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Chapter VI 

RESULTS AND DISCUSSION: Designing, characterization, and elucidation of 

mechanism of action of a 7-mer peptide from the anticoagulant region of NnPLA2-

I, and assessment of in vivo toxicity, anticoagulant and antithrombotic activity of 

this anticoagulant peptide in a rodent model 

6.1 Brief Introduction: 

Thrombin and FXa, the two key blood coagulation factors, have always been the 

most sought drug targets for development of antithrombotic and anticoagulant drugs [1-

3]. A number of anticoagulant proteins and peptides showing inhibition of thrombin or 

FXa have been isolated and characterized from natural resources, snake venom included 

[4,5].  

With recent advancement in technology, the application of peptides as 

therapeutics has significantly gained momentum [6-8]. To date, only two antiplatelet 

drugs have been successfully derived from disintegrins of viperid venom [9] and one 

bioactive peptide has been derived from Agkistrodon acutus venom hydrolysates with 

potential antithrombotic potency [10]. Although, a few ‘synthetic anticoagulant 

peptides’ have been developed from hirudin [11], no such attempt has been made from 

snake venom anticoagulant proteins. 

In chapter IV, we have described the anticoagulant potential of NnPLA2-I, a 

PLA2 enzyme from N. naja venom, and it have been demonstrated that its anticoagulant 

activity is largely dependent on non-enzymatic inhibition of thrombin as well as by 

catalytic hydrolysis of plasma phospholipids. However, undesirable immune responses 

against protein therapeutics, resulting in reduced efficacy, anaphylaxis, and 

autoimmunity may be associated with direct application of snake venom PLA2 enzyme 

(protein-based therapy) as an anticoagulant drug [12]. Therefore, in this chapter, a very 

low molecular weight anticoagulant peptide (MW, 775.85 Da) comprising of 7 amino 

acid residues (7-mer peptide) was designed by combining some of the thrombin-binding 

residues of NnPLA2-I. The molecular mechanism of anticoagulant action of this 

synthetic peptide, its in vivo anticoagulant potency and pre-clinical safety was evaluated 

in a rodent model for its development into an anticoagulant drug prototype.  
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6.2 Results: 

6.2.1 Design and synthesis of peptides corresponding to thrombin-binding regions 

of NnPLA2-I 

Based on the in silico analysis of NnPLA2-I – thrombin interaction and 

pharmacological site of cobra venom PLA2 [13,14], twelve anticoagulant peptides 

(ACR1 to ACR12) were designed (Table 6.1) and custom peptides were synthesized 

(GenPro Biotech, India).  

6.2.2 Determination of physico-chemical properties of the synthesized peptides 

The physico-chemical properties of the synthetic peptides determined by Expasy 

server are shown in Table 6.1. 

Table 6.1. List of synthetic peptides designed from the thrombin binding region of 

NnPLA2-I and their physico-chemical properties. The physico-chemical properties 

were determined by Expasy server, while ACE of interaction with thrombin was 

determined by ClusPro2.0 and Firedock servers. 

Ref. ID Peptide sequence 
No. of 

residues 

Charge at 

pH 7.0 

MW 

(Da) 

ACE* of THR 

binding 

ACR1 AEKISGCWPYFKTYSYECSQGTLT 24 -0.1 2763.06 -261.60 

ACR2 CYNEAEKISGCWPYFKTYSYECSQG

TLTCKGD 
32 -1.3 3676.06 -293.21 

ACR3 AEKISECWDYFKTYSYECSQGTLT 24 -2.1 2853.10 -101.24 

ACR4 AEGISGCWPYFGTYSYECSQGTLT 24 -2.1 2620.82 -152.35 

ACR5 AEGISECWDYFGTYSYECSQGTLT 24 -4.1 2710.86 -205.14 

ACR6 DKCSPKMILYSYKFHNGNIVCGDK 24 +2.0 2761.21 -222.31 

ACR7 AGKMGCWPYFTLYKYKCSKGTLTC 24 +3.8 2750.29 -105.27 

ACR8 AGKISGCWPYFKTYKYKCSKGTLT 24 +4.9 2731.20 -196.57 

ACR9 EKISGGW 7 0.0 775.85 -224.28 

ACR10 YFKT 4 +1.0 557.64 - 

ACR11 EKISGGWGYFKT 12 +1.0 1372.52 -54.53 
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*atomic contact energy of peptide and thrombin as calculated by FireDock server. 

6.2.3 Docking of ACR1-12 with thrombin 

Docking analysis showed that all the peptides, except ACR10, have a strong 

interaction with thrombin with negative atomic contact energies (Table 6.1). 

6.2.4 Screening of anticoagulant activity of ACR1-12 

Among the 12 synthetic peptides, ACR9 (775.85 Da) demonstrated highest 

anticoagulant activity (Table 6.2). Further, the anticoagulant activity of ACR9 was 

found to be higher than that of heparin and argatroban; however, it showed less 

anticoagulant potency as compared to NnPLA2-I (Table 6.2). Therefore, ACR9 was 

considered for further study. 

Table 6.2. Re-calcification time (Unit) of mammalian platelet poor plasma (PPP) in 

presence of different concentrations (0.25 – 1.0 µM) of peptides (ACR1 to 12), 

NnPLA2-I (0.25 – 1.0 µM), argatroban (0.25 – 1.0 µM), and heparin (0.25 – 1.0 

µM). The clotting time of control PPP was recorded at 96.2 ± 3.1 s. Values are mean ± 

SD of triplicate determinations. Significance of difference in ‘anticoagulant activity’ as 

compared to NnPLA2-I, *p<0.05; as compared to heparin, ‡p<0.05; and ¶p<0.05 as 

compared to argatroban.  

Anticoagulant protein 

/ peptide / drug 

Anticoagulant activity (Unit)** at different concentrations 

of peptides (µM)  

0.25 0.50 0.75 1.0 

ACR1 0.2 ± 0.0  0.2 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 

ACR2 -6.2 ± 0.2 -6.5 ± 0.3 -2.8 ± 0.1 -0.5 ± 0.0 

ACR3 -2.1 ± 0.1 -10.8 ± 0.9 -24.0 ± 1.2 -39.0 ± 2.0 

ACR4 -1.5 ± 0.3 -3.6 ± 0.8 -8.2 ± 0.4 -12.0 ± 0.6 

ACR5 -5.2 ± 0.2 -10.7 ± 1.0 -19.6 ± 1.0 -21.0 ± 1.1 

ACR6 2.8 ± 0.8 1.1 ± 0.1 3.2 ± 0.2 4.4 ± 0.2 

ACR7 0.5 ± 0.0 0.1 ± 0.0 0.8 ± 0.0 -0.3 ± 0.0 

ACR8 -1.1 ± 0.1 0.7 ± 0.0 1.1 ± 0.1 -3.1 ± 0.2 

ACR12 EKISWYFKT 9 +1.0 1201.37 -25.14 
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ACR9 20.8 ± 1.1*‡¶ 36.5 ± 2.5*‡¶ 78.0 ± 1.9*‡¶ 120.8 ± 1.6*‡¶ 

ACR10 0.1 ± 0.0 -0.8 ± 0.1 0.4 ± 0.0 0.3 ± 0.0 

ACR11 -4.3 ± 0.8 -7.7 ± 0.9 -11.6 ± 0.8 -15.3 ± 0.8 

ACR12 -3.2 ± 0.4 -3.8 ± 0.4 -8.2 ± 1.2 -11.2 ± 0.6 

NnPLA2-I 18.0 ± 1.0‡ 61.0 ± 3.9‡ 155.0 ± 2.4‡ 217.0 ± 1.9‡ 

Heparin 10.2 ± 0.9* 29.0 ± 0.2* 42.8 ± 1.9* 51.9 ± 4.1* 

Argatroban 11.1 ± 0.7* 29.8 ± 2.5* 69.3 ± 1.9*‡ 85.1 ± 2.4*‡ 

**One unit of anticoagulant activity has been defined as peptide / NnPLA2-I / heparin-
induced 1 s increase in clotting time of the control PPP. Negative (-) sign in front of the 
values signify procoagulant activity. 

6.2.5 Anticoagulant activity of ACR9 

6.2.5.1 Effect of ACR9 on re-calcification time of whole blood and PPP 

ACR9 dose-dependently prolonged the Ca-clotting time of mammalian whole blood 

(Fig 6.1A) and PPP (Fig 6.1B). The anticoagulant potency of ACR9 was found to be 

significantly higher (p<0.05) compared to commercial drug argatroban (Figs 6.1A, B). 

 

Fig 6.1A. Comparison of the dose-dependent effect of ACR9 (2.5 – 10.0 µM) and 

argatroban (2.5 – 10.0 µM) on whole blood clotting time. The clotting times of 

untreated (control) whole blood and PPP were recorded at 81.0 ± 5.5 s and 109.0 ± 4.2 

s, respectively. Values are mean ± SD of triplicate determinations. Significance of 

difference *p<0.05 and γp<0.05 with respect to control and argatroban, respectively. 
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Fig 6.1B. Comparison of the dose-dependent effect of ACR9 (0.25 – 10.0 µM) and 

argatroban (0.25 – 10.0 µM) on re-calcification time of mammalian PPP. The 

clotting times of untreated (control) whole blood and PPP were recorded at 81.0 ± 5.5 s 

and 109.0 ± 4.2 s, respectively. Values are mean ± SD of triplicate determinations. 

Significance of difference *p<0.05 and γp<0.05 with respect to control and argatroban, 

respectively. 

6.2.5.2 Effect of ACR9 on PT, APTT, and TT of PPP 

ACR9 dose-dependently enhanced the PT, APTT, and TT of PPP; however, 

beyond a concentration of 1.0 µM, ACR9 had no further effect on APTT (Fig 6.2). 

 

Fig 6.2. Dose-dependent (0.5 – 5.0 µM) effect of ACR9 on prothrombin time (PT), 

activated partial thromboplastin time (APTT), and thrombin time (TT) of PPP. 
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Values are mean ± SD of triplicate determinations. Significance of difference *p<0.05 

with respect to control. 

6.2.6 Thrombin inhibition by ACR9 

6.2.6.1 Effect on fibrinogen clotting time of thrombin 

ACR9 showed significantly higher (p<0.05) inhibition of thrombin against its 

physiological substrate fibrinogen as compared to argatroban (Fig 6.3A). Further, ACR9 

time-dependently increased the fibrinogen clotting time of thrombin; albeit, post 20 min 

of pre-incubation of ACR9 with thrombin no further inhibition of thrombin was 

observed (Fig 6.3B).  

 

 

Fig 6.3. Effect of ACR9 on fibrinogen clotting time of thrombin. A. Dose-dependent 

(0.25 – 5.0 µM) effect of ACR9 and argatroban on the fibrinogen clotting time of 
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thrombin. Different concentrations of ACR9 / argatroban was incubated with 3 µl of 10 

NIH units of human thrombin for 30 min at 37 ºC and the clotting time was recorded 

after adding 40 µl of 2.5 mg/ml fibrinogen. B. Time-dependent (0 – 30 min) effect of 

ACR9 (2.0 µM) on the fibrinogen clotting time of thrombin. ACR9 was incubated with 

3 µl of 10 NIH units of thrombin for different time intervals at 37 ºC and the clotting 

time was then measured, as mentioned above. The clotting time of the fibrinogen 

incubated with thrombin was recorded at 57.8 ± 5.0 s. Values are mean ± SD of 

triplicate determinations. Significance of difference *p<0.05 and γp<0.05 with respect to 

control and argatroban, respectively. 

6.2.6.2 Effect on amidolytic activity of thrombin 

The dose-dependent inhibition of amidolytic activity of thrombin by ACR9 (Fig 

6.4A) was found to be superior (p<0.05) as compared to argatroban (Fig 6.4B). From 

the log [inhibitor concentration] vs response curves, the IC50 value of thrombin 

inhibition by ACR9 and argatroban was determined at 2.00 ± 0.12 µM (Fig 6.4C) and 

2.18 ± 0.13 µM (Fig 6.4D), respectively. 

 

Fig 6.4A. Effect of ACR9 on amidolytic activity of thrombin. Dose-dependent (0.5 – 

5.0 µM) effect of the ACR9 on the amidolytic activity of thrombin against its 
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chromogenic substrate N-(p-Tosyl)-Gly-Pro-Arg-p-nitroanilide acetate salt (0.2 mM). 

The kinetics (absorbance) of the reactions was measured up to 20 min at 405 nm. 

 

Fig 6.4B. Effect of ACR9 on amidolytic activity of thrombin (contd.). Dose-

dependent (0.5 – 5.0 µM) inhibition of the amidolytic activity of thrombin by ACR9 

and argatroban. Values are mean ± SD of triplicate determinations. Significance of 

difference *p<0.05 with respect to argatroban. 

 

Fig 6.4. Log [inhibitor] vs response (absorbance at 405 nm) plot to determine the 

IC50 of thrombin inhibition by C. ACR9 and D. argatroban, respectively. 
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6.2.6.3 Kinetics of thrombin inhibition by ACR9 

With increase in the concentration of inhibitor (ACR9), the amidolytic activity 

of thrombin showed a decrease in Vmax and increase in Km values (Table 6.3). 

Therefore, ACR9 showed mixed mode of thrombin inhibition with a Ki value of 0.39 ± 

0.01 µM (Fig 6.5). 

Table 6.3. Kinetics of inhibition of thrombin by ACR9. The kinetic parameters (Km 

and Vmax) were determined from the Michaelis-Menten plot as described in section 

3.2.8.1.3 of chapter III. The values are mean ± SD of triplicate determinations. 

ACR9 (µM) 
Vmax (µmol p-NA 

released/min) 
Km (mM) 

0 13.88 ± 0.65 0.056 ± 0.001 

10 8.12 ± 0.99 0.102 ± 0.002 

20 6.10 ± 0.27 0.195 ± 0.002 

 

 

Fig 6.5. Michaelis-Menten plot to determine the kinetics of thrombin inhibition by 

ACR9 at 1.0 and 2.0 µM concentrations; goodness of fit of the plot, R2 = 0.99. Inset: 

Lineweaver-Burk plot of the amidolytic activity of thrombin in absence and presence of 

ACR9 (1.0 and 2.0 µM); goodness of fit of the plot, R2 = 0.99. 
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dependently inhibited the prothrombin activation property of FXa
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activation property of factor Xa (0.1 µg). Lane 1, protein molecular weight markers; 

lane 2, only prothrombin (12 µg); lane 3, prothrombin (12 µg) incubated with FXa (0.1 

µg); lane 4, prothrombin (12 µg) incubated with ACR9 (1.0 µM) treated FXa (0.1 µg); 

lane 5, prothrombin (12 µg) incubated with ACR9 (2.0 µM) treated FXa (0.1 µg). B. 

Area of the protein bands of lanes 2-5 as determined by densitometry scanning using 

ImageJ software. 

6.2.7.2 Effect on amidolytic activity of FXa 

ACR9 dose-dependently inhibited the amidolytic activity of FXa against its 

chromogenic substrate F3301 (Figs 6.7A, B). From the log [inhibitor concentration] vs 

response curve, the IC50 value of FXa inhibition by ACR9 was determined at 19.6 ± 1.2 

µM (Fig 6.7C). 

 

Fig 6.7A. Effect of ACR9 on amidolytic activity of factor Xa. Dose-dependent (0.5 – 

4.0 µM) effect of ACR9 on the amidolytic activity of FXa against its chromogenic 

substrate CH3OCO-D-CHA-Gly-Arg-p-NA-AcOH (0.2 mM). The kinetics (absorbance) 

of the reactions was measured up to 10 min at 405 nm. 
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Fig 6.7. Effect of ACR9 on amidolytic activity of factor Xa (contd). B. Dose-

dependent inhibition of the amidolytic activity of thrombin by ACR9 (0.5 – 4.0 µM). 

Values are mean ± SD of triplicate determinations. C. Log [ACR9] (peptide 

concentration) vs response (absorbance at 405 nm) plot to determine the IC50 of FXa 

inhibition by ACR9. 

Peptide (M)

0.5 1 2 3 4

%
 i
n

h
ib

it
io

n
 o

f 
a

m
id

o
ly

ti
c
 a

c
ti

v
it

y
 o

f 
F

X
a

10

15

20

25

30

B 

0.0 0.5 1.0 1.5 2.0 2.5
0.55

0.60

0.65

0.70

0.75

0.80

Log [ACR9]

R
e

s
p

o
n

s
e

 (
A

4
0

5
 n

m
 a

t 
2

0
 m

in
)

C



Characterization and assessment of therapeutic potential of Indian cobra (Naja naja) venom 
anticoagulant phospholipase A2 enzyme and a 7-mer peptide developed from this enzyme 

 

Chapter VI: Results and Discussion Page 278 
 

6.2.7.3 Kinetics of FXa inhibition by ACR9 

 Both Vmax and Km values of amidolytic activity of FXa were found to decrease 

with an increase in concentration of the peptide inhibitor (ACR9) (Table 6.4). 

Therefore, ACR exhibited uncompetitive inhibition of FXa (Fig 6.8), with an αKi value 

of 1.0 ± 0.2 µM. 

Table 6.4. Kinetics of inhibition of factor Xa by ACR9. The kinetic parameters (Km 

and Vmax) were determined from the Michaelis-Menten plot as described in section 

3.2.8.2.3 of chapter III. The values are mean ± SD of triplicate determinations. 

ACR9 (µM) 
Vmax (µmol p-NA 

released/min) 
Km (mM) 

0 55.93 ± 7.22 0.81 ± 0.05 

10 33.32 ± 6.27 0.48 ± 0.01 

20 13.47 ± 0.76 0.15 ± 0.02 

 

 

Fig 6.8. Michaelis-Menten plot to determine the kinetics of FXa inhibition by 

ACR9 (1.0 and 2.0 µM); goodness of fit of the plot, R2 = 0.97. Inset: Lineweaver-Burk 

plot of the amidolytic activity of FXa in absence and presence of ACR9 (1.0 and 2.0 

µM); goodness of fit of the plot, R2 = 0.99. 
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1.0 µM ACR9 0.74 ± 0.04 

2.5 µM ACR9 1.17 ± 0.09 

5.0 µM ACR9 2.99 ± 0.15 

 

6.2.12.2 Effect of ACR9 on mammalian cells by MTT assay 

The peptide was non-cytotoxic towards human embryonic kidney (HEK-293) 

and human breast adenocarcinoma (MCF-7) cells (Fig 6.16). 

 

Fig 6.16. Cytotoxicity exhibited by ACR9 (12.5 and 25.0 µM) towards mammalian 

breast cancer cells (MCF-7) and human embryonic kidney cells (HEK-293). Values 

are mean ± SD of triplicate determinations. 

6.2.12.3 Effect of ACR9 on cell cycle by flow cytometry analysis 

Flow cytometry analysis of MCF-7 cells treated with ACR9 did not show 

significant difference (p>0.05) in G1, S, and G2 phases as compared to control cells 

suggesting it did not retard cell cycle of this mammalian cell (Fig 6.17). 
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Fig 6.17. Flow cytometry analysis of cell cycle using propidium iodide (PI) staining. 

The MCF-7 cells (1.5 × 105 cells per ml) were treated for 24 h at 37 ˚C, 5% CO2 with 

ACR9 (10.0 µg/ml). Cells were harvested by trypsinization and stained with PI for 2 h 

and analyzed by flow cytometry. Values are mean ± SD of triplicate determinations. 

6.2.13 Assessment of in vivo toxicity of ACR9 

6.2.13.1 Effect on survival and behavioral parameters 

The in vivo toxicity assessment demonstrated that at a dose of 4.0 mg/kg ACR9 

was non-toxic to Wistar rats and did not show significant change (p>0.05) in the 

behavioral parameters of the treated group of rats as compared to control group of rats 

(Table 6.6A). 

6.2.13.2 Effect on serological parameters 

The serological parameters did not show any significant deviation (p>0.05) in 

treated rats as compared to the control group of rats (Table 6.6B). 

6.2.13.3 Effect on blood parameters 

Further, there was no any significant deviation (p>0.05) in hematological 

parameters of the treated rats as compared to the control group of rats (Table 6.6C).
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Table 6.6A. Behavioral changes, if any, in Wistar rats (n=3 per group) after 72 h of intravenous injection of ACR9 (4.0 mg/kg 

dose). Values are mean ± SD of three (n=3 per group) independent determinations. Differences of values in each row are not significant 

(p>0.05). 

Group of 

rats 

Parameters 

Body weight (g) Grip strength (s) Rectal temperature (F) 
Fecal tendency 

(per 30 min) 

Frequency of 

urination (per 

30 min) 

Initial* Final¶ Initial* Final¶ Initial* Final¶ Initial* Final¶ Initial* Final¶ 

Control 140 ± 1.8 143 ± 2.1 49.5 ± 1.3 52.1 ± 0.9 95.1 ± 0.2 94.9 ± 1.6 5 ± 0.4 4 ± 0.7 4 ± 0.5 4 ± 0.8 

ACR9-

treated 
145 ± 1.6 142 ± 2.0 46.9 ± 2.0 49.2 ± 1.4 93.8 ± 1.2 94.5 ± 1.6 5 ± 0.1 6 ± 0.2 5 ± 0.2 6 ± 0.5 

*before injection; ¶after 72 h post injection 
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Table 6.6B. Effect of ACR9 (4.0 mg/kg) on the serum parameters of Wistar strain 

rats after 72 h of admistration (i.v.). Values are mean ± SD of three independent 

determinations. Differences of values in each row are not significant (p>0.05).  

Parameter Control ACR9 

Glucose (mg/dL) 49.00 ± 2.50 50.00 ± 2.50 

SGPT 115.00 ± 5.80 111.00 ± 5.60 

SGOT 18.00 ± 0.09 13.00 ± 0.70 

Bilirubin (mg/dL) 0.25 ± 0.02 0.26 ± 0.01 

Urea (mg/dL) 3.10 ± 0.02 2.80 ± 0.01 

Uric acid (mg/dL) 1.69 ± 0.01 2.24 ± 0.01 

Creatinine (mg/dL) 0.10 ± 0.01 0.10 ± 0.01 

Triglyceride (mg/dL) 86.60 ± 4.30 73.09 ± 3.70 

Cholesterol (mg/dL) 181.30 ± 9.10 154.70 ± 7.70 

LDL (mg/dL) 78.60 ± 3.90 76.70 ± 3.80 

HDL (mg/dL) 20.30 ± 1.00 19.30 ± 1.00 

Total protein (mg/dL) 14.41 ± 0.70 14.73 ± 0.70 

 

Table 6.6C. Effect of ACR9 (4.0 mg/kg) on the blood parameters of treated Wistar 

rats after 72 h of admistration (i.v.). Values are mean ± SD of three independent 

determinations. Differences of values in each row are not significant (p>0.05).  

Parameter Control ACR9 

WBCa (m/mm3) 5.06 ± 0.33 5.14 ± 0.12 

Lymphocytes (%) 36.17 ± 1.18 40.25 ± 2.10 

Monocytes (%) 5.67 ± 0.90 6.19 ± 0.30 
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Neutrophils (%) 50.63 ± 2.25 42.97 ± 2.10 

Eosinophils (%) 10.63 ± 0.15 9.95 ± 0.51 

Basophils (%) 0.10 ± 0.01 0.14 ± 0.02 

Total RBCb (m/mm3) 8.77 ± 0.04 9.14 ± 0.50 

MCVc (fl) 44.23 ± 1.22 49.58 ± 2.50 

HCtd (%) 36.20 ± 1.80 35.10 ± 1.80 

MCHe (pg) 15.77 ± 0.18 16.47 ± 0.80 

MCHCf (g/dl) 37.13 ± 1.09 35.19 ± 1.81 

RDWg(%) 15.73 ± 1.06 11.98 ± 1.01 

Hbh (g/dl) 12.70 ± 0.03 11.80 ± 0.16 

MPVi (fl) 6.93 ± 0.16 7.08 ± 0.14 

PCtj (%) 0.31 ± 0.01 0.29 ± 0.01 

PDWk(%) 8.37 ± 0.40 8.14 ± 0.60 

a white blood corpuscles; bred blood corpuscles; cmean corpuscular volume expressed in 

femtolitre; dhematocrit value; emean corpuscular hemoglobin expressed in picograms; 

fMCH concentration expressed in gram per deciliter; gred blood cell distribution width; 

hhemoglobin content expressed in gram per deciliter; imean platelet volume in 

femtolitre; j platelet crit; k platelet distribution width. 

6.2.13.4 Effect on histological parameters 

Histological analysis of major tissues of ACR9-treated and untreated (control) 

animals did not exhibit any gross morphological difference (Fig 6.18) thereby 

suggesting ACR9 is devoid of toxicity in rodent. 
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Fig 6.19A. Antithrombotic property of ACR9. 

treated with 0.2 mg/kg and 0.4 mg/kg of argatroban and 7

treated intravenously with (a) 1X PBS,

(d) 0.4 mg/kg argatroban followed by 0.9 mg/kg κ

0.4 mg/kg ACR9 followed by 0.9 mg/kg κ

Percent thrombus

intravenous administration

and argatroban-treated rats. Values are mean ±

Significance of difference with resp

P
e

rc
e
n

t 
re

s
id

u
a

l 
ra

t 
ta

il
 t

h
ro

m
b

u
s

0

20

40

60

80

100

120

and assessment of therapeutic potential of Indian cobra (Naja naja) venom 
anticoagulant phospholipase A2 enzyme and a 7

Chapter VI: Results and Discussion 

thrombotic property of ACR9. 
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treated rats. Values are mean ±

Significance of difference with respect to control (100%), *p<0.05.

1X PBS

*

and assessment of therapeutic potential of Indian cobra (Naja naja) venom 
anticoagulant phospholipase A2 enzyme and a 7-mer peptide developed from this enzyme

 

 

thrombotic property of ACR9. 

treated with 0.2 mg/kg and 0.4 mg/kg of argatroban and 7

treated intravenously with (a) 1X PBS, (b) 0.9 mg/kg κ

(d) 0.4 mg/kg argatroban followed by 0.9 mg/kg κ

0.4 mg/kg ACR9 followed by 0.9 mg/kg κ-carrageenan.

formation in the tails of Wistar rats (n=4) after 48 h of 

of 0.9 mg/kg κ-carrageenan in untreated (control), ACR9, 

treated rats. Values are mean ±

ect to control (100%), *p<0.05.

Treatment

0.2 mg/kg

1X PBS (placebo)

Argatroban + 

ACR9 + 

1X PBS + 

*

*

and assessment of therapeutic potential of Indian cobra (Naja naja) venom 
mer peptide developed from this enzyme

 

thrombotic property of ACR9. Induction of thrombosis in tails of rats 

treated with 0.2 mg/kg and 0.4 mg/kg of argatroban and 7

(b) 0.9 mg/kg κ-carrageenan, (c) 0.2 mg/kg and 

(d) 0.4 mg/kg argatroban followed by 0.9 mg/kg κ-carrageenan; (e) 0.2 mg/kg and (f) 

carrageenan. 

formation in the tails of Wistar rats (n=4) after 48 h of 

carrageenan in untreated (control), ACR9, 

treated rats. Values are mean ± SD of four animals per group. 

ect to control (100%), *p<0.05.

Treatment

0.2 mg/kg 0.4 mg/kg

1X PBS (placebo)

Argatroban + -carrageenan

ACR9 + -carrageenan

1X PBS + -carrageenan

*
*

and assessment of therapeutic potential of Indian cobra (Naja naja) venom 
mer peptide developed from this enzyme

 

Induction of thrombosis in tails of rats 

treated with 0.2 mg/kg and 0.4 mg/kg of argatroban and 7-mer peptide. Rats 

carrageenan, (c) 0.2 mg/kg and 

carrageenan; (e) 0.2 mg/kg and (f) 

formation in the tails of Wistar rats (n=4) after 48 h of 

carrageenan in untreated (control), ACR9, 

SD of four animals per group. 

ect to control (100%), *p<0.05. 

0.4 mg/kg

-carrageenan

-carrageenan

-carrageenan

*

and assessment of therapeutic potential of Indian cobra (Naja naja) venom 
mer peptide developed from this enzyme

 Page 

 

Induction of thrombosis in tails of rats 

mer peptide. Rats 

carrageenan, (c) 0.2 mg/kg and 

carrageenan; (e) 0.2 mg/kg and (f) 

 

formation in the tails of Wistar rats (n=4) after 48 h of 

carrageenan in untreated (control), ACR9, 

SD of four animals per group. 

and assessment of therapeutic potential of Indian cobra (Naja naja) venom 
mer peptide developed from this enzyme 

Page 291 

Induction of thrombosis in tails of rats 

mer peptide. Rats were 

carrageenan, (c) 0.2 mg/kg and 

carrageenan; (e) 0.2 mg/kg and (f) 

formation in the tails of Wistar rats (n=4) after 48 h of 

carrageenan in untreated (control), ACR9, 

SD of four animals per group. 



Characterization and assessment of therapeutic potential of Indian cobra (Naja naja) venom anticoagulant phospholipase A2 enzyme and a 7-mer peptide 
developed from this enzyme 

 

Chapter VI: Results and Discussion Page 292 
 

Table 6.7. Comparison of in vivo anticoagulant activity of ACR9, argatroban, and heparin post 60 min of administration (i.v.) in 

Wistar strain rats. Values are mean ± SD of six independent determinations. Significance of difference *p<0.01 as compared to control, 

and ¶p<0.05 as compared to argatroban. 

Sample PT (s) INRa APTT (s) INR TT (s) 
Ca2+ clotting 

time (s) 

Tail bleeding 

time (s) 

Control 17.20 ± 0.4 1.00 30.32 ± 0.1 1.00 63.01 ± 0.1 79.93 ± 1.9 61.11 ± 5.3 

ACR9 (0.4 mg/kg) 38.13 ± 1.1*¶ 2.22 39.61 ± 0.7* 1.31 124.18 ± 5.8*¶ 246.94 ± 8.8*¶ 206.40 ± 10.6*¶ 

Argatroban (0.4 

mg/kg) 
27.81 ± 0.8* 1.62 37.91 ± 0.4* 1.25 106.18 ± 0.6* 107.43 ± 2.8* 154.56 ± 10.2* 

Heparin (0.4 mg/kg) 23.84 ± 0.6*¶ 1.39 34.73 ± 1.0 1.15 93.22 ± 3.7* 97.48 ± 2.9* 120.13 ± 6.5*¶ 

                 a international normalized ratio (INR) = Value of treated sample / value of control 
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Table 6.8. Effect of 0.4 mg/kg ACR9 on defibrinogenation activity after 60 min of 

administration (i.v.). The Lunathrombase was used as a positive control. Values are 

mean ± SD of three independent determinations. Significance of difference, *p<0.05 

with respect to control. 

ACR9 (mg/kg) 

Blood plasma fibrinogen level (mg/ml) 

In vivo (PPP from 

ACR9 treated / control 

Wistar strain rats) 

Ex vivo (PPP from 

untreated Wistar strain 

rats) 

Control 2.49 ± 0.22 2.62 ± 0.17 

0.4 mg/kg ACR9 2.51 ± 0.19 2.52 ± 0.14 

0.4 mg/kg Lunathrombase‡  1.48 ± 0.08* 1.29 ± 0.12* 

‡A fibrinogenolytic enzyme isolated from leave extract of Leucas indica [15]. 

6.3 Discussion 

The non-toxic anticoagulant PLA2 enzyme (NnPLA2-I) from N. naja venom 

exerts its anticoagulant activity via catalytic (phospholipids hydrolysis) activity and 

partly by non-enzymatic inhibition of thrombin (see chapter IV). Apart from the 

catalytic site, snake venom PLA2s possess an additional target-specific pharmacological 

site (residues 54 – 77) responsible for determining the pathophysiological activity of 

this enzyme [13].  

The 7-mer peptide (ACR9) developed from the pharmacological site of 

NnPLA2-I prolonged the prothrombin time (PT) and thrombin time (TT) of PPP, 

thereby suggesting that it affects the extrinsic and / or common pathway of the blood 

coagulation cascade [16,17]. Further, the in vitro result showing greater inhibition of 

thrombin compared to FXa by ACR9 is well corroborated with in silico analysis results. 

Interestingly some of the ACR peptides (1, 2, 5, and 6) showed higher ACE with 

thrombin (Table 6.1); nevertheless, they failed to elicit a significant anticoagulant 

activity in in vitro conditions suggesting that perhaps the smaller length of the ACR9 

enhances its flexibility to exhibit strongest inhibition of the coagulation factors. The 

docking study showed (predicted) that ACR9 in addition to binding to active site may 

also bind to some other site of thrombin those results in mixed mode of thrombin 
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inhibition. However, ACR9 does not interact with the active site of FXa and 

demonstrates uncompetitive mode of FXa inhibition. These data indicate that ACR9 

binds to FXa when it forms an enzyme-substrate complex with prothrombin and it does 

not bind to free substrate (prothrombin) [18]. Further, the results of the docking studies 

showing greater interaction (lower atomic contact energy) of ACR9 with thrombin 

compared to FXa was also supported by in vitro study showing higher inhibition of 

thrombin compared to FXa by ACR9; interestingly, NnPLA2-I did not show FXa 

inhibition (see section 4.2.7.2.4). It may be reasonable to anticipate that relatively much 

smaller size and lesser steric hindrance of ACR9 compared to NnPLA2-I could possibly 

aid in binding of this peptide to different sites of FXa thereby leading to an 

uncompetitive inhibition of this key coagulation factor. 

In contrast to low molecular mass (<5 kDa) thrombin and FXa inhibitors derived 

from hematophagous insects [19-22], snake venom serine protease inhibitors are usually 

higher molecular mass proteins / peptides (6 – 29 kDa) [23-26]; the only exception is 

the Ruviprase (4.4 kDa) isolated from Daboia russelii venom [2]. Further, a novel 

bioactive peptide (ACH-11) with the sequence LTFPRIVFVLG was derived from 

hydrolysates of Agkistrodon acutus venom that exhibited FXa inhibition and antiplatelet 

property [10]. The ‘hirulogs’, which are ~20 amino acid long synthetic peptides 

synthesized from the C-terminal region of hirudin [11,27], show thrombin inhibition by 

binding to a site on thrombin other than its active site suggesting non-competitive 

inhibition of thrombin [27]. However, argatroban shows only competitive mode of 

thrombin inhibition [28,29]. In a sharp contrast, ACR9 is capable of binding to the 

catalytic site as well as to some other sites of thrombin indicating differences in the 

mechanism of thrombin inhibition by ACR9, hirulogs, and argatroban. 

To reduce the number of test compounds, the in silico or virtual analysis of 

ligand-target molecule interaction has gained a tremendous momentum in 

pharmaceutical industry and a set of molecules / compounds showing best interactions 

with the target molecule are further considered for in vitro analysis [30,31]. However, in 

silico studies are prediction only; therefore, validation of in silico results by wet lab 

experiments is the indispensable prerequisite for successful development of drug 

prototypes. Spectrofluorometry analysis is one of the primary techniques to measure the 
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interaction between proteins [32,33]. The increase in the fluorescence intensity of 

thrombin and FXa post addition of ACR9 validated their interactions with ACR9 [33]. 

Further, KD value of ACR9 towards thrombin is significantly lower than that of 

argatroban (53.8 µM) [34]. 

The transition of anticoagulant drugs from high molecular weight compounds 

such as unfractionated heparin (UFH), hirudin, and warfarin to low molecular weight 

heparin (LMWH), hirulogs, and smaller molecules such as argatroban and dabigatran 

was due to several adverse pharmacological effects of former group of drugs [1,35]. 

Nevertheless, low molecular mass peptides have certain potential advantages over 

chemical molecules as anticoagulant drugs [2,6,10,36,37]. Notably, low molecular mass 

peptides as compared to low molecular weight synthetic drugs possess higher affinity 

towards their target, have lower toxicity, and have high tissue penetration ability [36], 

albeit some complications are also associated with low-molecular mass peptides 

[36,37]. However, several strategies have been developed in recent years to overcome 

such limitations [36]. 

Rats (Wistar strain) share approximately 90% similarity with the human genome 

[38], thus making them one of the most widely used animal models in medical research 

[39]. Administration of ACR9 at a dose of 4.0 mg/kg, which is approximately 20 times 

greater than the minimum in vivo antithrombotic dose of this peptide (0.2 mg/kg; Figs 

19A,B), did not show adverse pharmacological effects and acute toxicity in treated rats 

thereby suggesting its pre-clinical safety and higher therapeutic index. Further, the 

optimum INR (international normalized ratio) value of PT and APTT suggested that 

ACR9 may not produce the risk of internal bleeding disorder [40]. The in silico analysis 

indicated non-antigenic nature of ACR9 suggesting adverse immunological response in 

patients following prolong application of this molecule is unlikely; nevertheless, it 

needs to be validated by chronic toxicity study in rodents. 
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