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CHAPTER II 

REVIEW OF LITERATURE 

2.1 A brief review on anticoagulant proteins from cobra venom 

Snake venom proteins/toxins exhibit a wide variety of pharmacological effects, 

including modulation of the hemostatic system. To date, several snake venom proteins 

affecting hemostasis have been purified and characterized [1-13]. Despite the fact that 

cobra venoms are primarily neurotoxic, transient coagulopathies leading to increase in 

whole blood clotting time have been observed in envenomed patients [14,15]. A few 

anticoagulant proteins have been purified from the venom of different cobras (Table 

2.1), which exhibit anticoagulant activity via different modes of action. 

Most of the cobra venom anticoagulant toxins belong to enzymatic snake venom 

protein families of phospholipase A2 as well as metallo-proteinase. However, to date, 

only one non-enzymatic anticoagulant three-finger toxin has been purified and 

characterized from cobra (Naja nigricollis crawshawii) venom (Table 2.1). The 

anticoagulant activity of the cobra venom enzymes may or may not be directly 

correlated with their enzymatic activity (Table 2.1). Further, some of these 

anticoagulant proteins have shown significant promise for the development into potent 

drug prototypes for treatment of thrombosis associated cardiovascular disorders. 

2.1.1 Anticoagulant phospholipase A2 enzymes 

 Most of the anticoagulant proteins isolated from cobra venom belong to the 

PLA2 superfamily of snake venom proteins (Table 2.1). It has been postulated that after 

binding of snake venom PLA2s to the target site, they can induce their pharmacological 

effects through mechanisms that are either dependent on or independent of their 

enzymatic activity [10,13,16-18]. Similar observations have been reported for 

anticoagulant PLA2s where they affect blood clotting either through the enzymatic 

hydrolysis of pro-coagulant phospholipids of plasma, or by non-enzymatic interaction 

with plasma phospholipids or blood coagulation factors (Fig 2.1) [10]. Based on their 

mode of action, the cobra venom PLA2s are described as follows: 
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2.1.1.1 Enzymatic mechanism of anticoagulant action of cobra venom PLA2 

enzymes 

 Plasma phospholipids are an integral part of the ‘tenase’ complexes formed in 

the process of activation blood coagulation factors, and therefore, are crucial for a 

normal coagulation process [19]. Obliteration of these phospholipids surface by snake 

venom PLA2s could be the primary mechanism to demonstrate their anticoagulant 

activity effect [2-4,10-12,20,21]. However, the role of enzymatic activity of venom 

PLA2s in their anticoagulant activity is controversial with minimal facts justifying the 

hypothesis. It is well known that His48 forms the active site in every venom PLA2 

enzymes, and several experiments have been designed and performed to show the 

association of the catalytic activity of venom PLA2s with their anticoagulant property 

[10,21,22]. Alkylation of His48 residue of some venom PLA2s have led to complete loss 

of binding to phospholipids as well as enzymatic activity with concomitant loss of their 

anticoagulant potencies [23]. Further, replacement of hydrolysable phospholipids with 

non-hydrolysable phospholipids or removal of Ca2+ from the reaction site has shown 

simultaneous forfeiture of enzymatic as well as anticoagulant activities of snake venom 

PLA2s [10,21,23]. All these findings suggest that the catalytic activity of the enzyme is 

obligatory for its anticoagulant property. 

 The anticoagulant PLA2s described in Table 2.1 demonstrates that plasma 

phospholipids hydrolysis is a vital requirement for all cobra venom anticoagulant PLA2s 

in order to prolong the clotting time of blood plasma. Furthermore, the penetrability of 

PLA2 enzymes into phospholipid monolayers also determines the strength of the 

anticoagulant effect of PLA2 enzymes [10,21]. It has been established that strongly 

anticoagulant PLA2s demonstrate high penetrating ability, whereas non-anticoagulant 

PLA2s show weak penetrability [10,21]. Based on these observations, it was 

hypothesized that strongly anticoagulant PLA2 enzymes bind to phospholipid vesicles 

with enhanced intrinsic fluorescence, whereas poor anticoagulants show little or no 

effect [10,21].  

2.1.1.2 Non-enzymatic mechanism of anticoagulant action of cobra venom PLA2 

enzymes 
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Contrary to association of enzymatic activity of snake venom PLA2s with their 

anticoagulant property, some studies have reported that weak anticoagulant PLA2s 

exhibit very strong phospholipid hydrolytic activity [21] or vice-versa [24]. Further, 

blocking the binding of venom PLA2s to plasma phospholipids by pre-incubation of the 

former with specific antibodies (against venom PLA2s) could reverse the anticoagulant 

activity of the venom PLA2, but not its hydrolytic activity, thereby re-instating the 

dissociation of enzymatic activity from anticoagulant activity [25]. Similar observation 

are reported where modification of Lys residues cause complete loss of anticoagulant 

activity but very little loss of enzymatic activity [26]. Otherwise, modification of the 

carboxylate groups was associated with loss of hydrolytic property but not the 

anticoagulant effects of venom PLA2 [27].  

The presence of ‘pharmacological sites’ on PLA2 enzymes thus have an essential 

role in targeting themselves to specific proteins of the coagulation cascade in order to 

disrupt the coagulation process [10]. They also compete with various coagulation 

factors for binding to plasma phospholipids thus disrupting the tenase complex 

formation [3,4,10,24]. Based on their specific target of blood coagulation factors, cobra 

venom PLA2s can be broadly divided into two sub-groups: 

2.1.1.2.1 Cobra venom PLA2s showing thrombin inhibition 

Amongst Elapidae, the first thrombin inhibiting PLA2 enzyme was purified from 

the venom of N. haje by Osipov and co-workers [24]. Although the PLA2, TI-Nh, 

demonstrated weak enzymatic activity, the anticoagulant activity of the enzyme was 

pronounced by virtue of its non-enzymatic thrombin inhibition property [24]. Thus, TI-

Nh provides a crucial example of dissociation of enzymatic activity from anticoagulant 

activity of venom PLA2 enzymes. 

In another study, Nk-PLA2β, an acidic anticoagulant PLA2 was reported from 

the venom of N. kaouthia [4]. Nk-PLA2β exhibited its anticoagulant property by a 

combination of its enzymatic and non-enzymatic properties [4]. It demonstrated 

uncompetitive inhibition of thrombin, its pharmacological target, even in the absence of 

phospholipids / Ca2+ leading to loss of serine protease activity of thrombin [4]. 
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PLA2, Nk-PLA2α, demonstrated anticoagulant activity by a combination of enzymatic 

activity and non-enzymatic inhibition of FXa [4]. Like Nk-PLA2β, Nk-PLA2α also 

demonstrated un-competitive mode of inhibition towards its pharmacological target – 

FXa, without the requirement of phospholipids / Ca2+, thus, impeding the prothrombin 

activation process of FXa [4]. 

2.1.2 Anticoagulant metallo-proteinases of cobra venom 

Fibrin(ogen)olytic activity is an inherent property of several snake venoms, and 

is exhibited by the enzymatic actions of serine-proteinase and metallo-proteinsase 

families of snake venom proteins [1,2,8]. These enzymes degrade either Aα- or Bβ-

chains of fibrinogen (and fibrin). Most of the serine-proteinases exhibit either or both 

fibrinogenolytic and fibrinolytic property, and plasminogen activating property to form 

plasmin, which in turn degrades fibrin [8]. The metallo-proteinase group of enzymes 

requires the presence of divalent metal ions to carry out their enzymatic activity [8]. 

As evident from table 2.1, to date, only three metallo-proteinases have been 

isolated from cobra venoms. Lahirin, is a very low molecular mass (MW = 6.5 kDa) 

basic fibrin(ogen)olytic proteinase isolated from the venom of N. kaouthia [41]. 

Reportedly, lahirin is the first low-MW fibrin(ogen)olytic toxin to be characterized from 

Indian monocled cobra N. kaouthia [41]. Incubation of Lahirin with fibrinogen 

demonstrated preferential digestion of Aα chain, followed by Bβ and γ chains of 

fibrinogen [41].  

In another study by Chanda and co-workers [42], a high molecular mass (66 

kDa) basic metallo-proteinase (NKV 66) was characterized from the venom of N. 

kaouthia.   The toxin NKV 66 demonstrated α-fibrinogenase activity by degrading the 

Aα-chain of fibrinogen [42]. Further, NKV 66 demonstrated thrombolytic potency by 

dissolution of fibrin clots, prolonged re-calcification and thrombin time of blood 

plasma, and inhibited ADP and collagen induced platelet aggregation in a dose-

dependent manner [42]. Interestingly NKV 66 exhibited disintegrin-like activity on 

A549 cells (adenocarcinomic human alveolar basal epithelial cells) by inhibiting cell 

adherence to about 40% [42]. 
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Table 2.1 List of anticoagulant proteins isolated from cobra venom. 

Name Source 
Charge and 

Type 
Pathophysiology Mechanism of action Reference 

AC1 
AC2 

Naja naja 
siamensis 

Acidic 
phospholipase A2 

Prolongs Ca2+ clotting and thrombin 
time of plasma 

Enzymatic hydrolysis of plasma 
phospholipids 

[30] 

S-VI-3 
S-X-3 
S-XII-2 
S-XIII 

Naja 
nigricollis 
crawshawii 

Isoforms of a 
cardiotoxin 

Prolongs re-calcification and 
prothrombin times of plasma 

Unknown [31,32] 

CM-I 
Naja 
nigricollis 

Basic 
phospholipase A2 

Weakly anticoagulant; prolongs 
prothrombin time of plasma 

Enzymatic hydrolysis of phospholipids [29,33] 

CM-II 
Naja 
nigricollis 

Basic 
phospholipase A2 

Weakly anticoagulant; prolongs 
prothrombin time of plasma 

Enzymatic hydrolysis of phospholipids [29,33] 

CM-IV 
Naja 
nigricollis 

Basic 
phospholipase A2 

Strongly anticoagulant; prolongs 
prothrombin time of plasma; inhibits 
platelet aggregation 

Enzymatic hydrolysis of 
phospholipids; non-enzymatic and 
non-competitive inhibition of factor 
Xa of prothrombinase complex 

[28,29,33-
35] 

Nigexine 
Naja 
nigricollis 

Basic 
phospholipase A2 

Strongly anticoagulant; inhibits re-
calcification time of platelet suspension 

Enzymatic hydrolysis of phospholipids [36] 

Sputatrix 
PLA2 AI 
Sputatrix 
PLA2 AII 

Naja naja 
sputatrix 

Acidic 
phospholipase A2 

Weakly anticoagulant; prolongs clotting 
time of blood 

Synergism between PLA2 enzymes 
and polypeptide anticoagulants 

[37] 

sPLA2 
Naja naja  
saggitifera 

Phospholipase A2, 
charge not 
defined 

Prolongs clotting time of platelet poor 
plasma 

Undefined [38] 

TI-Nh Naja haje Phospholipase A2 
Prolongs re-calcification and thrombin 
time of platelet poor plasma; inhibits 
thrombin induced platelet aggregation 

Enzymatic hydrolysis of 
phospholipids; and non-enzymatic, 
mixed mode of thrombin inhibition 

[24] 
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 NK-PLA2-I 
NK-PLA2-II 

Naja  
kaouthia 

Phospholipase A2 
Prolongs re-calcification time of 
platelet poor plasma; hemolysis 

Enzymatic hydrolysis of phospholipids [20,39] 

NK-PLA2-A 
Naja  
kaouthia 

Phospholipase A2 
Prolongs  re-calcification time of 
platelet poor plasma 

Enzymatic hydrolysis of phospholipids [40] 

NK-PLA2-B 
Naja  
kaouthia 

Phospholipase A2 
Prolongs  re-calcification time of 
platelet poor plasma 

Enzymatic hydrolysis of phospholipids [40] 

Lahirin 
Naja  
kaouthia 

Low molecular 
weight basic 
metallo-
proteinase 

Demonstrates fibrinogenolysis 
Non-enzymatic degradation of Aα 
chain of fibrinogen, followed by Bβ- 
and γ-chains 

[41] 

Nk-PLA2α 
Naja  
kaouthia 

Acidic 
phospholipase A2 

Prolongs  re-calcification, thrombin and 
prothrombin times  of platelet poor 
plasma 

Enzymatic hydrolysis of 
phospholipids; and non-enzymatic, 
uncompetitive mode of factor Xa 
inhibition 

[4] 

Nk-PLA2β 
Naja  
kaouthia 

Acidic 
phospholipase A2 

Prolongs  re-calcification, thrombin and 
prothrombin times of  platelet poor 
plasma; inhibits thrombin-induced 
platelet aggregation 

Enzymatic hydrolysis of 
phospholipids; and  non-enzymatic, 
uncompetitive mode of thrombin 
inhibition 

[4] 

NKV 66 
Naja  
kaouthia 

Metallo-
proteinase 

Demonstrates fibrinogenolysis; 
thrombolysis of fibrin clots; inhibits 
ADP and collagen induced platelet 
aggregation 

Enzymatic degradation of α-band of 
fibrinogen 

[42] 

NN-PF3 Naja naja 
Acidic metallo-
protease 

Demonstrates fibrinogenolysis, and 
antiplatelet activity 

Enzymatic degradation of α-band of 
fibrinogen and possible cleavage of 
α2β1 integrin on platelet membrane 

[43-45] 
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NN-PF3 is another single chain high molecular weight (68 kDa) 

fibrin(ogen)olytic metallo-proteinase isolated from cobra venom, and is also the only 

metallo-proteinase to be purified and characterized from N. naja venom [43-45]. Like 

NKV 66, NN-PF3 also exhibits α-fibrinogenase activity [43,45] and preferentially 

degrades α-polymer over Aα-chain of fibrin [45]. Further, NN-PF3 prolonged the 

clotting time of plasma by virtue of its de-fibrinogenating effect [45]. Unlike other 

snake venom metallo-proteinases, NN-PF3 did not degrade extracellular matrix proteins 

[45]; however, it demonstrated considerable inhibition of collagen-induced platelet 

aggregation by interfering with the binding of collagen (agonist) with the α2β1 integrin 

(receptor for collagen), possibly by degradation of the latter [44]. Further, it also 

partially inhibited ADP and epinephrine-induced platelet aggregation by some unknown 

mechanism [44]. 

2.1.3 Other anticoagulant and antiplatelet proteins of cobra venom 

Apart from the above classes of enzymatic snake venom proteins, there are 

certain non-enzymatic toxins in cobra venom that exhibit significant anticoagulant and 

antiplatelet activities. Four isoforms of a cardiotoxin was isolated from N. nigricollis 

crawshawii that demonstrated significant anticoagulant activity by prolongation of the 

re-calcification and prothrombin time of plasma [32]. Further, a three finger toxin, KT-

6.9 (MW = 6.9 kDa) was purified from N. kaouthia venom, was responsible for 

inhibition of ADP, thrombin and arachidonic acid induced platelet aggregation, and its 

effect was 25 times more pronounced than that of antiplatelet drug clopidogrel [46]. 

In 1991, Kini and Evans [47] reported the presence of an α-fibrinogenase 

proteinase F1 from N. nigricollis venom. The toxin significantly inhibited platelet 

aggregation in whole blood by a mechanism which was independent of its action on 

fibrinogen. Another enzymatic antiplatelet toxin was purified from the venom of N. naja 

oxiana, which was an L-amino-acid oxidase enzyme, and it demonstrated inhibition of 

ADP and collagen-induced platelet aggregation under controlled conditions [48].  

Snake venom PLA2s are also known to influence platelet aggregation to induce 

anticoagulant activity. Based on their effects on the platelet function, venom PLA2s are 

divided into three major classes [49-51]: group A PLA2s initiate platelet aggregation, 
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group B PLA2s inhibit platelet aggregation, whereas group C PLA2s exhibit biphasic 

effects (initiate aggregation at low concentration or with short incubation time but 

inhibit aggregation at high concentration or with long incubation time). Three isoforms 

of acidic and cytotoxic PLA2s purified from N. n. naja venom (Table 2.2; described in 

section 2.3) demonstrated inhibition of epinephrine, collagen, and ADP-induced platelet 

aggregation by virtue of their enzymatic property, and hence they were classified as 

group B class of platelet modulating PLA2s [49]. 

2.2 A brief appraisal on peptide therapeutics developed from snake venom for 

treatment of cardiovascular diseases 

Undoubtedly, snake venom is a large reservoir of pharmacologically active 

proteins and peptides. The potency, specificity, and stability of snake venom proteins 

have made them a valuable source of natural products for drug discovery. It has been 

estimated that globally, approximately 1 billion people suffer from hypertension, and 

many of them are being treated with angiotensin converting enzyme (ACE) inhibitors, 

which has been originally derived from snake venom [52]. The first example of a 

successful venom-based drug is captopril (Capoten®), which inhibits ACE, an essential 

enzyme for the production of angiotensin, which is in turn is a vasoconstrictor 

associated with hypertension [53,54]. It serves as a crucial example to demonstrate how 

deadly venoms have turned into lifesaving therapeutics. Captopril is an orally available 

peptidomimetic of ‘bradykinin-potentiating peptides’ (BPP), first isolated from 

Bothrops jararaca venom as ‘bradykinin-potentiating factors’ [55-57]. Thereafter, 

structure –function relationship studies and optimization of the minimal pharmacophore 

Phe-Ala-Pro led to the development ‘Captopril’ [53,54,58,59]. 

Another class of snake venom proteins with anti-hypotensive effects includes 

natriuretic peptides (NP), which are of four types – atrial natriuretic peptide (ANP), B-

type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and urodilatin [60-63]. 

These NPs are vital regulators of the cardiovascular and renal systems, making them 

potential therapeutic candidates for treatment of conditions such as hypertension and 

heart failure. The first snake venom NP was identified from Dendroaspis angusticeps 

and was named the Dendroaspis natriuretic peptide (DNP) [64]. Thereafter, presence of 

NPs has been reported from several other snake venoms [58]. A derivative of DNP 
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called CD-NP (15 C-terminal residues of DNP were fused with human CNP) [65] 

showed successful first phase of clinical trials in healthy subjects [66]. 

Platelet aggregation, an integral part of the hemostatic system, occurs through 

the interaction of platelet receptor integrin αIIbβ3 and fibrinogen, which eventually leads 

to thrombus formation to plug exposed blood vessels. However, thrombus formation in 

arteries may lead to thrombotic events like myocardial infarction and stroke; thus 

paving the way for development of antiplatelet agents [67,68]. Disintegrins are a family 

of cysteine-rich, low molecular weight proteins isolated from viperid snake venoms that 

contain the integrin-binding tripeptide motif which may be RGD, KGD, MVD, MLD, 

VGD, ECD, MDG or KTS [58,69,70]. As the RGD and/or KGD tripeptide sequences 

serve as the principal recognition sites for integrin αIIbβ3 receptor, therefore this binding 

thwarts the binding of fibrinogen to the receptor, eventually leading to inhibition of 

platelet aggregation [71]. Tirofiban (Aggrastat®) and Eptifibatide (Integrillin®) are two 

commercially successful antagonist drugs designed from snake venom disintegrins. The 

design for Tirofiban was based on the RGD motif of echistatin, a disintegrin isolated 

from the venom of Echis carinatus [72,73]; while Eptifibatide was designed based on 

the KGD pharmacophore of barbourin, isolated from Sistrurus miliarius barbouri, 

which is a specific inhibitor of integrin αIIbβ3 receptor [74,75]. 

Snake venom thrombin-like enzymes (SVTLEs) are another class of snake 

venom proteins that find use in the treatment of thrombosis-associated disorders, such 

as hyperfibrinogenemia [5,53,58,76]. SVTLEs cleaves fibrinogen to release 

fibrinopeptides A and/or B (like thrombin), however, most SVTLEs cleave only one of 

the two fibrinogen chains; hence they are classified as classes A (which cleaves Aα), B 

(which cleaves Bβ) or AB (which cleaves both) [77]. Unlike thrombin, SVTLEs cannot 

be inactivated by heparin-antithrombin III complex nor can they activate FXIII required 

for covalent cross-linking of fibrin monomers to form insoluble clots, thereby making 

them potential defibrinogenating agents [76]. Two such defibrinogenating agents 

include Ancrod and batroxobin, isolated from the venom of Agkistrodon rhodostoma 

[78] and Bothrops atrox, respectively [53,79]. Both of them belong to class A SVTLEs 

and cleave only fibrinogen Aα, but are unable to activate FXIII or any other coagulation 

factors. They rapidly catalyze the formation of soluble clot in order to deplete the level 
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of circulating fibrinogen, thus, preventing formation of insoluble clots in acute 

thrombosis events [77,80,81]. The procoagulant activity of SVTLEs finds application in 

sites of injuries or surgeries [58]. For example, Haemocoagulase®, which is a mixture 

of TLE and thromboplastin-like enzyme from the venom of B. atrox [82]. The TLE 

cleaves fibrinogen into fibrin monomers, while the thromboplastin-like enzyme 

activates FX, which in turn converts prothrombin into thrombin, leading to coagulation 

of blood [82]. 

Alfimeprase, the recombinant form of the metallo-proteinase fibrolase isolated 

from Agkistrodon contortrix contortrix [83] was found to be a clot lysing agent in many 

animal thrombosis models [84]. However, it failed in phase III clinical trials as it could 

not meet its primary endpoint and hence, was discontinued [85]. 

Some other examples of snake venom proteins-based therapeutics currently 

under development include ProTherapeutics, which is an analgesic peptide derived from 

a three-finger toxin of Ophiophagus hannah [86], and QRx Pharma and Biolink that are 

prothrombin activators developed from Pseudonaja textilis as a procoagulant agent [87]. 

Only time will tell the fate of these therapeutic, which unfortunately reflects the difficult 

and time-consuming nature of drug discovery and development [58]. 

2.3 A brief account on cytotoxic PLA2s and their complexes in cobra venom 

Cobra envenomation is associated with severe local tissue damage causing 

edema and blistering, ultimately leading to extensive necrosis [14,15,88]. These local 

symptoms can be attributed to the presence of cytotoxic and myotoxic PLA2s present in 

cobra venom (Table 2.2) [89]. As evident from table 2.2, except for the cytotoxic PLA2s 

isolated from N. naja and N. kaouthia venoms, majority of these toxic PLA2s are basic 

in nature. 

The first toxic PLA2 from cobra venom was partially purified from the venom of 

N. naja, which was responsible for convulsions when injected in mice [90]. The 

cytotoxic activity and mechanism of action of this PLA2 however was not studied. 

Condrea and co-workers [91] isolated and characterized for the first time a cytotoxic 

PLA2 from the venom of N. nigricollis, which exhibited direct lysis of mammalian 

erythrocytes. The effect of this PLA2 was partially by virtue of its enzymatic hydrolysis 
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of phospholipids on the membrane of erythrocytes [91,92]. Nigexine is another basic 

PLA2 enzyme purified from N. nigricollis venom which is responsible for exhibiting 

differential cytotoxicity towards different mammalian cell lines [93]. The presence of 

this PLA2 enzyme not only reduces the cell count, but also inhibits cell proliferation in 

different cancerous and normal cell lines of mammalian origin [94]. However, the 

cytolytic property exhibited by nigexine is a combination of its enzymatic hydrolysis of 

membrane phospholipids as well as a non-enzymatic mechanism of action [94]. 

The first cytotoxic PLA2 isolated from the venom of N. naja was an acidic PLA2 

(NN-XIa-PLA2) with a molecular mass of ~15 kDa [95]. The purified PLA2 exhibited 

toxicity towards Erlich ascites tumour (EAT) cells with significant release of creatine 

phosphokinase (CPK) and lactate dehydrogenase (LDH) [95]. The PLA2 was toxic and 

demonstrated myotoxicity and edema formation when injected into mice [95]. In 

another report of Rudrammaji and Gowda [96], three acidic PLA2s were purified and 

characterized from N. naja venom. Similar to NN-XIa-PLA2, these acidic PLA2s 

demonstrated cytotoxicity towards EAT cells, indirect hemolysis towards mammalian 

erythrocytes, and myotoxicity in the form of edema in mice partly by virtue of its 

enzymatic activity [96].  

In the year 2007, Mukherjee [40] purified two isoforms of N. kaouthia acidic 

PLA2 – NK-PLA2-A and NK-PLA2-B. These two PLA2s exhibited differential 

cytotoxicity towards insect and mammalian cell lines, the former being more susceptible 

than the latter [40]. The differential cytotoxicity exhibited by these PLA2s can be 

attributed to the differential hydrolysis of membrane phospholipids of different cells 

[40]. The cytotoxic effect of these PLA2s was found to be enhanced in their presence as 

non-covalent complex with a N. kaouthia venom neurotoxin (kaouthiotoxins or KTXs) 

[97]. The NK-PLA2:KTX complex reportedly demonstrated significantly higher toxicity 

towards insect (Sf9 and Tn) and mammalian (VERO and erythrocytes) cell as compared 

to their individual counterparts [97]. This association of NK-PLA2-KTX complex serves 

a fascinating example of protein complementation for augmentation of biological 

activity by non-covalent interaction of two polypeptides of cobra venom which may 

play an important role in the pathophysiology of cobra envenomation [97]. 
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Table 2.2 List of cytotoxic and myotoxic PLA2s reported from cobra venom. 

Name of toxin Source Charge Pathophysiology and mechanism Mechanism Reference 

Cytotoxic PLA2s 

N. nigricollis 
phospholipase 
A2 

Naja 
nigricollis 

Basic 

Direct hemolysis; LD50 dose towards mice is 0.63 
mg/kg; showed signs of immobility, cyanosis, 
lacrimation and exophthalmos, associated with 
dyspnea and occasional convulsions until death; 
showed congestion in visceral organs (lung and liver), 
subserosal petechiae, renal tubular dilatation and 
albumin casts; multifocal hemorrhages, congestion 
and alveolar edema in lungs, and mild suppurative 
chorioditis in brains. 

Phospholipid hydrolysis 
of erythrocyte membrane; 
toxicity is partly due to 
enzymatic activity 

[91,92,109] 

Nigexine 
Naja 
nigricollis 

Basic 

Retards cell proliferation and viability in FL (human), 
C-13T (murine neuroblastoma), HL 60 
(promyelocytic leukemia), MCF-7 (human breast 
carcinoma), SK-N-SH (human neuroblastoma), X63-
Ag8.653 (myeloma of murine B-lymphocyte), BW-
5147 (T-lymphocyte myeloma), and CTLL-2 (murine 
T-lymphocytes) cell lines; hemolyze erythrocytes; 
lethal to mice with an LD50 dose of 30.2 nmol/kg. 

Mostly due to 
phospholipid hydrolysis, 
but partly by an 
undefined non-enzymatic 
mode of action 

[93,94]  

NN-XIa-PLA2 Naja naja naja Acidic 

Respiratory distress, hind limb paralysis, lacrimation, 
and myotoxicity in mice; LD50 at 8.5 mg/kg body 
weight of mice; induces mild edema in the foot pads 
of mice without haemorrhage; cytotoxic to EAT cells 
with increased levels CK and LDH in serum. 

Undefined [95] 

NN-I2c-PLA2, 
NN-I2d-PLA2, 
NN-I2e-PLA2 

Naja naja Acidic 
Cytotoxic to EAT cells; demonstrated indirect 
hemolysis; induced edema with different potencies in 
the foot pads of mice without causing haemorrhage. 

Partly due to enzymatic 
activity 

[96] 

NK-PLA2-A 
NK-PLA2-B 

Naja kaouthia Acidic 

Highly cytotoxic to insect cell lines like Sf-9 
(Spodoptera frugiperda) and Tn (Trichoplusia ni) 
cells; mildly cytotoxic to VERO cells (kidney 
epithelial cells of African green monkey). 

Preferential phospholipid 
hydrolysis of cell 
membranes 

[40] 



Characterization and assessment of therapeutic potential of Indian cobra (Naja naja) venom anticoagulant phospholipase A2 enzyme and a 7-mer peptide 
developed from this enzyme 

 

Chapter II: Review of Literature Page 86 
 

N. n. atra PLA2 Naja naja atra Undefined 
Cytotoxic to human SK-N-SH neuroblastoma and 
human histiocytic lymphoma U937 cell line. 

Necrosis (for SK-N-SH) 
and apoptosis (U937) 
mediated cell death 

[98,99] 

Myotoxic PLA2s 

Naja nigricollis 
III (CMS-5/6) 

Naja 
nigricollis 

Slightly 
basic 

Highly myotoxic in mice, lethal to mice at LD50 of 
~1.2 mg/kg). 

undefined [104,110] 

Naja nigricollis 
basic PLA2 
(CMS-9) 

Naja 
nigricollis 

Basic 
Highly myotoxic in mice even at doses <1.0 µg per 
mouse. 

undefined [104,110] 

Naja nivea III-2-
3 

Naja nivea Basic 
Local myonecrosis in mouse skeletal muscle in low 
doses (less than 2.5 µg per mouse). 

undefined [104] 

Naja haje II-2 Naja haje Basic 

Myonecrotic lesions observed after 4 h, characterized 
by various stages of hyaline degeneration of 
myofibers, ranging from wedge-shaped degenerating 
areas (delta lesions) to amorphous clumps of fiber 
mass. 

undefined [104] 

NN-XIII-PLA2 Naja naja naja Basic 
Induces myotoxicity, and edema in the foot pads of 
mice without causing haemorrhage. 

undefined [107] 

Naja nigricollis 
PLA2 (NG-4) 

Naja 
nigricollis 

Basic 
Rapid and drastic cytotoxicity in cultured muscle cells 
of mouse origin at very low doses of 1-2 µg/ml; 
myotoxicity in mice upon injection. 

Membrane phospholipid 
hydrolysis; retardation of 
transport of amino acid 
(2-aminoisobutyric acid), 
and thymidine leading to 
apparent inhibition of 
macromolecular 
syntheses 

[105,106] 
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Another cytotoxic PLA2 was purified from the venom of N. n. atra which 

demonstrated significant toxicity against SK-N-SH neuroblastoma [98] and human 

histiocytic lymphoma [99] cell lines. The N. n. atra PLA2 reportedly causes cytotoxicity 

in mammalian cells by inducing necrosis and apoptosis mediated cell death in SK-N-SH  

and U937 cells, respectively [98,99]. The cytotoxic property of this enzyme was 

independent of its enzymatic activity [98,99]. 

2.4 A brief account on cobra venom myotoxic PLA2s 

 Myonecrosis at the site of envenomation is a major concern in cobra envenomed 

patients [14,100-102]. Extensive studies have been done to identify the myotoxic PLA2s 

of snake venoms [103]; however, to date only six myotoxic PLA2s have been isolated 

from different cobra venoms (Table 2.2). In 1986, Mebs purified two basic PLA2s from 

the venom of N. nigricollis which exhibited strong myotoxic property [104]. Severe 

myonecrotic symptoms were observed in mice injected with N. nigricollis III (CMS-

5/6) and CM-9 PLA2s of N. nigricollis venom, the latter being more toxic than the 

former [104]. Apart from myotoxicity, CM-9 exhibited significant lethal potency at a 

dose < 1 µg/ml [104]. However, the mode of action of these PLA2 still remains to be 

unexplored. Another basic PLA2, NG-4, isolated from the venom of N. nigricollis 

demonstrated very strong ex vivo cytotoxicity against cultured mammalian heart and 

skeletal muscle cells of mouse origin [104]. NG-4 also exhibited myotoxicity in mice 

injected with the purified PLA2 [105,106]. Contrary to CM-5/6 or CM-9, NG4 induces 

myotoxicity by inhibiting protein synthesis in the cells. Along with enzymatic 

hydrolysis of membrane phospholipids, NG-4 reportedly retarded the amino acid (2-

aminoisobutyric acid) and thymidine transport, which in turn inhibited the process of 

macromolecular synthesis [105]. 

 Another two basic myotoxic PLA2s were isolated from the venoms of N. nivea 

and N. n. haje [104]. Both of them exhibited severe myotoxicity characterized by local 

necrosis and myonecrotic lesions with hyaline degradation in mouse skeletal muscle 

cells [104], respectively. The commercial snake antivenoms was reported to  neutralize 

the effect of these myotoxins in in vitro conditions [104]; however, the rapid onset of 

myonecrosis after envenomation limits the efficacy of such antivenoms, especially in 

snakebite cases with delayed antivenom treatment [104]. 
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 A major basic phospholipase A2 (NN-XIII-PLA2) was isolated from the venom 

of southern India N. n. naja [107]. It is the only myotoxic PLA2 isolated from the 

venom of Indian cobra. Although the mode of action of this PLA2 enzyme is yet 

undefined; however, the intramuscular injection of this protein in mice exhibited severe 

toxicity towards the thigh muscles of mice [107]. Further, edema formation was 

observed in the foot pads of mice thereby re-instating the role of NN-XIII-PLA2 in 

myotoxicity [107].  

The cytotoxic and/or myotoxic effects of snake venom PLA2s are inefficiently 

neutralized by commercial antivenoms [108]. Although pre-treatment of these toxins 

could neutralize their pharmacological effects, however, antivenoms are largely 

ineffective in the neutralization of local toxicity when administered after venom 

injection and/or envenomation due to the rapid action of venom PLA2s on muscle cells 

[108]. Therefore, understanding the pathophysiology of cobra venom PLA2s exhibiting 

cytolytic and myotoxic properties can help in the development of alternative strategies 

of antivenom production in order to combat the characteristic problem of tissue damage 

and necrosis upon cobra envenomation. 

2.5 Understanding the mechanism of snake venom PLA2-induced myotoxicity 

As evident from histological and ultra-structural studies, the effect of venom 

PLA2s on skeletal muscle follows a common series of pathological changes [22,89,111-

114]: 

i. Disruption of plasma membrane;  

ii. Formation of ‘delta-lesions’ (wedge-shaped areas of degeneration) at the periphery 

of muscle fibers; 

iii. Hypercontraction of myofilaments; 

iv. Mitochondrial swelling, leading to formation of flocculent densities and rupture of 

mitochondrial membranes; 

v. Disruption of intracellular membrane systems, i.e. sarcoplasmic reticulum and T 

tubules, and 

vi. Pycnosis of nuclei. 
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event is a prominent Ca2+ influx, which is responsible for a large number of 

degenerative processes which rapidly end in irreversible cell damage. An inflammatory 

process develops with the release of chemotactic substances and the arrival of 

inflammatory cells (mainly neutrophils and macrophages) which remove the necrotic 

debris and set the stage for muscle regeneration. [Source of image: Gutiérrez and 

Ownby, Toxicon, 2003]. 

Although the inherent property of phospholipid hydrolysis by myotoxic PLA2 is 

a major cause of cytotoxicity in muscle cell wall as other cells [10,40,116]; 

nevertheless, the existence of specific binding sites on the sarcolemma, such as proteins, 

may also be responsible for target specific toxicity of PLA2s towards myogenic cells 

[16]. It has been previously demonstrated that lipid domains and rafts exist within 

plasma membranes which suggests that such regions enriched in particular types of 

glycerophospholipids or glycolipids may function as acceptors of PLA2s [10,40,89,116]. 

These negatively charged lipids present on the outer monolayer of muscle plasma 

membrane probably participate in the anchorage of myotoxic PLA2s. Once bound to 

muscle cells, the damage induced by myotoxic PLA2s to the plasma membrane might be 

of two main types:  

(1) A perturbation in the integrity of the bilayer by a mechanism independent of 

phospholipid hydrolysis; and  

(2) A membrane disruption based on enzymatic phospholipid degradation. 

The former type of effect is a characteristic feature of catalytically inactive 

group II PLA2 myotoxins isolated from many viperid venoms, such as the Lys49 PLA2s 

[117-119]. The cationic residues of these toxins preferentially develop electrostatic 

interaction with the negatively charged bilayers at temperatures above the phase 

transition causing membrane destabilization, followed by penetration and 

disorganization of bilayers, consequently leading to the collapse of their 

macromolecular organization [10,89,103,113,116,117]. Thus it can be inferred that the 

enzymatic and toxic activities of snake venom PLA2s can be dissociated 

[10,22,113,120]. 
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The second mechanism of action of myotoxic PLA2s is based on the hydrolysis 

of plasma membrane phospholipids, which is an inherent characteristic of all 

enzymatically active, Asp49 group I/II PLA2s [10,89,103,113]. In yet some other 

myotoxins, both catalytic and non-catalytic mechanisms may be involved, since 

inhibition of enzymatic activity reduces, but does not eliminate, myotoxicity [121,122]. 

Phospholipid hydrolysis is subsequently associated with the generation of free fatty 

acids and lysophospholipids, which themselves cause further membrane damage 

through their detergent activity [10,89,103,113,123]. Contrary to the first mechanism, it 

has been observed in some elapid venom group I myotoxic PLA2s that abrogation of 

enzymatic activity completely eliminates myotoxicity, thus implying the positive 

correlation of myotoxicity with enzymatic activity [111,124]. 

Disruption of the plasma membrane causes membrane leakiness which is 

characterized by a rapid efflux of cytosolic molecules (for example, CK, LDH, aspartate 

aminotransferase, myoglobin and creatine) leading to membrane depolarization 

[89,103,125]. Notably, heavy influx of Ca2+ ions which consequently leads to 

hypercontraction of myofibrillar apparatus is responsible for the most notorious 

histological and ultrastructural consequence of myotoxic PLA2 action in muscle cells 

[103,111]. The increase in Ca2+ ion concentration in the cytoplasm further causes 

degradation of the muscle proteins desmin and titin, loss of register of sarcomeres, loss 

of Z-band due to the disaggregation of A- and I-bands, release of loose actin and myosin 

to the cytosol, and delayed degradation of α-actinin and dystrophin [126-128]. On the 

other hand, hypercontraction of the muscle cells further promotes damage to plasma 

membranes in mitochondria, T tubules, sarcoplasmic reticulum, and nuclei [89,129]. 

Swelling, formation of flocculent densities, vesiculated cristae, dense intracristal spaces, 

and overt rupture of mitochondrial membranes, hydroxyapatite crystal formation in 

mitochondria and calcium accumulation are some other important consequential 

symptoms of Ca2+ influx in PLA2-induced myotoxicity [89,103,130,131]. 

 The characteristic features of plasma membrane rupture, release of cytosolic 

components, prominent Ca2+ influx, mitochondrial Ca2+ overload, and pycnotic nuclei, 

reveals the typical features of necrosis in PLA2-induced muscle degeneration [111]. 

However, there are reports of detection of apoptotic nuclei in a number of clinical and 
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experimental myopathies [132]; nevertheless, no effort has been made to explore the 

apoptotic role of myotoxic PLA2s in PLA2-induced myopathies. 
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