List of Figures

1-1	One dimensional EMG signal and its corresponding dominated MUAPs. Note that EMG or MUAP amplitude fall in the range of 0-300 mV.	12
1-2	Physiological changes associated with disorders. (a) normal (b) ALS and (c) myopathy subject. Loss of muscle mass and fibers are observed due to ALS and myopathy [55, 56].	12
1-3	EMGLAB with single channel EMG pattern filtered at 250 Hz	14
1-4	Tree diagram of feature used in quantitative EMG support methods	14
1-5	MUAP morphology and features such as duration (ms), amplitude $(\mu V),$ turns etc. $% \lambda =0$.	15
2-1	a) Basic motor control mechanisms of the motor unit and its components [102]; b) Typical EMG pattern with MUAP trains [103]. Note that our analysis involves intra- muscular EMG.	23
2-2	Typical MUAP pattern and its associated features including duration (ms), amplitude $(\mu V/mV)$, phase, number of turns, turn ratio etc	24
2-3	Various EMG recording electrodes. A. Single fiber EMG electrode with one record- ing surface, B. Concentric needle electrode, C. Monopolar electrode and D. Macro electrode [110].	26
2-4	Signal recording setup along with different processing steps. It includes amplifier, usually, instrumentation amplifier, filters (high pass and low pass filters), analog-to- digital converter (ADC), speaker, PC and Isoelectric stimulator.	27
2-5	NCV/EMG machine ($KEYPOINT^{\textcircled{B}}$, Medtronic Functional Diagnostics) and EMG recording strategies from various targeted sites [111].	28
2-6	Signal recording during EDX test (i.e., NCS+EMG) and visualization of signals at GNRC hospital, (a)-(b). Signals were recorded from different subjects at various sites of muscle. Parameter settings in the equipment are shown in (c) (<i>Keypoint: Medtronic</i>	
	Functional Diagnostics, Skovlunde, Denmark).	30

2-7	Typical EMG patterns recorded in GNRC hospital at at a sampling rate of 23 kHz. (a) ALS, (b) myoapthy and (c) normal 4×10^4 samples. Here y-axis represents the	
	amplitude of amplified signals with gain of 500	31
3-1	(a) Indicates three typical EMG patterns after scaling, i) myopathy (top), ii) ALS (middle) and iii) normal (bottom), while corresponding filter signals are depicted in (b). Note that $c = 9$ is normalized parameter. This signal processing steps improves SNR to $\approx 18\%$. Zoom subfigures A and B of dotted portions in (a) and (b) indicate clarity of original and filtered signals.	35
3-2	Decomposition of signals and generation of multi-dimensional features using uniform signals sequences.	36
3-3	Linear subspace of two sets of vectors. Correlation exists only between same indices pairs vector, i.e., A_1, B_1 , while it is zero for different indices pairs, i.e., A_1, B_2 due to orthogonality [21]. Dotted pairs have high correlation.	38
3-4	Two-level decomposition tree of a discrete signal of the DWT. \ldots .	43
3-5	Second order wavelet approximate (a^2) and detailed coefficients (d^2) used to formulate domain independent multi-view features for (a) ALS, (b) myopathy and (c) normal.	43
3-6	Diagram showing evaluation of two feature sets using each direct MV pair and DWT- MV pairs. Two sets are statistically independent. $f(w)$ indicates DWT transformation applied over direct features to find DWT-MV	44
3-7	a) Generation of MVs and sMV from c subgroups of C subject groups according to S-I and S-II respectively. Here n indicates number of subject in each subgroup and r indicates the number of sMV from each MV, and b) evaluation of sMV from the MV as shown in Fig. 3.7(b) (a) using uniform decomposition strategy. Each row in MV represents 1D EMG signal	47
3-8	Mean correlation with SD as error bar between a) multi-view feature and its delayed version (ALS), and b) Consecutive sub-multi-view in three study groups	49
3-9	Proposed multi-view feature fusion based scheme for classifying EMG signals to diag- nose neuromuscular disorders. Initial signal registration stage involves multiple signals selection from the available resource, processing and orientation of 1D signals into the form of multi-dimensional matrices, followed by subsequent steps as discussed	50
3-10	Graphical representation of correlation profiles in CCCM for $j = 1,, 4$ obtained cor- relation analysis in (a) A1, (b) A2 and (c) A3 of ALS. (d) indicates clusters formed by transformed features ($\{U_1, V_1\},, \{U_3, V_3\}$) of input-feature pair $\{3, 4\}$ with $j = 2$.	
	(Legend for (a)-(c) 1st pair- \Box ; 2nd pair- \star ; 3rd pair- \cdot and mean- \bigcirc).	54

3-11	Graphical representation of correlation profiles in CCCM for $j = 1,, 4$ obtained correlation analysis in (a) M1, (b) M2, (c) M3 and (d) M4 of myopathy	55
3-12	Graphical representation of correlation profiles in CCCM for $j = 1,, 4$ obtained correlation analysis in (a) H1, (b) H2, (c) H3, and (d) H4 of healthy controlled group or normal.	56
3-13	Scatter feature distribution using LDA, a) two-class and b) three-class under scheme Type-II (Here #1-ALS, #2-Myopathy and #3-Normal).	59
3-14	Algorithm performance in terms of accuracy with different choices of features in binary two normal-ALS (a1-b1) and two normal-myopathy subject groups (c1-d1). \ldots	60
3-15	Algorithm performance in terms of mean accuracy (two normal-ALS group (a2); two normal-myopathy subject group (b2)) and accuracy in three-class subject group. \therefore	61
3-16	Error rate of (a) DMI and (b) DMII in five groups of subject with three different features.	61
3-17	Mean correlation among intra-subgroup MVs for three subject groups-a) myopathy, b) ALS and c) normal. Here X_1 , X_2 and X_3 indicate within-subject group MVs as outlined in Table 3.1.	64
3-18	Formulation of MV using DWT-coefficients approximate coefficients (a^2) of (a) ALS, (b) myopathy and (c) normal. Here d^2 are the second level detailed coefficients obtained during wavelet transformation. Unlike case I, this study employ multiple signals (i.e., q) in formulating the DWT-MVs	65
3-19	a) Figure showing working principle of LDA for C-class problem (=3) with $C - 1$ dimension, and b) feature distribution for S-II.	67
3-20	(a)-(c): classification results of our method with D (S-II) and E (S-I) combinations over three datasets EMG_{N2001} , EMG_{N2001} + EMG_{GNRC} and EMG_{GNRC} , and (d): overall mean (i.e., of (a), (b), (c))	67
3-21	Performance in terms of 3D confusion bars, wherein diagonal/off-diagonal elements in- dicate the correct/false prediction rate. Vertical axis indicates accuracy and horizontal axes represent actual and predicted outputs.	68
3-22	Mean OA of S-I and S-II indicates the effectiveness of classification model for various choice of signals $(p = 0.0025, 0.074, 0.04 \text{ and } 0.065)$	69
3-23	Mean results with DA (linear) and DA (Quadratic) model. Performances are measured similar to the Fig. 3-20 using two different classifiers instead of k -nn	69

3-24	Comparison of results in terms of SnA, SnM, Sp and OA (with $\pm \sigma$ as error) of various state-of-the-art methods, R1: Fuzzy-SVM [70], R2: PSO-SVM [78], R3: E-SVM, [79], R4: RF [80], R5: our preliminary small scale-MV with the proposed model as indicated by P1 [S-I] and P2 [S-II] for S-I and S-II respectively. Here P3 [S-II] indicates the performance of the proposed method with S-II over dataset EMG _{GNRC} . Although reported methods are recalled by their original nomenclature, but, all these methods	
	employ k -nn as classification model instead of SVM, RF etc	69
4-1	Block diagram of proposed scheme for input process measurement. Here $F(x)_c$ represents function of dMV features generated from sMV features corresponding to m	75
4-2	Diagram shows feature generation scheme by segmenting the high dimensional feature matrix $sMV \in \mathbf{R}^{p \times n}$ formulated from a relevant set of signals. Each row represents 1D EMG signal of 11.2 s duration. Here, X_1, \ldots, X_i indicate equally decomposed multiview features formulated using undertaking strategy. p and n represent number of signals and samples in each signals. \ldots	76
4-3	(a) EMG signals S1-S6 of a given process are arranged in order to find the features X_1, \ldots, X_j for mmDCA analysis. Features are then transformed using DWT to obtain $X_1(w), \ldots, X_j(w)$. F(X) and F(W) represent two sets of independent features which are subjected for the model in the second layer, and (b) two-level decomposition tree of the DWT is used to formulate F(W). \ldots	81
4-4	Second order wavelet components (A2, D2) for three categories subgroups of ALS, a) subgroup 1 (age: 35-52), b) subgroup 2 (age: 53-61) and c) subgroup 3 (age: 62-67) .	82
4-5	Second order wavelet components (A2, D2) for three categories subgroups of myopathy, a) subgroup 1 (age: 19-26), b) subgroup 2 (age: 28-41) and c) subgroup 3 (age: 44-63)	82
4-6	Second order wavelet components (A2, D2) for three categories subgroups of normal, a) subgroup 1 (age: 21-26), b) subgroup 2 (age: 27-29) and c) subgroup 3 (age: 29-37)	83
4-7	a) Mean correlation among sMV feature within same subject groups. The sMV features, $X^{m(1)}$, $X^{m(2)}$, and $X^{m(3)}$ fall in the age range of [35-52, 53-61, 62-67] for ALS, [19-26, 28-41, 44-63] for myopathy and [21-26, 27-29, 29-37] for normal, and b) Mean correlations among the consecutive dMV features for three classes.	84
4-8	Box-plot feature distribution of selected features for classification task using mmDCA.	85
4-9	Scatter distribution of features of the mmDCA for various groups features, A, B and E ($\#A$ -ALS, $\#B$ -Myopathy and $\#E$ -Normal).	86

	4-10 Variations in terms of performance markers, a) accuracies of proposed feature fusion
	schemes I, II and III, III(set 2) b) sensitivity of ALS, c) sensitivity of myopathy and d)
	specificity of negative case. Here I, II and III stand for three schemes - CCA, multi-view
89	CCA and multi-view multi-domain DCA or DCA-PAIS respectively
	4-11 Variations in performance with optimal feature fusion scheme III as obtained from
01	above analysis- a) accuracies of learning schemes - A, B and C b) sensitivity of ALS,
91	c) sensitivity of myopathy and d) specificity of negative case

List of Tables

1.1	Summary of neuromuscular disorders, causes and effects $[17, 56]$	13
2.1	Statistical and clinical information of two datasets that includes three categories subjects.	29
3.1	Single-domain MV and sMV according to the formulated S-I and S-II $$.	47
3.2	Statistics information of various muscles and study subjects of three groups. Note that durations of normal subject group are zero for all cases.	52
3.3	VIS measurement in inter-subjective feature pairs in terms of pair corre- lations r_{ii} , where <i>i</i> features	57
3.4	Proposed various combination of features along with the nature of signals.	58
3.5	Comparison of estimated J_1 and J_2 values with few reported methods. Highest values are indicated by boldface	59
3.6	Performence measurements in terms of percentage (%) and comparison with state-of-art EMG methods.	62
3.7	<i>p</i> -values of selected features	66
3.8	Classification performance of feature combinations of S-II over training dataset of the EMG_{N2001}	66
3.9	Mean confusion matrix in terms of class-mean $\mu_{\mathbf{C}}$ (output classification mean) and σ formulated from the results of the classifier with S-II. The diagnoal elements (boldface) indicate the correct classification $\ldots \ldots$	68
3.10	Performance comparison with the state-of-the-art-methods. Boladface indicates the highest recognization rate achieved by the proposed method.	70

4.1	Categorical partition of studied subject groups and sMV which are func-	
	tion of dMV features. Note that $j = 1, 2$ represents two domains raw+mmDCA and raw+DWT+mmDCA.	76
4.2	Evaluation of sMV and dMV for three processes $\hfill \ldots \ldots \ldots \ldots$	83
4.3	SM evaluation in terms of l_1 and l_2 . Highest values are indicated by boldface	84
4.4	Mean performances of various integrated data-driven schemes and pro- cessing time	86
4.5	Performance comparision with various EMG support models in terms of biomarkers.	88
4.6	State-of-the-art industrial process assessment and dignosis algorithms.	89

List of Algorithms

1 reasone rusion algorithm using p-r and p-rr	1	Feature fusion algorithm using S-I and S-II	49
---	---	---	----

Glossary of Terms

Electromyogram
Microcontroller
Information Fusion
Health Monitoring Devices
Multi-view
Functional magnetic resonance imaging
Electroencephalogram
Structural magnetic resonance imaging
Feature fusion
Principal components analysis
Linear discriminant analysis
Uncorrelated linear discriminant analysis
Non-linear linear discriminant analysis
Self-organizing feature map
Multilayer perceptron
Canonical correlation analysis
Feature vectors
Multi-canonical correlation analysis
Multi-canonical correlation analysis based on fractional-order
Generalized canonical correlation analysis
Generalized canonical projective vectors
Local discrimination canonical correlation analysis
Brain computer interface
Electrocardiography
Canonical projected vectors
Multi-view learning
power spectral density analysis
Support vector machine
Support vector machine Motor units
•••
Motor units

EMGPAD	Electromyogram precision decomposition
ANN	Artificial neural network
RBF-ANN	Radial basis function neural network
FT	Fourier transformation
STFT	Short-term Fourier transformation
WT	Wavelet transformation
IP	Interference pattern
DWT	Discrete wavelet transformation
F-SVM	fuzzy-support vector machine
SD	Standard deviations
PSO	Particle swarm optimization
MLPNN	Multilayer perceptron neural networks
DFNN	Dynamic fuzzy neural network
ANFIS	Adaptive neuro-fuzzy inference system
PNN	Probabilistic neural network
dMUAP	Dominated motor unit action potential
DCA	Discriminate correlation analysis
MVDCA	Multi-domain multit-view discriminate correlation analysis
MUPT	Motor unit train
nEMG	Needle electromyogram
NJs	Neuromuscular junctions
NCS	Nerve conduction studies
SP	Spontaneous activity
SDMS	Storage and data management system
DA	Differential amplifier
ADC	Analog-to-digital converter
SNR	Signal-to-ratio
CMRR	Common-mode rejection ratio
GNRC	Guwahati Neurological Research centre
IRB	Institutional review board
SVD	Singular value decomposition
VWS	Variability within-subjective
rF-SVD	Regularized frame-singular value decomposition
CCCM	Collective correlation coefficient matrix
OC	Overall correlation
VIS	Variability in intra-subjective
FES	Feature extraction and selection
TD	Time-domain
AR	Autoregressive features
PVs	Projected vectors
EMD	Empirical mode decomposition
CCDF	Canonical correlation discriminant features

db	Daubechies wavelet
k-nn	k-nearest neighbors algorithm
\mathbf{ER}	Error rate
SSS	Small-sample size
JSRC	Joint sparse representation classification
HMI	Human-machine-interaction
LDC	Normal densities based linear (muli-class) classifier
QDC	Quadratic (multi-class) classifier
SE	Separability evaluation
\mathbf{FC}	Fisher criteria
EEMD	Ensemble empirical mode decomposition
IMFs	Intrinsic mode functions
\mathbf{SF}	Statistical feature