 95.00, 96.00 97.60 97.00
Gokgoz et al. [76] 2014 3 95.30, 95.67 96.33 92.55
Subasi [79] 2015 3 98.25, 99.00 93.75 97.00
Gokgoz et al. [80] 2015 3 99.58, 95.66 94.75 96.67
Naik et al. [23] 2016 3 94.00, 96.00 100.0 98.00
Hazarika et al. 2016 3 98.00, 98.00 99.00 98.80
Proposed [EMGN2001] – 3 98.50, 97.59 99.58 99.03
Proposed [EMGGNRC ] – 3 100, 100 100 100

4.5.6.2 Industrial process management systems (IPMS)

In order to highlight the applicability of the proposed method in various industrial

process assessments, this section outlined many such methods in Table.4.6. It in-

cludes locally weighted total projection to latent structures [149], advanced partial least

squares [151], intelligent particle filter [150], key performance indicators (KPI) [156],

modified partial least squares [147], fuzzy positivistic C-Means [157], parameter esti-

mation [152], modified orthogonal projections to latent structures [148], probabilistic-

PCA [158], multivariate statistical process monitoring [159], kernel PCA [160] and kernel

PLS [161] for industrial process assessments. Many other similar methods in [162–164]

are also remarkable. Data-driven models that reduce the burden of analytical model rely

on the measurable data [165]. However, the applicability of various models is limited

by their inherent pitfalls. The linearity assumption in PCA and PLS limits the non-

linear applications [165]. The methods [160] and [161] could improve the performance

in nonlinear process prediction, however, selection of kernel function and parameter

determination are difficult. Some models employed KPIs using PLS [166] and locally

weighted projection [165] from the available measurement for abnormality prediction.

These methods popular in literature for application specific task or domain specific task,

however, they did not address the fusion scheme to reduce the feature dimensionality.

Instead they focus on statistical makers based on diagnosis can be made. In that context,

the proposed mmDCA is more reliable and appropriate choice.

4.6 Performance variations

This section highlights the variations in outcomes obtained from various data-driven

based learning schemes with used of proposed large-scale information embedding strate-

gies in terms of comprehensive markers - accuracy, specificity and sensitivities. Chapter

3 provides two independent formulations with use of generalized CCA while this chapter
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Table 4.6: State-of-the-art industrial process assessment and dignosis algorithms.

Methods Assign tasks Year

Shen et al. [149] 2017 Abnormality detection
Xiaochen et al. [151] 2016 Prediction and fault diagnosis
Yin et al. [150] 2015 Fault Detection
Shardt et al. [156] 2015 Fault detection
Wang et al. [147] 2015 Quality-related fault detection
Yin et al. [157] 2015 Fault detection and isolation
Zhai et al. [152] 2015 fault diagnosis
Yin et al. [148] 2015 Quality-related fault detection
Zhu et al. [158] 2014 Process monitoring (outliers/missing data)
Haghani et al. [159] 2014 fault detection
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Fig. 4-10: Variations in terms of performance markers, a) accuracies of proposed feature fusion
schemes I, II and III, III(set 2) b) sensitivity of ALS, c) sensitivity of myopathy and d) specificity
of negative case. Here I, II and III stand for three schemes - CCA, multi-view CCA and multi-view
multi-domain DCA or DCA-PAIS respectively.

provides generalized DCA scheme. Each scheme assessment comprises of a set of these

markers. Further, the optimal model performance is also assessed with new real-time

data set EMGGNRC (set 2) so as to ensure the reliability and scalability.

Fig. 4-10 shows the results obtained from three schemes. Variation in mean

accuracies of the schemes with three feature fusion strategies I, II and III, is shown in

Fig. 4.11(a). Fusion schemes I and II are based on generalized CCA while III is based

on generalized DCA. The scheme III (set 2) represents the reliability and scalability of

the optimal scheme III. It is seen that accuracies are very close to the optimal value and

variations are minimum among the various schemes. Thus, it infers that the proposed

feature fusion based schemes suitable for covering large-scale information from available

inputs. CCA generalized scheme II improves the accuracy in comparison to the I. How-

ever, DCA scheme III outperforms over I and II. It is thus clear that CCA and DCA
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based learning strategies are the suitable choices for multi-task classification problems ir-

respective of their small variations in accuracy. It is presumably due to minimum feature

biasing in the frameworks. In this context, the reliability and scalability analysis shows

no variations in the respective analysis as seen from Fig.4-10. Sensitivity variations are

relative to the overall classification accuracy of respective models. However fluctuation

in sensitivity measuring the predicting capability of positive case ALS is higher than

that of myopathy (Fig. 4.11(b)). In case of myopathy this variation is minimal among

three schemes as in Fig. 4.11(c). Similar to above discussion the specificity variations

can be explained.

The performance of data-driven techniques relies on the initial framework that

captures the information of underlying processes. Furthermore, it also depends on the

degree of freedom of parameters inherent in the models. Feature fusion based framework

is the most intuitive in the sense that it uses multiple observations to extract usable in-

formation in terms of feature sets which contains much richer information about the

underlying process. This undertaking work therefore mainly focused on information

management system with special emphasis on feature extraction and fusion strategy

and integrated simple prediction schemes for the classification task. Due to dimen-

sionality concern, this study integrated simple classification models to cope obtained

feature space from the feature fusion frameworks. Such analysis further ascertains that

whether the proposed feature extraction strategies are capable of covering wide vari-

ety large-scale information in real-world applications. The significant performance of

specific algorithm may not ensure the efficacy of feature space. Because of the small

dimensionality of obtained feature space, it is easy to adopt various learning schemes for

prediction of the various non-linear medical process. The capability of various feature

concatenation frameworks through the assessment of individual measure is explored in

aforementioned discussion. On the basis of outcomes the optimal feature fusion frame-

work III, i.e., multi-view DCA or DCA-PAIS, has been selected and is subjected to

analyze the outcomes variations with changes of classifying models. As a consequence

three simple classification models - k-NN, LDC and QDC were integrated with the III,

referred to as A, B and C and the respective outcomes with the real-time data set

EMGN2001 are presented in Fig. 4-11 in terms of mean markers. In this context, the

scalability of the III was investigated dealing with new data set of EMGGNRC that was

not used for aforementioned measurement and outcomes are shown herein (C(EMG(II)).

It further ensures the effectiveness of the III. It is seen that variations in outcomes in

terms of markers are quite insignificant. In another word they are very close to each

other which evince the superiority of the III. Also, comparison of the average run times

is reasonable in the context of this analysis. From this analysis, it is clear that clas-

sification framework highly depends on an efficient strategy to incur large information

from available inputs in terms of low order statistics rather than classifier. However,

integration of simple prediction scheme is more suitable for such assessments.

The proposed data-driven model incorporated feature fusion frameworks gen-
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Fig. 4-11: Variations in performance with optimal feature fusion scheme III as obtained from above
analysis- a) accuracies of learning schemes - A, B and C b) sensitivity of ALS, c) sensitivity of myopathy
and d) specificity of negative case.

eralizing CCA and DCA for nonlinear process is investigated. The optimal results and

variational analysis among various feature fusion based schemes shows that the DCA

based multiview scheme, also known as the DCA-PAIS scheme is capable of extract-

ing information from the available measurement and provides comprehensive statistics

that accurately diagnose the processes. In the context of achieving promising results

and reliability and scalability, the scheme III is more suitable in comparison to other

models.

4.7 Conclusion

This chapter addressed a more generalized multi-view feature fusion data-driven model

based learning scheme for EMG diagnosis. A new feature extraction strategy and an

efficient multi-domain feature fusion-based mmDCA generalizing discriminant correla-

tion analysis are proposed and investigated with EMG data sets. This scheme is capable

of extracting information from the available measurement and provides comprehensive

statistics that accurately diagnose various non-linear medical abnormality patterns. The

core focus of the method is multi-view feature fusion framework to cope large information

in terms of low order statistics for the complete understanding of underlying phenomena

occurring in real-world. Successful implementation of the algorithm to diagnose neu-

romuscular disorders, results and discussion and comparison with the state-of-the-art

methods reveal the effectiveness of the mmDCA. It significantly improves the feature

biasing issue which is common aliment in multi-task learning. In assessing the per-

91



Chapter 4. Feature fusion using multi-view discriminant correlation analysis

formance, other important issues like dimensionality, reliability, easy accessibility and

robustness for viable implementation are addressed. Further, statistical tests-one way

and two-way-ANOVA are also performed. Thus, the proposed approach is efficient

in managing large-scale data and helps alleviating the computational and theoretical

bottleneck, and can be applied to nonlinear process monitoring. The fully automated

system with such efficient algorithm implementation aids physicians, large scale diagno-

sis research as well as portable device implementation for detecting alarming trends in

the health status of users.

To the end, the chapter also highlighted a few important issues. Albeit signif-

icant of performance, many data-driven models fail maintaining the consistency with

wide variety of data sets. Involvement of multiple stages for feature extraction can be

potential source of error. It is seen that many prior methods used low order statistical

measures such as µ, σ in case of high dimensional features, for effective class distribu-

tion. In case of close input data distribution of various classes such parameters may

not provide meaningful measures. In that case our approach is an attractive choice for

processing and analysis of biomedical signals. It controls the complexity, over-fitting of

models efficiently. These factors in conjunction with aforementioned advantages have

pushed toward attaining higher accuracy of mmDCA based learning.
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