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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Snakes are one of the most charming and unfathomable animals living on this 

earth. To date, the sight of a snake is dreadful and traumatic to the common man. In 

India, from ancient times, snakes are dreaded by human beings on one hand, whereas on 

the other hand, it is envisaged to be an integral part of their culture. The planet is a 

home to a more than 3,000 species of snakes distributed across every parts of the globe, 

except Antarctica [1-4]. This group of elongated, limbless, carnivorous reptile is known 

to dwell almost under every climatic riff in a diapason of habitats. Based on presence or 

absence of venom gland this huge group of organism is broadly classified into two 

groups - venomous and non-venomous. Only about 600 species of snakes are 

venomous, while most of them are non-venomous in nature [3,5]. 

Snake venom is a highly effective device used for predation (capturing, 

immobilization, and digestion of the prey), defense, and competitor deterrence [6,7]. It 

is a modified form of saliva that consists of a myriad of bio-molecules, primarily 

enzymatic and non-enzymatic proteins and polypeptides. These proteins / polypeptides 

are responsible for wide array of pathophysiological symptoms in prey and victims post 

envenomation [8-11]. Snake venom proteins / polypeptides target a myriad of receptors,  

ion channels and hemostatic proteins that thus makes them ideal for pharmaceutical 

research [6,7,12-15]. Furthermore, studies have shown that the composition of snake 

venom varies from species-to-species (inter-specific) [8] as well as intra-specifically 

[9,16,17]. Intra-specific venom variation depends on various factors such as age, sex, 

ontogeny, and locale [9,16,18,19] of the snake. This intra-specific venom difference is 

one of the major limitations of snakebite treatment with polyvalent antivenoms 

[17,20,21]. 

It has been reported that snakes can voluntarily control the amount of venom 

they inject into their prey [6]. They may either bite aggressively for food or defensively 

for protection [6,22]. Because only a limited amount of venom is being produced by a 

snake; therefore, snakes observe economical usage of their venom [23-25] and perhaps 
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refrain to waste it on non-prey organisms [26]. Notably, about ~50% of bites suffered 

by humans is defensive in nature and “dry” (without envenomation) [6,26,27].  

Naja naja (also known as the Indian Spectacled Cobra) is one of the deadliest 

snakes distributed widely across the Indian sub-continent. This chapter describes the 

epidemiology of snake envenomation, venom composition of snakes and its associated 

clinical manifestations with special reference to Naja naja. This chapter emphasizes the 

pharmacological aspects of snake venom proteins / polypeptides that affect hemostasis 

and their probable development as drug prototypes for the treatment and / or prevention 

of cardiovascular diseases. Further, the chapter also describes the emergence of peptides 

as therapeutics and their advantages over other conventional drugs.  

1.2. Taxonomic classification and geographical distribution of snakes 

Snakes belong to the sub-order Serpentes, order Squamata, class Reptilia of 

phylum Chordata. Based on their morphological characteristics and mitochondrial DNA 

sequence similarity, the sub-order Serpentes is classified into two infraorders, viz.  

Alethinophidia and Scolecophidia [28]. The infra-order Alethinophidia is further 

subdivided into two groups - Henophidia and Caenophidia, which together comprise of 

19 families of snakes [29]. Whereas, the infra-order Scolecophidia comprise of only 3 

snake families [29]. 

The venomous snakes are reported to belong to the infra-order Alethinophidia, 

group Caenophidia and Colubroidea superfamily [2,30]. The Colubroidea superfamily is 

subsequently subdivided into four families, viz., Colubridae, Elapidae, Viperidae, and 

Atractaspididae [28,31]. The largest and multifarious family of snakes, Colubridae, 

comprises of 8 sub-family of snakes, which together consists of approximately 1,800 

species [29]. This family of snake is distributed on all continents throughout the planet, 

except Antarctica [4].  

With about 350 species, the Elapidae family of snakes is another large family of 

venomous snakes, which is widely distributed across the tropical and sub-tropical 

regions of America, Africa, the Middle East, Asia, and Australasia [31]. The family is 

divided into two sub-families – the Elapinae sub-family comprising of coral snakes, 

cobras, mambas, and kraits, and the Hydrophiinae sub-family comprising of sea snakes. 
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Elapids are proteroglyphous (front-fanged) and their venom is mostly neurotoxic in 

nature, thus making them of significant medical importance to humans [2,31]. The 

Viperidae family of venomous snakes contains around 310 species and is distributed 

across a range of terrestrial habitats of Americas, Africa, Europe, and Asia (except 

Siberia, Ireland and Australia) [2,31]. The Viperidae family is further sub-divided into 

two main sub-families – the Viperinae (pit-less Vipers) and the Crotalinae (pit Vipers) 

[2,31]. The Viperids are solenoglyphous (hollow-fanged) and their venom is highly 

hemotoxic in nature and are responsible for extensive human mortality and morbidity 

across the globe [2,32]. The Atractaspididae family of snakes contains around 30 

species which are distributed across Africa and Middle East [31]. 

1.3. Snakebite: A tropical health hazard 

The Earth is a home to 23 families of snakes which comprise of 511 genera and 

3378 species [33]. Among them, only  about 600 species of snakes are venomous and 

the remaining are non-venomous [5]. Snake envenomation is an occupational health 

hazard in tropical and sub-tropical countries like India, where farming is the largest 

sector of employment. It is estimated that yearly about 1.2 – 5.5 million snakebite cases 

occur around the world, out of which 421,000 are envenomings, and this figure may go 

up to as 1,841,000 [3]. Out of these, approximately 20,000 – 94,000 cases results in 

mortality of the victim while another fraction accounts to severe morbidities [3]. 

Therefore, snake bite has been re-instated as a “Category A, Neglected Tropical 

Disease” by World Health Organization (WHO) on June 9, 2017 [34]. However, the 

number of snakebite cases reported varies from region-to-region across the globe [35-

37]. The burden of snakebite lies mostly in South and South-east Asia, sub-Saharan 

Africa, and Central and South America [3,38] (Fig 1.1). Most of the information on 

snake envenoming is primarily based on hospital records [39], epidemiological literature 

[35,36,38], or a combination of epidemiological and WHO mortality data [3,38]. It is 

sad to note that the agony of snakebite mainly lies with the poor and poverty stricken 

people of the world [40,41].  
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1.3.1 Global burden of snakebite 

Conservative estimates report that the highest number of envenomings were 

estimated for South Asia (121,000) followed by Southeast Asia (111,000), and East 

Sub-Saharan Africa (43,000) [3,37,42]. The lowest numbers were estimated for Central 

Europe and Central Asia. Kasturiratne and co-workers [3] reports that India had the 

most envenomings at 81,000 annually, which is followed by Sri Lanka (33,000), 

Vietnam (30,000), Brazil (30,000), Mexico (28,000), Pakistan (20,000), and Nepal 

(20,000). Reports suggest that the problem of snakebite is under-appreciated in West 

Africa [43]. It was estimated that incidences of snakebite envenomation in savannah 

Nigeria of northwestern Africa is 500 per 100,000 population per year [44]. However, 

recent estimates suggest that 10,001 to 100,000 snakebite envenomings with a mortality 

rate of 1,001 to 10,000 deaths per year occurs in the West African sub-region [3]. A 

more recent study has shown that nearly about 314, 000 bites, 7,300 deaths and 6,000 

amputations occur annually in sub-Saharan Africa [45].  

On the contrary, incidence of snakebite is a rare event in Europe and North 

America [35,46]. In North America, approximately 45,000 snakebites occur annually, 

out of which about 10,000 are inflicted by venomous species, 6,500 require medical 

intervention, and mortality due to snakebite is approximately 15 per year [47,48]. 

However, the annual incidence of snakebites in Central and South America is estimated 

to be at least 300,000; among which 150,000 are envenomations and about 5,000 

envenomed individuals die every year [49-51]. Further, incidences of snakebites have 

reportedly decreased in Australia with a record of 1,000 – 3,000 snakebite cases 

annually [52,53]. While snakebite numbers are decreasing in temperate Australia, 

snakebite remains an important cause of morbidity in tropical Australia and of mortality 

in Papua New Guinea and Irian Jaya [54,55].  

1.3.2 Indian scenario of snakebite 

India records the highest number of snakebite envenoming cases across the 

world [3]. The diverse fauna of the country includes more than 250 species and 

subspecies of snakes, out of which about 50 are highly venomous [56,57]. Majority of 

the snakebite cases in the country can be accounted to the ‘Big Four’ species of snakes 
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Table 1.1. Taxonomic classification of the Indian Spectacled cobra [62]. 

Kingdom Animalia 

Subkingdom Bilateria 

Infra-kingdom Deuterostomia 

Phylum Chordata 

Sub-phylum Vertebrata 

Infra-phylum Gnathostomata 

Super-class Tetrapoda 

Class Reptilia 

Order Squamata 

Sub-order Serpentes 

Infra-order Alethinophidia 

Family Elapidae 

Genus Naja 

Species N. naja (Linnaeus, 1758) 

 

1.4.2 Distinctive features and description 

The Indian Spectacled Cobra or Naja naja is a heavy bodied species of moderate 

length, ranging between 1.0 to 1.5 m (3.3 to 4.9 feet) in length [63,64]. The colouration 

pattern varies widely from region-to-region and hence the snake is identified by its large 

and impressive hood having a prominent spectacle mark, which it spreads when under 

threat [63]. This species has a head which is elliptical, depressed, and very slightly 

distinct from neck. The snout is short and rounded with large nostrils.  

1.4.3 Habitat and geographical distribution 

The snake is found to be distributed across the Indian sub-continent and found in 

India, Pakistan, Sri Lanka, Bangladesh, and southern part of Nepal (Fig 1.4) [63]. It 

inhabits a wide range of habitats throughout its geographical range, and can be found in 

dense or open forests, plains, agricultural lands, rocky terrain, wetlands, and it can even 

be found in heavily populated urban areas such as villages and city outskirts, ranging 

from sea-level to 2,000 meters (6,600 fit) in altitude. This species of snake is absent 
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suffering, prolong hospital stay, permanent scarring, and even death in some patients 

[73]. Transient coagulopathy characterized by increase in 20 minute whole blood 

clotting time (20WBCT) test of N. naja envenomed patients has also been reported from 

Sri Lanka and western India [73,74]. 

Currently, administration of polyvalent antivenom raised against the ‘Big Four’ 

snakes of India is the only acceptable therapy to deal with N. naja envenomation 

[73,74,76]. The neurotoxicity exhibited by cobra envenomation may be reversed by 

immediate administration of antivenom; however, commercial antivenom fails to 

neutralize the local effects of cobra envenomation such as edema and necrosis [73,74]. 

This is suggestive of development of alternate strategies for antivenom production to 

mitigate this long standing problem. 

1.5 A brief account on N. naja venom 

Lyophilized N. naja venom is readily soluble in aqueous solvents (buffers such 

as 20 mM Tris-HCl, pH 7.4 and phosphate buffered saline, pH 7.4). A homogenous 

solution of N. naja venom is clear to slightly yellowish in colour, slightly acidic with a 

pH range from 6.6–7.0, and relative viscosity is between 1.03 – 1.07 [80]. Like all other 

snake venoms, the venom of N. naja is composed of a 95 – 98% of proteins and 

peptides that exhibit a variety of pharmacological effects in isolation or combination 

[81]. Several of such pharmacologically active proteins / polypeptides (toxins) have 

been isolated, purified, and characterized from the venom of N. naja in order to 

understand their mechanism of action and the pathophysiology exhibited by them upon 

envenomation [82-97]. Approximately 5% of the venom is composed of non-

proteinaceous low molecular mass substances such as amino acids, amines, lipids, 

nucleosides and nucleotides, carbohydrates and metal ions, most of which are 

biologically inactive or less active or assist the venom proteins and polypeptides to exert 

their toxicity [98]. 

1.5.1 Composition of N. naja venom 

Like other Elapid venoms, the venom of N. naja is neurotoxic in nature [73,76]. 

On an average, snake venoms are composed of different proteins / polypeptides 

belonging to approximately 26 different protein families, 12 of which are found in 
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almost all snake venoms and each exhibiting a distinct functional role [98,99]. The 

venom proteins can be broadly classified into two classes – the enzymatic proteins and 

the non-enzymatic proteins / polypeptides [13,15]. The latter class of proteins is 

predominant in the venom of Indian cobra and is associated with a wide array of 

pharmacological properties [17,19,21,100]. 

The predominant non-enzymatic class of N. naja venom proteins include the 

three-finger toxins which constitute approximately 60 – 75% of the total venom 

proteome [19,21,100,101]. This low molecular mass (6 – 9 kDa) family of snake venom 

proteins is responsible for a myriad of clinical symptoms such as neurotoxicity, 

cardiotoxicity, cytotoxicity, and antiplatelet effects [102,103]. The other non-enzymatic 

proteins of the Indian cobra venom include cystatin, nerve growth factors (NGF), 

cysteine-rich secretory proteins (CRISP), Kunitz-type serine protease inhibitors (KSPI), 

cobra venom factors (CVF), natriuretic peptides (NP), ohanin-like proteins (OLP) or 

vespryns, snaclecs or C-type lectins and vascular endothelial growth factors (VEGF) 

[19,21,100,101]. CVFs are responsible for complement activation [104], while 

natriuretic peptides and vespryns are responsible for hypotensive effect [105] and 

locomotor dysfunction [106], respectively. 

The enzymatic proteins of N. naja venom consists of phospholipase A2s (PLA2), 

phospholipase Bs (PLB), snake venom metallo- and serine-proteases (SVMP / SVSP), 

L-amino acid oxidases (LAAO), 5’ nucleotidases, phosphodiesterases, aminopeptidases, 

cholinesterases (including acetylcholinesterases and butyrylcholinesterases) 

[17,19,21,100,101,107], and hyaluronidases [83]. The neurotoxicity of cobra venom is 

also exhibited by the cholinesterases and neurotoxic PLA2s which are post-synaptic 

neurotoxins and binds reversibly to nerve terminals [76,89,92,108]. PLA2s, along with 

metalloproteases and hyaluronidase are responsible for local effects of cobra 

envenomation such as necrosis and edema [83,87]. The cobra venom metalloproteases 

and nucleotidases have been reported to affect the hemostatic system [82,95] although 

the pathophysiology exhibited with this effect is rarely witnessed in N. naja 

envenomation [73,74].  

The PLA2s of cobra venom (other than N. naja) are reported to exhibit strong 

anticoagulant activity [109-112], which suggests the probable role of cobra venom 
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PLA2s in transient coagulopathy exhibited post envenomation. In a nutshell, the PLA2 

family of enzymes may be responsible for a considerable amount of toxicity upon N. 

naja envenomation. Hence, this group of proteins has been described in some more 

detail in section 1.7. 

1.5.2 Differential composition of Indian Spectacled Cobra (Naja naja) venom: A 

biochemical approach 

In a study by Mukherjee and Maity [16], the differential composition of N. naja 

venom from 3 districts (Burdwan, Purulia and Midnapur) of West Bengal, India and 

Haffkine Institute, Maharashtra, India were studied by different biochemical techniques. 

Each of these venoms was decomplexed using size-exclusion chromatography and each 

fraction obtained along with the whole venoms was subjected to phospholipase, 

protease, esterase, and nucleotidase enzyme assays. The study reported that N. naja 

venom from Burdwan and Purulia districts of West Bengal exhibited superior 

phospholipase and protease activities as compared to the other two venoms. Moreover, 

in vivo studies revealed that the venom samples from eastern India (West Bengal) were 

found to possess higher lethality, edema inducing activity, and hemolysis as compared 

to the same from western India (Maharashtra), thereby emphasizing on intraspecies 

differential venom composition owing to geographical difference within the same 

country. This difference in venom composition renders neutralization of venom 

components by commercial polyvalent antivenom inefficient for venom of snakes from 

different locales [16].  

In a similar but broader approach, the N. naja venom from three different 

geographical regions [eastern (West Bengal), western (Maharashtra), and southern parts 

(Tamil Nadu)] of India was studied for their different characteristics and composition 

[9,20]. Interestingly, the study reported the differential banding patterns of the three 

venom samples when subjected to sodium dodecyl sulfate (SDS) – polyacrylamide gel 

electrophoresis (SDS-PAGE), wherein it was found that the eastern India N. naja venom 

is mostly predominated with low molecular weight proteins as compared to the other 

two venom samples [9]. Under identical conditions, eastern India N. naja venom 

showed prominent phospholipase A2, hyaluronidase, and indirect hemolytic activities as 

compared to its counterparts from the western and southern regions. Apparently, the 
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former exhibited higher toxicity as compared to the latter when injected in mice, with a 

LD50 value of 0.7 mg/kg, 1.2 mg/kg, and 2.0 mg/kg for eastern, western and southern N. 

naja venoms, respectively [9,20]. Another interesting finding of this study was that the 

N. naja venom also affected the blood coagulation by affecting the clotting time of 

blood; both western and southern venoms were found to exhibit anticoagulant activity in 

contrast to procoagulant activity shown by eastern India N. naja venom [9].  

The monovalent antivenom raised against eastern India N. naja venom failed to 

neutralize the toxicity induced by N. naja venoms from western and southern regions of 

the country [9,113]. Similar observation was made for polyvalent antivenom from 

Haffkine Institute which could neutralize the toxic effects of western N. naja venom but 

failed to do the same for eastern and southern venoms.  Hence these findings reinstate 

that differential venom composition due to geographical location causes inefficient 

neutralization of venom-induced toxicity by polyvalent antivenoms when administered 

in envenomed patients [113]. 

1.5.3 Deciphering the composition of Indian Spectacled Cobra (Naja naja) venom: 

A proteomic approach 

Proteomics, a technique to identify proteins by mass spectrometry approach, has  

played a significant role in recent times in deciphering and quantifying complex 

biological samples and also has contributed for  the fast, easy, and efficient 

identification of snake venom proteome  [114-116]. The process involves two different 

ways to decipher the venom composition, top-down and bottom-up approaches 

[116,117]. In the top-down approach, the proteins are separated using multidimensional 

chromatographic techniques and directly subjected to mass analysis [117,118]; whereas, 

in bottom-up approach or shotgun proteomic analysis, a complex mixture of proteins is 

subjected to solution proteolysis, followed by chromatographic separation of peptides 

prior to MS/MS sequencing [117,119]. Snake venom proteins can be decomplexed 

using multidimensional chromatography (e.g. size-exclusion chromatography, ion-

exchange chromatography or reversed-phase high performance liquid chromatography), 

or electrophoresis (isoelectric focusing and / or one dimensional PAGE based on 

molecular weight) followed by tandem mass spectrometry analysis [21,120,121]. In 

2003, Nawarak et al. [122] performed the first comparative proteomic analysis of 10 
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different venoms from viperid and elapid snakes by a combination of RP-HPLC, 1D 

SDS-PAGE, 2D PAGE, and mass spectrometry. Thereafter, studies have been carried 

out across the globe to study the protein composition of different snake venoms by 

proteomic analysis. 

N. naja venom from different parts of India, Sri Lanka and Pakistan has been 

studied using shotgun proteomics in order to decipher the venom proteome 

[19,21,100,123]. Pooled N. naja venoms obtained from Pakistan [101,123], Sri Lanka 

[19], north-western India [19], eastern India (West Bengal) [17,100], western India 

(Haffkine Institute, Mumbai), [21] and southern India (Irula Snake Catcher's Society, 

Tamil Nadu) [107] were analyzed for their proteome composition by LC-MS/MS 

analysis which detected the presence of 28 or 55, 25, 26, 43 or 52, 54, and 81 proteins, 

respectively, belonging to different families of snake venom proteins. Tandem mass 

spectrometry analysis followed by quantitative analysis of N. naja venom samples from 

different parts of Indian sub-continent revealed that N. naja venom is abundant in three 

finger toxins [19,21,100,101]. Further, the number of total proteins identified in N. naja 

venom from different locations varied significantly which reinstates the geographical 

variation in venom composition of this species of snake [21,101]. Further, this 

difference in venom composition results in differential pathophysiological symptoms 

exhibited upon N. naja envenomation [21,100,101]. 

1.6 The blood coagulation cascade to understand the anticoagulant mechanism of 

N. naja venom proteins 

The blood coagulation cascade is a complex series of events that leads to the 

formation of stable fibrin clot. Under normal physiological conditions, the process of 

hemostasis maintains a balance between blood coagulation at sites of vascular injury 

and keeping blood in a clot-free state for infusion of blood through organs [124,125]. 

The coagulation system is responsible for the conversion of soluble fibrinogen into 

fibrin [126]. The fibrin clot reinforces the platelet plug formed during primary 

hemostasis. The blood coagulation system follows three pathway – the contact factor or 

intrinsic pathway, the tissue factor or extrinsic pathway, and the common pathway (Fig 

1.6) [127].  
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FXa along with factor Va, membrane phospholipids, and Ca2+ ions form a 

prothrombinase complex on the surface of TF-bearing cells which is responsible for the 

conversion of prothrombin (factor II) to thrombin on the surface of platelets [128,129]. 

Thrombin, on the other hand, proteolytically cleaves fibrinogen to fibrin which 

ultimately forms the fibrin clot [125,130]. Besides, thrombin is also responsible for 

activation of factor V, factor VIII, factor XIII, and platelets to form a platelet plug 

[131]. Hence, FXa and thrombin are considered as the crucial factors of the coagulation 

cascade [130,132].  

After the blood flow stops, the fibrinolytic system is activated which is a gradual 

dissolution of the fibrin clot by proteolytic activity of a serine protease, plasmin, which 

degrades the fibrin network [125,127]. Plasminogen is converted to plasmin by 

plasminogen activators such as tissue-type plasminogen activator (t-PA) [127]. 

Haemostatic disorders leading to unwanted thrombus formation in blood vessels may 

occur due to any minor fault in the fine balance between the coagulation factors, such as 

thrombin and FXa, and their endogenous inhibitors such as antithrombin III, protein C, 

and tissue factor pathway inhibitor [125,127]. 

1.7 Snake venom phospholipase A2 enzymes  

Phospholipase A2 (PLA2) enzymes (EC 3.1.1.4) are 119 – 134 amino acid long 

low molecular weight (13 – 15 kDa) proteins that are ubiquitously present in both 

intracellular (cytosolic) and extracellular (secretory) forms in almost all animals, 

including snake venom [133]. PLA2 specifically hydrolyzes the sn-2 ester bond of 

phospholipids [134] thereby releasing fatty acids and lysophospholipids (Fig. 1.7). 

Owing to a plethora of pharmacological effects exhibited by snake venom PLA2 

enzymes, they form the most fascinating group of snake venom toxins [133,135-137]. 

The PLA2 enzymes initially purified from N. naja and N. tripudians [138] were called 

hemolysins due to their ability to rupture erythrocytes. Since then, several snake venom 

PLA2 enzymes have been purified and characterized and their primary sequences are 

reported [133,135,139]. 
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based on the characteristic surface loop present in snake and mammalian PLA2 enzymes 

[139]. 

Group IA: The characteristic elapid loop in this group of PLA2 enzymes connect the 

catalytic α-helix to the β-wing. Most of the elapid venom PLA2s belong to this group 

[139]. 

Group IB: This group of PLA2 enzymes have an additional 5-amino acid residue (62 – 

67) extension, which is called the pancreatic loop, and is found in mammalian pancreas 

[139]. The groups IB PLA2s are responsible for digestion of dietery phospholipids 

[139]. However, this group has also been reported to occur in some snake venoms like 

Oxyuranus scutellus [144], Pseudonaja textilis [145], Notechis scutatus [146], 

Ophiophagus hannah [147], and Micrurus frontalis frontalis [148].   

1.7.1.2 Group II PLA2 enzymes 

This sub-group of PLA2 enzyme is found in the venom of Viperid and Crotalid 

snakes [139]. Unlike Group I PLA2s, they do not have a pancreatic or elapid loop, but 

have an extended C-terminal. The active site in this class of PLA2 enzymes has an 

adjacent Cys133 residue which is unique to this group [139]. 

1.7.2 Structure of PLA2 enzymes 

Snake venom PLA2s vary in length (119 – 134 amino acids), and are flattened 

ellipsoids of approximate dimensions 45×30×20 Å [141]. They consist of 14 cysteine 

residues forming 7 disulfide bonds in order to stabilize the protein structure [149]. The 

structure of a PLA2 enzyme comprises of three major α-helices and two antiparallel β-

sheets, held by formation of disulfide bridges between them. The N-terminal helix, 

calcium binding loop, active site, and the β-wing of the PLA2 structure is conserved in 

all types of this enzyme (Fig 1.8A-C) [149]. The N-terminal of the enzyme consists of a 

highly conserved network of hydrogen bonds that stabilize the adjacent β-sheet structure 

[149]. The strongly hydrophobic catalytic site of the enzyme is characterized by the 

presence of four key residues: His48, which forms the crucial active site, while it is 

supported by the hydrogen bonds formed between Asp49, Tyr52, and Asp99 [141]. Two 

long antiparallel and disulfide linked α-helices form a well-defined, elongated, and 
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hydrophobic channel around the catalytic site. The calcium binding loop of the PLA2 

enzyme is another highly conserved structure and comprises of residues Tyr28, Gly30, 

and Gly32 [141].  

The His residue hydrogen binds the water molecule used for hydrolysis, whilst 

Asp49 coordinates and positions the Ca2+ ion which binds and polarizes both the 

phosphate and the sn-2 carbonyl groups of the phospholipid molecule during hydrolysis 

[141]. The calcium-binding loop, comprising of Tyr28, Gly30 and Gly32, in 

combination with Asp49, binds the Ca2+ ion required for catalysis [141]. In addition, 

there is an interfacial binding surface, which mediates the adsorption of the enzyme 

onto the lipid-water interface of the phospholipid membrane bilayer, strongly promoted 

by anionic amphipathic molecules such as fatty acids (FAs) [140]. These features are 

common to both group I and group II venom PLA2s. However, they differ only in the 

position of one of their seven disulfide bonds, by the presence of the pancreatic loop in 

some of group I enzymes and by an extended C-terminal loop in the group II 

counterparts [140]. One of the PLA2 enzyme isoforms (P15445) of N. naja venom has 

been reported to form an oligomeric association with two other molecules of the same 

enzyme, thereby forming a trimer (Fig 1.8D) [150]. It is noteworthy that the N. naja 

venom PLA2 monomer (PDB ID: 1A3D) and its corresponding trimer (PDB ID: 1A3F) 

are the only reported PLA2 structures reported from the Indian cobra venom (Fig 1.8D) 

[150]. 

There is a distinct subgroup of PLA2 homologue toxins wherein the key Asp49 

residue is substituted with a Lys, Arg, Ser, Gln, or Asn residue, among other 

substitutions, with the consequent loss of Ca2+-binding and enzymatic activity [141]. 

Most of these PLA2s are catalytically inert (inactive) and belong to myotoxic Lys49 

PLA2 homologues [151]. The major toxicity determining site in these PLA2 homologues 

encompasses residues 115 – 129 in the C-terminal region, which includes a variable 

combination of positively charged and hydrophobic / aromatic residues [151,152]. 
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also seen. B. The catalytic network in PLA2 is shown. OW indicates a water molecule 

oxygen atom which serves as the nucleophile. The dotted lines indicate hydrogen bonds. 

[Source of figure: Kang et al., The FEBS Journal, 2011]. 

1.7.4 Pharmacological effects of snake venom PLA2 enzymes 

Despite sharing 40-99% sequence similarity and having a similar three-dimensional 

structure, venom PLA2s exert an amazing variety of toxic and pharmacological effects, 

which include neurotoxic, myotoxic, hemolytic, edematogenic, hyperalgesic, pro-

inflammatory, hypotensive, platelet aggregation inhibitory, anticoagulant, cytotoxic, and 

bactericidal activities [112,126,133,160-170]. The PLA2 enzymes post binding to their 

target(s) can induce several pharmacological effects in victim / prey via different 

mechanisms that are either dependent or independent of their enzymatic activity 

[87,89,111,112,133,135,161,165-167,171-175]. By virtue of enzymatic mechanism, 

PLA2 enzymes can either hydrolyze intact phospholipids or the released products such 

as lysophospholipids and fatty acids, in order to cause a pharmacological effect 

[135,141,176]. The characteristic enzymatic activity can cause phospholipid damage in 

blood plasma [110,112,162,163,171] or cell membranes [135,160,161,164] and hence, 

alter the environment of membrane bound proteins, particularly that of the target 

protein. On the other hand, mechanisms of action that are independent of enzymatic 

activity, the PLA2 enzyme can bind to the target protein and exhibit a pharmacological 

effect by acting as an agonist or an antagonist, or by interfering in the interaction of the 

target protein with its physiologic ligands [111,112,135,163,171,177]. The myotoxic 

and anticoagulant pharmacological effects of snake venom PLA2s are discussed below: 

1.7.4.1 Myotoxic effect of PLA2 enzymes 

A number of factors such as membrane surface properties, including membrane 

phospholipid composition, membrane fluidity, curvature, surface charge, and membrane 

induced structural changes in the enzyme, determine the strength of interaction, binding 

to membrane, and the extent of PLA2 hydrolytic activity on membranes [160,161,164]. 

The Lys49 PLA2 myotoxins, devoid of enzymatic activity [140,152,178], comprise of a 

highly cationic surface [179-181], which preferentially disrupt the integrity of 

negatively-charged liposomes [181,182] and thus the membrane integrity. There is a 
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strict connectivity between PLA2 activity, specificity, and affinity of binding of 

myotoxic PLA2s to the ‘microdomains’ of the sarcolemma, that are particularly 

sensitive to the presence of lysophospholipids and fatty acids, or where their activity is 

maximized and causes relevant derangement to the plasma membrane organization 

[135,141]. Therefore, it may be hypothesized that the negatively-charged microdomains 

in cell membranes constitute ‘acceptor sites’ for this group of basic myotoxins 

[135,141].  

When the plasma membrane of muscle fibers is damaged or provoked either by 

catalytically-dependent or -independent mechanisms of PLA2s, it triggers a rapid 

sequence of degenerative events that takes the muscle cells beyond ‘the point of no 

return’ within minutes [141]. Such rapid membrane damage with rapid depolarization of 

muscle fibers [183-186] is accompanied by a prominent influx of Ca2+ [187,188], which 

subsequently promotes a complex series of cellular derangements ultimately leading to 

necrosis [141]. Cell necrosis and the release of intracellular contents from necrotic cells 

are accompanied by the onset of a prominent inflammatory reaction, with the synthesis 

and release of mediators that promote increments in vascular permeability leading to 

edema and recruitment of neutrophils and macrophages [186]. This opens the possibility 

that these inflammatory cells contribute to further tissue damage [141]. 

Apart from phospholipids, studies have also revealed that snake venom PLA2s 

bind to certain mysterious PLA2 receptors or acceptors on the plasma membranes which 

may or may not be directly involved in the toxic effects [141]. Lambeau and colleagues 

[173,189,190] demonstrated the high affinity binding of two high molecular weight 

(180 kDa) monomeric M-type membrane protein (OS1 and OS2) in rabbit myotubes to 

a PLA2 from Oxyuranus scutellatus venom. These receptors showed similarity to rabbit 

nerve cell membrane receptors, and their expression is regulated and influenced by 

factors such as innervation, growth factors, hormones and / or muscle contractile 

activity [189,190]. Another Lys49 myotoxic PLA2 from venom of Agkistrodon 

piscivorus piscivorus was shown to bind to a kinase insert domain containing receptor 

(KDR) [141,191]. However, the exact role of PLA2-membrane receptors interaction 

may not always demonstrate a functional relevance and hence their significance in 

pathophysiology remains unknown till date [192]. In a very recent study by Massimino 
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and co-workers [193], it was demonstrated that a myotoxic Lys49 PLA2 (Mt-II) from 

Bothrops asper binds to membrane-bound nucleolin, a protein found in nucleolus, at 

low temperatures. At physiological temperature, Mt-II bound to nucleolin internalize 

and co-localize in paranuclear and nuclear areas of myotubes, thereby exhibiting a role 

of this association in myotoxic property of Mt-II [193]. 

1.7.4.2 Anticoagulant effect of PLA2 enzymes 

1.7.4.2.1 Types of anticoagulant PLA2 

The anticoagulant activity of snake venom PLA2 enzyme was first reported by 

Boffa and Boffa [172]. Based on their anticoagulant potency, PLA2 enzymes have been 

classified into strong, weak, and non-anticoagulant enzymes [112,135,171,172,194].  

A. Strongly anticoagulant PLA2 enzymes: These enzymes inhibit blood coagulation at 

a concentration as low as ~2.0 µg/ml. Such PLA2 enzymes are reportedly present in the 

venom of Naja nigricollis, N. m. mossambica, N. kaouthia, N. haje, Vipera berus 

orientale, D. russelii, Agkistrodon halys blomhoffi, and Crotalus durissus terrificus 

enzymes.  

B. Weakly anticoagulant PLA2 enzymes: This group of PLA2 enzymes shows 

anticoagulant effects between 3 and 10 µg/ml. Such PLA2 enzymes have been found to 

be present in the venom of N. mossambica, N. nigricollis, A. h. blomhoffi, Enhydrina 

schistose, and Oxyuranus scutellatus.  

C. Non-anticoagulant PLA2 enzymes: This group of PLA2 enzymes may have a little 

effect on the clotting times at concentrations as high as 15 µg/ml. They are reported to 

be present in the venoms of N. m. mossambica, N. naja, N. melanoleuca, A. h. 

blomhoffi, Hemachatus haemachatus, Bitis gabonica, Crotalus admanteus, C. durissus 

terrificus, Vipera aspis, Notechis scutatus, and Bungarus multicinctus. 

1.7.4.2.2 Mechanism of anticoagulant action 

The anticoagulant activity of snake venom PLA2 enzymes is dependent on two 

mechanisms – (i) the enzymatic mechanism, and (ii) the non-enzymatic mechanism 

[135,176]. In the former method, the anticoagulant activity is dependent on the plasma 
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phospholipids hydrolytic activity of the PLA2 enzyme and this constitutes the primary 

mechanism of anticoagulant action [135,176]. Plasma phospholipids play an important 

role in the blood coagulation process as it is an integral part of the tenase complexes 

(Fig 1.5) [125]. By virtue of its catalytic activity, snake venom PLA2s hydrolyze the 

procoagulant plasma phospholipids, thereby obliterating the normal coagulation process 

[110,162,163,171,176,195,196]. However, the weak anticoagulant enzymes inhibit the 

extrinsic pathway of blood clotting [109]. The strong anticoagulant PLA2s are capable 

of exhibiting a non-enzymatic mechanism of anticoagulation by interacting with blood 

coagulation factors [109,111,112,163,171]. The strongly anticoagulant PLA2s bind to 

the FXa [109,112] or thrombin [111,112,171], thereby hindering the process of normal 

coagulation. The anticoagulant effect of PLA2 enzymes can also be correlated with their 

ability to penetrate phospholipid [194]. Strongly anticoagulant PLA2 enzymes exhibit 

high penetrating ability, whereas non-anticoagulant ones show weak penetrating ability 

[176] and hence cannot hydrolyze the plasma phospholipids. 

1.7.5 Pharmacological site and target specificity of snake venom PLA2  

Snake venom PLA2 enzymes exhibit a diverse set of pharmacological effects 

[133,135,197]. However, not all PLA2 enzymes can exhibit different types of 

pharmacological properties. PLA2 enzymes bind to target proteins through specific 

pharmacological sites [133,157,171,177]. Chemical modification studies, polyclonal 

and monoclonal antibodies, and interaction of inhibitors have supported the presence of 

pharmacological sites in PLA2 enzymes [112,135,163,171,198]. The site varies for 

PLA2 enzymes exhibiting different pharmacological effects [133].  

Thus, the significance of identification of such pharmacological sites of snake 

venom PLA2 enzymes can be summarized as – (i) understanding the structure–function 

relationships of PLA2 enzymes; (ii) developing strategies to neutralize the toxicity and 

pharmacological effects by targeting these sites;  and (iii) developing prototypes of 

novel research tools and pharmaceutical drugs [133]. 

1.7.5.1 Pharmacological site for myotoxic PLA2 

The ‘myotoxic site’ of snake venom PLA2s has been predicted to be present at 

the amino terminal side of helix E of the enzyme with a characteristic cationic charge of 
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‘+00+++00+’ [199]. However, Lomonte and co-workers identified the C-terminal 

cationic / hydrophobic segment (115–129) as the heparin-binding and cytolytic site of 

K-49 PLA2 enzymes which is responsible for skeletal muscle necrosis [184,200]. 

Further Gly30 and Asp49 residues present within or in close proximity to the calcium 

binding loop of PLA2 enzymes are also responsible for myotoxic effects, thereby 

forming the ‘myotoxic site’ [190]. 

1.7.5.2 Pharmacological site for anticoagulant PLA2 

A systematic and direct comparison of the amino acid sequences of strong, 

weak, and non-anticoagulant enzymes demonstrated that the anticoagulant region of 

PLA2 enzymes lies within residues 54 and 77 [109,201-203]. Not the overall charge, but 

the charge of the anticoagulant site determines the anticoagulant potency of a PLA2 

enzyme [109,176]. This anticoagulant site is positively charged in strongly 

anticoagulant PLA2 enzymes, and is flanked with a pair of Lys residues on both sides; 

however, the anticoagulant region is replaced by neutral or negatively charged amino 

acid residues in weak and non-anticoagulant PLA2 enzymes [109]. The major 

replacements of residues in the strong anticoagulant PLA2 by those in the weak and 

non-anticoagulant PLA2 are: (1) negatively charged Glu54 is replaced by neutral 

residues; (2) positively charged Lys55 is replaced by negatively charged Glu; (3) 

uncharged Gly57 is replaced by negatively charged Glu; (4) positively charged Lys75 is 

replaced by Ser or Thr; (5) positively charged Lys77 is replaced by negatively charged 

Glu or Asp [109,133,176]. The prediction of anticoagulant site of PLA2 enzymes is 

strongly supported by chemical modification studies [109], site-directed mutagenesis 

[204,205], and using synthetic peptides [206]. 

1.7.6 Evolution of snake venom PLA2 enzymes 

Phylogenetic analysis has shown that snake venom PLA2 and mammalian 

pancreatic PLA2 enzymes share a common origin from a non-toxic ancestor gene [207]. 

Although, snake venom group I PLA2 enzymes and pancreatic PLA2 enzymes (group 

IB) have evolved through a common series of adaptations [207], however, group II 

PLA2 genes evolved separately after species diversification [208,209]. Although both 

group I and II PLA2 enzymes demonstrate similar catalytic activity, they differ 
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structurally in their gene organization [207,210]. Group I PLA2 genes are approximately 

4 kb in size with 4 exons interrupted by introns [207], while group II PLA2 have 5 exons 

[211]. The group I and II PLA2 gene structures show similarity with pancreatic PLA2 

gene and synovial PLA2 genes, respectively [207,212]. In snake venom group I PLA2 

genes, the exon 3 is smaller as compared to its pancreatic counterpart [213], which is 

attributed to adaptive evolution of snake venom genes. The exons 3 and 4 of these 

evolved snake venom PLA2 genes reportedly accounts for the different pharmacological 

traits exhibited by snake venom PLA2 enzymes [210]. The pancreatic loop, encoded by 

exon 3, is a characteristic feature of mammalian PLA2 enzymes and some snake venom 

PLA2s, while it is absent in majority of snake venom PLA2 enzymes [213]. The loss of 

pancreatic loop in snake venom PLA2 enzymes has followed a Darwinian mode of 

evolution [139]. The loss of exon 3 in snake venom PLA2 genes is interpreted to encode 

for higher adaptability of the gene, resulting in enhanced toxicity and enzymatic activity 

of snake venom PLA2 enzymes [210,213]. 

A snake venom PLA2 enzyme reportedly consists of several mutational hotspots 

on the surface which defines the property of the enzyme. As compared to the buried 

residues, the fully exposed surface residues undergo mutation at a rate 2.6 – 3.5 times 

higher than the former [133]. In yet another hypothesis, a large set of PLA2 enzyme 

gene and protein sequences were compared which confirmed that in group I PLA2 

enzymes gene duplication and diversification occurred after speciation; whereas in 

group II PLA2 enzymes, functional diversification occurred before species 

diversification [214]. Therefore, accelerated evolution of exons, leading to mutations / 

substitutions in the molecular surface residues contribute directly to formation of 

different isoforms of the same enzyme with modified molecular surface, and hence 

differential pharmacological properties [133,212,215]. 

1.8 Snake venom toxin synergism and PLA2 complexes  

1.8.1 Snake venom toxin synergism 

Toxin synergism is an interesting phenomenon observed in snake venom. 

Lausten has defined toxin synergism as a phenomenon where two or more venom 

components interact directly or indirectly to potentiate toxicity to levels above the sum 
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of their individual toxicities. The production of snake venom and its replenishment is an 

expensive affair for the snake with high metabolic cost [6]. Under such circumstances, 

toxin synergism directly contributes to enhanced toxicity of the venom [216]. Based on 

molecular perspective, snake venom toxin synergism is broadly divided into two types – 

intermolecular synergism and supramolecular synergism [216].  

When two or more toxins interact with two or more targets on one or more 

related biological pathways, causing synergistically increased toxicity, it is referred to as 

intermolecular synergism (Fig 1.10 A,B,C) [216]. This type of synergism may exist in 

toxins that may either act on different targets of a physiological process causing a 

combined synergistic effect (Figure 1.10A) or different physiological processes, which 

subsequently affect another downstream physiological pathway with enhanced potency 

(Figure 1.10B). An example of intermolecular synergism is illustrated by the venom of 

Dendroaspis polylepis (black mamba) [217]. The dendrotoxins of D. polylepsis venom 

exhibit an excitatory effect on the neuromuscular system, which is further 

complemented with a rapid abrogation of neuromuscular function by α-neurotoxins 

[217]. Another example of toxin synergism is depicted by Asp49 and Lys49 myotoxins 

of Bothrops asper venom, responsible for synergistic myonecrotic effects on myotubes 

[218]. Such myotoxins reportedly increase Ca2+ influx through the plasma membrane 

thereby causing rapid cell death for myotubes [216,219], which is a scenario depicted in 

Fig 1.10C. 

On the other hand, supramolecular synergism refers to a condition where the 

toxins form complexes with synergistic effects to create a hyper-potentiated toxin (Fig 

1.10D) [216]. Supramolecular synergism is best illustrated by cytotoxins of cobra 

venom [216]. Cobra cytotoxins are reported to enhance the PLA2 activity through 

complex formation and destabilization of cell membranes, causing cellular lysis due to 

hydrolysis of phospholipids [165,220-224]. Most of the snake venom complexes 

described in section 1.8.1 represent supramolecular synergism [144,145,216,225-227]. 
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leukocyte recruitment in blood vessels, cytokine-mediated tissue factor expression or 

increased activation / concentration of activated coagulation factors is a result of 

endothelial injury, which is the second element of the Virchow’s triad [244,245]. 

Alteration in the blood flow stasis, the third element of the triad, results in various 

physiological conditions such as hypovolemia, vascular anomalies, cardiomyopathy, 

hyperviscosity disorders (polycythemia, multiple myeloma), and neoplasia [246].  

Occurrence of thrombosis in human is associated with extremely high risk of 

cardiovascular diseases (CVDs) like cerebral and myocardial infarction, ischemic stroke 

and  heart attack [240,247,248] which ultimately may either result in death or paralysis 

of a part / whole body of the victim. As per the estimates of WHO, approximately 17.9 

million people die due to CVDs every year which accounts for 31% of the annual global 

deaths [249]. 

1.9.2 Treatment for CVDs and limitations of commercial drugs 

Currently available treatment for cardiovascular disease includes administration 

of antiplatelet, anticoagulant, and / or thrombolytic drugs [245,250]. The antiplatelet 

drugs target receptors expressed during activation of platelets (Fig 1.13), thereby 

preventing formation of a stable blood clot [245,251]. On the other hand, the 

anticoagulant drugs or blood thinners target different factors of the blood coagulation 

cascade, such as thrombin, factor X / Xa, fibrinogen, factor V / Va and others, thereby 

inhibiting their activation and delaying the blood coagulation process [245,252,253]. A 

few anticoagulant drugs and their targets are summarized in a schematic representation 

in Fig 1.14. The third class of drugs used for treatment of CVDs is thrombolytic or clot-

bursting drugs which act by dissolving the fibrin clot formed in the blood vessels 

[254,255].  They act either directly by breaking the blood clot (for example plasmin) or 

indirectly by activating plasminogen to plasmin, which in turn causes fibrinolysis (for 

example, tissue plasminogen activator, urokinase, nattokinase and streptokinase) 

[254,256]. 
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hypersensitivity in administered patients [257]. Antiplatelet drugs such as 

cyclooxygenase and P2Y12 inhibitors are associated with  immediate-type 

hypersensitivity reactions, for example, gastrointestinal symptoms, headache, 

drowsiness, dizziness, exacerbation of bronchial asthma, aspirin-exacerbated respiratory 

disease (AERD), chronic urticarial, anaphylactoid reactions of all degrees of severity 

like cardiovascular shock, and delayed-type allergic reactions in the form of 

exanthemas, phototoxic reactions and, rarely, severe bullous reactions [257]. Further, 

pancytopenia or neutropenia and / or hepatitis, suberythrodermic pustular psoriasis or 

exanthematous pustulosis have also been reported in patients administered with the 

antiplatelet drug clopidogrel [257-260]. Further, administration of classical 

anticoagulants such as heparin and warfarin are associated with several impediments, 

such as need for intensive coagulation monitoring, wide variation in dose-response 

relationships, gastrointestinal hemorrhage, long clearance time, multiple drug 

interactions (in the case of warfarin), and serious immune-mediated thrombocytopenia 

(in the case of heparin) [261-263].  

1.10 Therapeutic application of snake venom anticoagulant proteins 

Classical anticoagulants such as heparin and warfarin are associated with several 

severe complications (section 1.9.2), which therefore leads to a search for alternative 

anticoagulants from natural resources. Potent anticoagulant proteins and peptides 

derived from snake venom are known to exhibit thrombin and / or FXa inhibition, such 

as, PLA2 [111,112,171,264], C-type lectins [265], KSPIs [234,266], snake venom 

proteases [267-269], and other low molecular weight polypeptides [270]. Further, there 

is a constant increase in demand for low / non-toxic anticoagulant alternatives for 

therapeutic use in the prevention and treatment of thrombosis and associated CVDs. 

Snake venom thrombin-like enzymes (SVTLEs) are single chain serine proteases 

with a catalytic triad of His57-Asp102-Ser195 residues which have found extensive use 

as ‘defibrinogenating agents’ to achieve ‘therapeutic defibrination’ [267,271]. Most of 

the characterized SVTLEs cleave the fibrinopeptide A chain from fibrinogen, whereas, 

there are a few which also cleave the fibrinopeptide B chain like thrombin [271]. 

Further, SVTLEs are resistant to heparin, due to which they have also found use in 

detection of fibrinogen dysfunction in normal and heparin-containing blood samples 
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[272]. The most widely used thrombin-like enzymes - Bothrops atrox venom 

(Batroxobin, Reptilase®) (Pentapharm, Basel, Switzerland) and from Callosellasma 

rhodostoma venom (Ancrod) (Knoll, Ludwigshafen, Germany) are being successfully 

used to treat ischemic heart diseases, deep vein thrombosis, and peripheral occlusive 

disorders [271,273].  

In addition, fibrinolytic proteases from snake venoms, such as fibrolase have 

also been explored for their antithrombotic and thrombolytic potential, although its 

recombinant form failed as a potential drug in the phase II clinical trial [274,275].  The 

disintegrins, which is a large family of Arg-Gly-Asp (RGD)-containing snake venom 

proteins are reportedly potential platelet modulators that act by binding to platelet the 

glycoprotein receptor – GPIIb/IIIa and Ib [271]. 

A few drugs derived from snake venom for the treatment of thromboembolic 

disorders are summarized in table 1.2. 

Table 1.2. Approved drugs, originating from snake venoms, for treating various 

thrombo-embolic disorders [276]. Snake venom proteins and their derivatives that are 

used to treat different haemostatic disorders by targeting coagulation, fibrinolysis or 

platelet functions.  

Protein /  

Drug name 

Structural 

characteristics 

Origin Mechanism of 

action 

Treatment 

Tirofiban /  

Aggrastat® 

Non-peptide 

synthetic 

structure 

mimicking the 

RGD motif of 

disintegrin 

echistatin 

Echis 

carinatus 

Inhibition of 

platelet 

aggregation by 

blocking 

αIIb/βIIIa 

Acute coronary 

syndrome, prevention of 

thrombotic 

complications after 

percutaneous coronary 

interventions (balloon 

angioplasty, stenting, 

etc.) 

Eptifibatide /  

Integrilin® 

Cyclic peptide 

based on KGD 

structure of 

Sisturus 

miliarus 

barbouri 

Inhibition of 

platelet 

aggregation by 
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Protein /  

Drug name 

Structural 

characteristics 

Origin Mechanism of 

action 

Treatment 

disintegrin 

barbourin 

blocking 

αIIb/βIIIa 

Batroxobin /  

Defibrase® 

SVTLE-A Bothrops 

atrox 

moojeni 

Conversion of 

fibrinogen to 

fibrin – release 

of 

fibrinopeptide 

A 

Acute cerebral 

infarction, unspecific 

angina pectoris, sudden 

deafness 

Haemocoagul

ase® 

Mixture of two 

enzymes with 

thromboplastin-

like and 

thrombin-like 

activity 

Bothrops 

atrox 

Clot formation Prevention and 

treatment of 

haemorrhage 

 

1.11 Peptides as drugs: Emergence and advantages 

To date, over 7000 naturally occurring peptides having vital physiological roles 

have been identified, such as hormonal, neurotransmitters, growth factors, ion channel 

ligands, or anti-infective [277-280]. Peptides are selective and efficient signaling 

molecules that target various cell surface receptors and ion channels in order to trigger 

an intracellular signal, and thereby have very few or no off-target side-effects [280,281]. 

Owing to their attractive pharmacological profile and intrinsic properties, peptides are 

considered an excellent starting point for the design of novel therapeutics and their 

specificity has led to translate into excellent safety, tolerability, and efficacy profiles in 

humans [280,281]. Studies have shown that peptides have gained a wide range of 

applications in medicine and biotechnology [280-282]. Currently, the peptide research 

for development of therapeutic agents is experiencing a renaissance for 

commercialization [280]. 
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With recent advancement in technology, the application of peptides as 

therapeutics has gained a significant momentum [281]. Peptides as drug are potent, 

effective, safe, tolerant, highly selective towards their target, and have lower attrition 

rates [280]. The peptides can be easily synthesized or cloned and expressed in an 

expression system and can easily be commercialized [280]. In addition to  direct 

application, peptides can be administered in conjugation with other peptides or existing 

drugs in well-defined formulations [280]. To date, only two antiplatelet drugs have been 

successfully derived from disintegrins of viperid venom [283] and one bioactive peptide 

has been derived from Agkistrodon acutus venom hydrolysates with potential 

antithrombotic potency [284]. Although, few synthetic anticoagulant peptides have been 

derived from hirudin [285]; however, no such attempt has been made to derive such 

peptides from snake venom anticoagulant proteins. 

However, a significant limitation of peptide therapeutics is their short half-lives 

[281,286]. Peptides generally get cleared from the bloodstream within minutes to hours 

after administration, due to which it is feared that there can be insufficient exposure in 

the target tissue to have a significant physiological effect. Short peptide half-lives 

typically result from fast renal clearance (for peptides <5 kDa) and / or from enzymatic 

digestion in the blood, kidneys or liver [286]. However, several strategies have been 

formulated to increase the plasma residence time of peptides such as attachment of inert 

polymers  (e.g. polyethylene glycol or PEG), addition of sugars (trehalose, sucrose, 

maltose or glucose) or salts (potassium phosphate, sodium citrate or ammonium 

sulphate), or heparin or chelating agents (EDTA) can enhance the thermal stability of 

peptides and proteins, cause self-association, modulate solubility, and protect from 

degradation by proteolytic enzymes [286-288].  

Some examples of successful stories  of peptide therapeutics include oxytocin (8 

aa, labor), calcitonin (32 aa, hypercalcemia, osteoporosis), teriparatide (34 aa, 

parathyroid hormone analog, osteoporosis), Fuzeon (36 aa, enfuvirtide, antiretroviral), 

corticotropin releasing hormone ⁄ factor (41 aa), and growth hormone releasing hormone 

⁄ factor (44 aa, lipodystrophy) [281]. Another recent peptide therapeutic to reach the 

market is Exenatide (Byetta), which is used in the treatment of type 2 diabetes [289].  
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1.12 Gap in the study 

Extensive studies have been performed to identify hemostatically active proteins 

from snake venom; however, there is a dearth of knowledge on such proteins from the 

Indian Spectacled Cobra (N. naja) venom. As already mentioned, Certain cases of 

envenomation by N. naja are reportedly characterized by transient coagulopathy 

showing increased 20WBCT. However, minimal effort has been made to identify and 

characterize the anticoagulant proteins from N. naja venom. As a result, there is lack of 

reports on the neutralization efficiency of the commercially available polyvalent / 

monovalent antivenoms against the pathophysiological effects of anticoagulant proteins 

from Indian cobra venom. Such proteins hold good promises to be developed into drug 

prototypes for the better treatment of cardiovascular diseases. Therefore, there is a need 

for exploration of the therapeutic potential and biomedical application of N. naja venom 

anticoagulant proteins and peptides derived from them. 

1.13 Aims and objectives of the present study 

The present study aims to isolate, identify, and characterize a major anticoagulant 

protein from the venom of N. naja. Further, the mechanism of anticoagulant action of 

the anticoagulant protein would be deciphered which will aid in designing of novel 

peptides with similar potential. The anticoagulant potential of the protein as well as 

peptide would be verified by in vitro, ex vivo, and in vivo experiments. 

In order to address the issues described in section 1.12, the following four 

objectives were set for the study: 

I. Characterization and elucidation of mechanism of action of a major 

anticoagulant phospholipase A2 (NnPLA2-I) purified from Indian cobra Naja 

naja venom. 

II. Study on in vitro myotoxicity (cytotoxicity towards rat myoblasts) of NnPLA2-I 

and its acidic cognate complex on rat myoblasts and their neutralization by 

antivenom. 

III. Designing, characterization, and elucidation of mechanism of action of a peptide 

from the anticoagulant region of NnPLA2-I enzyme. 
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IV. Assessment of in vivo toxicity, anticoagulant, and antithrombotic activity of 

NnPLA2-I and the anticoagulant peptide in a rodent model. 
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