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COMPUTATIONAL METHODS  

3.1 Molecular dynamics (MD) simulations 

 MD simulations is linked between theory and experiments. MD simulation exposes 

the invisible microscopic details including atomic positions, bonded and non-bonded 

interactions, velocities etc. And the microscopic information can be converted into 

macroscopic observables such as pressure, energy, heat capacities, etc., and these details 

are essential to study the biological systems. In MD simulations, the physical motions 

of atoms in the protein molecule present in the actual environment is mimicked wherein 

atoms are allowed to interact for a certain period of time and that molecular interactions 

are generally studied in detail. And the information about individual motion of atoms as 

a function of time can be obtained in detail by simulation [116]. To determine the 

internal motion of proteins, the role of solvent is very important in simulation [117] at 

different temperatures, particularly below the glass transition temperature, as it may be 

sometimes experimentally difficult to capture the dynamics of the internal motion of 

proteins [118]. MD simulations provide connection between structure and dynamics by 

aiding the study of the conformational energy landscape accessible to protein molecules 

[119]. In recent years MD simulation packages such as NAMD [120], GROMACS 

[121], and AMBER [122], have been significantly improved their algorithmic 

sophistication and parallel performance, and able to perform up to ~10-100 

ns/day/workstation/cluster [123]. 

  MD simulation delivers an alternate approach in order to study and 

understand the protein dynamics at NMR relaxation time scales to calculate order 

parameter [124] and residual dipolar coupling [125] of proteins. Residual dipolar 

coupling gives information about the relative orientation of the protein’s portions that 

are present far away in the structure. NMR spectroscopy aids the measurement of 

ordered parameters that provides an atomistic depiction of fluctuations in protein 

structure over pico and nanoseconds [126]. Contrast between NMR spectroscopy and 

MD simulations can be helpful to understand the experimental results [127] as well as 

to improve the quality of force fields related to simulation and integration methods 
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[128]. In the recent past, great number of ingenious alternative approaches to classical 

MD simulations have been developed such as Monte-Carlo sampling of conformational 

space [129], steered MD [130], hybrid Quantum Mechanics/ Molecular Mechanics 

(QM/MM) 131,132], coarse-grained dynamics [133], Brownian dynamics [134, 135], 

normal vibration modes analysis [136,137],  and molecular docking simulations [138], 

all are important to the spectacular applications and developments in biomolecular 

simulation.  

     Additionally, in MD simulation, one can explore the macroscopic properties of a 

system through microscopic simulations, for example, to calculate changes in the 

binding free energy of a drug candidate, or to examine the energetics and mechanisms 

of conformational change.  MD simulations provide the means to solve the equation of 

motion of the particles and evaluate these mathematical formulas. With MD 

simulations, one can study both thermodynamic properties and/or time dependent 

(kinetic) phenomenon [139-141]. 

3.1.1. Historical Background  

The MD method was first presented by Alder and Wainwright in the late 1950's 

[142,143] to study the interactions of hard spheres. From their studies many important 

information regarding the behavior of simple liquids emerged. In 1964, Rahman carried 

out the first simulation using a realistic potential for liquid argon [144]. In 1974, 

Stillinger and Rahman, for the first time carried MD simulation of a realistic system of 

liquid water [145]. In 1977, Mc Cammon, et al, did the first protein simulations for 

bovine pancreatic trypsin inhibitor (BPTI) [146]. Due to the innovatory advances in 

computer technology and algorithmic improvements, today we can see the number of 

simulation techniques has greatly expanded, to study the solvated proteins [147], 

protein-DNA complexes as well as lipid systems addressing a variety of issues 

including the thermodynamics of ligand binding and the folding of small proteins. 

Molecular dynamics simulation techniques are also widely used in experimental 

procedures such as X-ray crystallography and NMR structure determination [148].  
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3.1.2 Theory of molecular dynamics simulation 

The principle of MD simulation lies on integrating Newton’s law of motion for a 

system of interacting particles with mass ‘m’ and initial positions and velocities with an 

accurate description of the potential energy as a function of the atomic coordinates. It 

generates the positions and velocities of the particles in the system that varies with time 

in phase space and specified as trajectories. These trajectories provide the average 

values of physical and chemical properties of the particle which describes how positions 

and velocities of the atoms change with time. This is a deterministic method. By solving 

the differential equation of Newton’s second law, the trajectory is attained  

                                    𝐹⃗ = 𝑚𝑎……………………………………………………………………… 3.1 

                               𝐹 = −
𝑑

𝑑𝑟
𝜇……………………………………………………………..……..3.2 

 

The forces F is acting on the particles with mass of the particles = m and acceleration of 

the particle = a. And these are derived from the potential energy μ(r N), where r N = (r1, 

r2 . . . r N) represents the complete set of 3N atomic coordinates. 

 The purpose of the numerical integration of Newton’s equation of motion is to find 

an expression that defines position ri (t+∆t) at time t+∆t in terms of the already known 

positions at time t. In MD simulation, to calculate the trajectories of particles, Verlet 

algorithm is frequently used because of its simplicity, time-reversibility and numerical 

stability. The basic formula of this algorithm use Taylor series expansions of the 

positions and dynamic properties.  

A variation on the Verlet algorithm is the leap-frog algorithm [149] where velocities 

can be calculated from the positions or propagated explicitly.  

The leap-frog algorithm use velocities at half time step: 

 

𝑟̇𝑖 (𝑡 +
Δ𝑡

2
) =  𝑟̇𝑖 (𝑡 −

Δ𝑡

2
) +  𝑟𝑖̈(𝑡)∆𝑡 …………………………… 3.3 

 

The velocities at time t can be also computed from: 
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                             𝑟𝑖 ̇ (𝑡) =  
𝑟̇ 𝑖 (𝑡+ 

Δ𝑡 

2
 )+ 𝑟̇ 𝑖(𝑡− 

Δ𝑡 

2

̇
)

2
   ……………………………………. 3.4           

 

This is useful when the kinetic energy is needed at time t, as for example in the case 

where velocity rescaling must be carried out. The atomic positions are then obtained 

from:  

𝑟𝑖  (t+∆t) = 𝑟𝑖  (t) +𝑟̇𝑖(𝑡 +
Δ𝑡

2
) ∆t  …………………………………. 3.5 

The leap frog algorithm is computationally less expensive and requires less storage. 

This could be an important advantage for large scale calculations. Moreover, the 

conservation of energy is respected, even at large time steps. Therefore, the 

computation time could be greatly decreased when this algorithm is used. However, 

when more accurate velocities and positions are needed, another algorithm should be 

implemented, like the Predictor-Corrector algorithm. 

The molecular trajectory theoretically imitates the motion of the real system. If the 

potential energy function is a good approximation of the real interactions between the 

particles, this can give a detailed description of both the dynamics as well as 

equilibrium properties of the system under consideration. The functional form of the 

potential energy function together with the set of interaction parameters used is called a 

force field. 

3.1.3 Force field 

Force fields provide information about the potential energy of a system of particles. 

From experimental and quantum mechanical studies of small molecules, force field 

parameters are obtained, and it is suggested that such parameters may be transferred to 

desired larger molecules. Force field function includes bonded and non-bonded 

interaction terms. Bonded interactions consists of harmonic oscillator energy of bond 

lengths, bond angles, and sometimes improper dihedrals (hard terms) and torsional 

dihedral angles (soft terms, sometimes including improper dihedrals). Non-bonded 

interactions contribute van der Waals interactions and electrostatic interactions. van der 

Waals interactions are described by a Lennard-Jones [150-153] potentials, that includes 
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only dispersion or London interactions between transient dipoles. Electrostatic 

interactions are described by Coulomb potentials. Numerous different force fields have 

been developed by different research groups those are AMBER03 [154], AMBER94 

[155], AMBER96 [156], CHARMM27 [157], OPLS-AA [158], GROMOS87 [159], 

GROMOS96 [160], General Amber force field (GAFF) [161]. The typical functional 

form of a force field is: 

   𝑉(𝑟𝑁) =  ∑
𝑘𝑖

2𝑏𝑜𝑛𝑑𝑠 (𝑙𝑖 −  𝑙𝑖,𝑜  ) 2 +   ∑
𝑘𝑖

2𝑎𝑛𝑔𝑙𝑒𝑠 (𝜃𝑖 −  𝜃𝑖,𝑜  ) 2 +

    ∑
𝑉𝑛

2𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 (1 + cos(𝑛∅ − ∅𝑜  )) +  ∑ ∑ (4𝜀𝑖𝑗  ⌈ (
𝜎𝑖𝑗 

𝑟𝑖𝑗
)

12

−    (
𝜎𝑖𝑗  

𝑟𝑖𝑗
)

6

  ⌉ +𝑁
𝑗=𝑖+1

𝑁
𝑖=1

 
𝑞𝑖𝑞𝑗

4𝜋𝜖𝑜𝜀𝑟𝑟𝑖𝑗
)…………………………………………………………………………………………………………… 3.6 

 

Where,  

V (rN)        : potential energy as a function of the positions (r) of N atoms;  

ki               : force constant; 

l ,l0            : current and reference bond lengths; 

θ, θ0          : current and reference valence angle: 

Vn              : barrier height of rotation; 

Ø               : torsion angle; 

n                : multiplicity that determines the number of energy minima during a full  

rotation;            

σij            : collision diameter for the interaction between two atoms i and j; 

εij            : well depth of the Lennard-Jones potential for the i-j interaction; 

qi, qj       : partial atomic charges on the atoms i and  j; 

rij            : current distance between the atoms i and j; 

ε0, εr        : permittivity of the vacuum and relative permittivity of the environment 

respectively; 

Ø0                   : phase factor that determines where the torsion angle passes through its 

energy  
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minima. 

 

The types of interactions that is the representative of potential energy functions are 

schematically presented in Figure 3.1. 

 

Figure 3.1. Schematic representation of the interactions that contribute to the potential 

energy function for MD simulation. Taken from [162] 

 

The first term in the equation represents the bond stretching between pairs of 

covalently bonded atoms. The second term describes the contribution of each angle. 

Angle bending due to vibrational motions requires less energy to distort an angle from 

its equilibrium value. The third term models the torsion angle. It shows how energy is 

changed due to the rotation around a bond. The fourth term of the equation models the 

contribution of non-bonded interactions using a Lennard-Jones potential for van der 

Waals interaction and a Coulomb potential for electrostatic interactions.  

3.1.4. Periodic boundary conditions 
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The size of the model systems consists of a small number of particles compared to 

real macroscopic systems. Many atoms experience a large boundary surface to a 

vacuum environment while simulating which is irrelevant to study phenomena taking 

place in bulk. Periodic boundary conditions make it possible to small particles to 

experience forces if they are in a bulk solution [163]. The atoms are placed in a 

simulation box that is surrounded by translated copies of the coordinates of the atom as 

shown in Figure 3.2. A periodic 3-dimensional array surrounds the inner cell. If an 

atom crosses the boundary it is replaced by an image atom that enters from the opposite 

side with unchanged velocity. Thus, the number of particles within the central box 

remains constant. A non-bonded cutoff is used to deal with the non-bonded interactions 

such that each atom interacts with only one image of every other atom in the system.  

 

Figure 3.2. Periodic boundary conditions in two dimensions. The simulation cell (solid) 

is surrounded by translated copies of itself (dashed).  

3.1.5. Long range interactions Ewald sum 

Ewald summation [164] is one of the most commonly used techniques to treat long 

range interaction in periodic system and it is the most correct way yet devised to 

accurately include all the effects of long-range forces in a computer simulation. In this 

method, a particle interacts with all the other particles in the simulation box and with all 
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of their images in an infinite array of periodic cells. Main idea of Ewald sum is to 

consider a charge distribution of opposite sign charge site; this charge distribution 

screens the interaction between neighboring atoms.  

This method is efficiently used to calculate the infinite range Coulomb interaction 

under periodic boundary condition (PBC). And Particle Mesh Ewald (PME) is a 

modification to accelerate the Ewald reciprocal sum to near linear scaling, using the 

three dimensional fast Fourier transform (3DFFT). Because the coulombic interaction 

has infinite range, under PBC particle i within the unit cell interact electrostatically with 

all other particle j within the cell, as well as with all the periodic image of j, it also 

interacts with all of its own periodic images. The total Coulomb energy of a system of 

N particles in a cubic box of size L and their infinite replicas in PBC is given by 

⋃ =
1

2
∑ ∑ ∑

𝑞𝑖 𝑞𝑗

𝒓𝑖𝑗,𝒏

𝑁
𝑗=1

𝑁
𝑖=1

𝑁
𝑛  ……………………….3.7 

Ewald recast the potential energy of Eq. (3.7), a single slowly and conditionally 

convergent series, into the sum of two rapidly converging series plus a constant term, 

∪Ewald=∪𝑟+∪𝑚+∪𝑜……………………………3.8 

The Ewald sum is therefore written as the sum of these three parts, namely, the real 

(direct) space sum (Ur), the reciprocal (imaginary, or Fourier) sum (Um), and the 

constant term (U°), known as the self-term. 

Ewald sum has been extensively used in simulations which involves highly charged 

system (such as ionic melts and in studies of processes in and on solids) and is 

increasingly being applied to other systems where electrostatic effects are essential, 

such as lipid bilayers, proteins and DNA. 

3.1.6. SHAKE algorithm 

In a molecular system, the choice of time step is limited due to the various time 

scales associated with vibrational degrees of freedom such as bond vibration, angle 

stretching or torsional mode. Generally, the bonds involving hydrogen atoms have the 

fastest vibrational mode and they limit the time step of integration to 1 fs. In order to 

use a larger time step one can restrain these fast degrees of freedoms while solving the 

un-constrained degrees of freedom. Bonds involving hydrogen have highest frequency 
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hence they can be constrained during dynamics using the SHAKE algorithm which was 

introduced by Ryckaert et al  [165].  

Basic idea of SHAKE is to use Lagrange multiplier formalism to enforce bonds 

distances constant. Suppose we have Nc such constrained given by  

∝𝑘 =  𝑟2 
𝑘1 𝑘2

−  𝑅2

𝑘1 𝑘2
= 0,  where k = 1, 2, 3…….Nc………………… 3.9 

Rk1k2 being constrained distant between atoms k1 and k2 atoms. This leads to modified 

constrained equation of motion 

𝑚𝑖 
𝑑2𝑟𝑖  (𝑡)

𝑑𝑡2 =  − 
𝜕

𝜕𝑟𝑖
[𝑉 (𝑟1 … … 𝑟𝑁) +  ∑ 𝜏𝑘 (𝑡)𝛼𝑘(𝑟1 … . 𝑟𝑁)𝑁𝑐

𝑘=1 ]………….3.10 

Where mi is mass of ith particle and τk is the Lagrange multiplier (unknown) for 

kth constraint. This equation can be solved for unknown multiplier by solving 

Nc quadratic coupled equations. And we get the following equation of motion: 

𝑟𝑘1(𝑡 + ∆𝑡) =  𝑟𝑘1
𝑢𝑐(𝑡 + ∆𝑡) − 2(∆𝑡)2𝑚𝑘1

−1𝜏𝑘 (𝑡)𝑟𝑘1𝑘2(𝑡)………………………… 3.11 

Where 𝑟𝑢𝑐 is position updates with unconstrained force only. This procedure is 

repeated till defined tolerance is given.  

3.1.7. Temperature and pressure computation and control 

The initial temperature of the system is computed by coupling to a Berendsen 

thermal bath [166]. The bath supply or remove heat from the system as appropriate, 

thereby acts as a source of thermal energy. The system temperature T (t) that deviates 

from the bath temperature T0 is corrected giving to: 

𝑑𝑇(𝑡)

𝑑𝑡
=  

1

𝜏
{𝑇𝑜 − 𝑇(𝑡)}……………………………………………… 3.12 

Where 𝜏 (time constant) defines the strength of the coupling between the bath and the 

system. By scaling the atom velocities at each step the temperature of the system is 

corrected by a factor χ, given by: 

   χ = [1 +  
Δt

𝜏𝑇
 (

𝑇𝑜

𝑇(𝑡)
− 1)]……………………………………………3.13      
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By changing the time constant 𝜏 the strength of the coupling can be varied.  

The method used for pressure control is similar to that of temperature control. 

The system can be coupled to a barostat and the pressure can be maintained at a 

constant value by periodic scaling of the simulation cell size and atomic positions with a 

factor μ: 

𝜇 = 1 − 𝜔
Δ𝑡

𝜏𝑝
 (P-P0)………………………………………………………. 3.14 

where ω represents the isothermal compressibility, 𝜏𝑝 represents the relaxation constant, 

P0 is the pressure of the barostat, P, the momentary pressure at time t and ∆t is the time 

step. The standard simulation package AMBER12 is used in the present work [122]. 

Pmemd, one of the AMBER modules carries out the molecular dynamics simulation.  

3.1.8. Water molecule models  

In MD simulation many molecular water models TIP3P, TIP4P [167], TIP5P [168], 

simple point charge (SPC/E) [169] model have been proposed for describing water. 

These models can be categorized according to the number of sites, the structure (rigid or 

flexible), and the polarization effects. The 3-site models are the most popular one to be 

used in MD simulations because of the simplicity, reasonable structural and 

thermodynamic descriptions and computational efficiency. These kinds of models have 

three interaction sites which correspond to the three atoms of the water molecule. Each 

atom gets assigned a point charge. Only the oxygen atom has Lennard Jones parameters 

for interaction. Some of the popular 3-site models include transferable intermolecular 

potential three-point (TIP3P) model, simple point charge (SPC) model, extended simple 

point charge (SPC/E) model, etc. [170]. Most of these models use a rigid geometry 

matching the known geometry of the water molecule. The simulations in this thesis are 

carried out using TIP3P water model. The TIP3P water model used here is specified 

with the O-H bond length (rOH) and H-O-H bond angle (θHOH) to be 0.9572 Å and 

104.52° respectively which are equal to experimental gas-phase values. The simple 

model for TIP3P water is shown in Figure 3.3 
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               Figure 3.3. Schematic representation of TIP3P water model. 

3.2. Simulation Methodology in AMBER  

The multiple steps involved in setting up and running MD simulation are shown in 

Figure 3.4. MD simulation starts with the knowledge of the potential energy of the 

system with respect to its position coordinates. The first derivative of the potential 

function to the position coordinates helps in computing the force acting on individual 

atoms of the system. The important steps involved in the MD simulations of proteins 

are as follows. 

 

 

 

 

 

 

 

 

 

Figure 3.4. Flowchart showing the steps involved in MD Simulation. 
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3.2.1. Simulation environment  

To mimic the experimental conditions protein simulation is done, therefore numerous 

parameters for the different physical conditions are considered (such as pressure, 

temperature). Generally the protein simulation is done in canonical ensemble (NVT) 

[171], particularly up to the initial equilibration steps, after equilibration, production 

dynamics is generally carried out in isothermal-isobaric (NPT) [172] ensemble. The 

canonical ensemble (NVT) is the collection of all systems whose thermodynamic state 

is characterized by a fixed number of atoms, N, fixed volume, V, and fixed temperature, 

T. The isobaric-isothermal ensemble (NPT): An ensemble with a fixed number of 

atoms, N, fixed pressure, P, and fixed temperature, T.  

In order to run MD simulation, the protein molecules should be kept in the unit 

cell and solvated with explicit solvent. We used TIP3P water model in our simulation. 

Water models are essential to mimic the specific nature and complexity of hydration of 

molecule, including orientation of solvent dipoles and effective electrostatic shielding, 

subtle hydrogen bond network rearrangements, and accompanying changes in entropy. 

Unfortunately, due to limitation in the time resolution of MD simulations and the 

complicated quantum nature of hydrogen bonds, it is difficult for simulation 

environments to treat them explicitly, thus SHAKE algorithm is used for solvent 

hydrogen repositioning. Conversely, when we use implicit solvent models it search to 

approximate the solute potential of the mean force, which governs the statistical weight 

of solute conformations, and is obtained by averaging over the solvent degrees of 

freedom [173]. Prior to MD simulation the total charge of the system should be kept 

zero by adding positive or negative ions accordingly to avoid polarization of the 

simulation ensemble. In addition to avoid interaction problems at system boundary, 

constrained spherical boundary models for solute and solvent may be considered or the 

highly popular approach of cubic or rectangular PBC can be applied. The Ewald 

summation has been directly applied in standard solvated periodic boundary simulations 

of biomolecular systems to compute the electrostatic interaction in the system [174]. 
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3.2.2 Energy minimization 

Energy minimization implicates finding the global minimum energy with respect to the 

position of side chains atoms that represents the geometry of particular arrangements of 

atoms in which the net attractive force on each atom reaches a maximum. It is a 

numerical procedure in which using the initial structure at higher energy, minimum is 

traced out on the potential energy surface [175], for instance labeled "1" as illustrated in 

Figure 3.5. During energy minimization, the geometry is changed in a stepwise fashion 

so that the energy of the molecule is reduced, from steps 2 to 3 to 4 as shown in Figure 

3.5. After a number of steps, a local or global minimum on the potential energy surface 

is reached. 

 

Figure 3.5. The process of energy minimization changes the geometry of the molecule 

in a step-wise fashion until a minimum is reached. Taken from [175] 

It is necessary to perform energy minimization of the structure in order to remove 

the bad contacts, which may otherwise lead to structural distortion. There are many 

methods to compute the minimum energy but most commonly used methods are 

steepest descent and conjugate gradient. 

(i) The Steepest Descents Method:  

Steepest descent method [176] is one of several first-order iterative descent methods 

and utilizes the gradient of the potential energy surface. It directly relates to the forces 

in the Molecular mechanical description of molecular systems, to guide a search path 
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toward the nearest energy minimum.  It moves in the direction parallel to the net force. 

For 3N Cartesian coordinates this direction is most conveniently represented by a 3N 

dimensional unit vector, Sk Thus: 

                                      𝒔𝑘 =  −𝒈𝑘/|𝒈𝑘| ………………………………. 3.15 

Having defined the direction along which to move it is then necessary to decide  

how far to move along the gradient. The gradient direction from the starting point is 

along the line indicated if we imagine a cross-section through the surface along the line; 

the function will pass through a minimum and then increase, as shown in the Figure 

3.6. We can choose to locate the minimum point by performing a line search or we can 

take a step of arbitrary size 

along the direction of the force [176]. 

 

Figure 3.6. A line search is used to locate the minimum in the function in the direction 

of the gradient. 

(ii) Conjugate Gradients Minimization: 

The conjugate method produces a set of directions which does not show the 

oscillatory behavior of the steepest descents method in narrow valleys. In conjugate 

gradients, the gradients at each point are orthogonal but the directions are conjugate. A 
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set of conjugate directions has the property that for a quadratic function of M variables, 

the minimum will be reached in M steps. The conjugate gradients method moves in a 

direction 𝒗𝑘  from point 𝒙𝑘 where 𝒗𝑘  is computed from the gradient at the point and the 

previous direction vector 𝑣𝑘−1 [177].   

𝑣𝑘 =  −𝑔𝑘 + 𝛾𝑘𝑣𝑘−1 

 

(iii) Newton-Raphson Method: 

The Newton-Raphson method [175] uses the second derivatives as well as the 

first derivatives. In addition to using the gradient information, it uses the curvature to 

predict where along the gradient of the function will change direction. It is the most 

computationally expensive method utilized to perform energy minimization. Since the 

complete second-derivative matrix defines the curvature in each gradient direction, we 

can multiply the inverse of the second-derivative matrix by the gradient to obtain a 

vector that will translate us directly to the nearest minimum. This is expressed 

mathematically as:  

𝑟𝑚𝑖𝑛 = 𝑟𝑜 − 𝐴𝑜
−1.∇𝑉(𝑟𝑜)

 ……………………… 3.16 

 where rmin is the predicted minimum, ro is an arbitrary starting point, Ao is the matrix of 

second partial derivatives of the energy with respect to the coordinates at ro (also known 

as the Hessian matrix), and ∇𝑉(𝑟𝑜) is the gradient of the potential energy at ro. 

Prior to minimization, water molecules are added to solvate the system if 

required. A suitable large box of water that has already been equilibrated is used for 

solvation purpose. The system is entirely covered by the water box and those water 

molecules that overlap the proteins are removed. At this point energy minimization 

should be done with the protein fixed in its energy minimized position. This allows the 

water molecules to readjust to the protein molecule. 

3.2.3 Heating the system  

During heating phase, initial velocities (at 0 K) are allocated to each atom of the system 

and Newton’s equations of motion are numerically integrated that represent the time 

evolution of system. At short predefined intervals, new velocities are allocated 
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corresponding to a slightly higher temperature and the simulation is allowed to continue 

until desired temperature is achieved (that is 300 K). Force constrains on different 

subdomains of the simulation system are gradually removed as structural tensions 

dissipate by heating. Heating dynamics is usually carried out at constant volume (NVT).  

3.2.4 Equilibration 

Equilibration phase is used to equilibrate kinetic and potential energies, that is, to 

distribute the kinetic energy “pumped” into the system during heating among all 

degrees of freedom. This usually infers that the kinetic energy must be transferred to 

potential energy. As soon as potential energy levels off, the equilibration stage is 

completed. Generally the system is equilibrated on a timescale much shorter than 300 

ps. During explicit solvent simulation, protein positions are fixed and waters moves 

accordingly. Once the solvent is equilibrated, the restraints on the protein can be 

removed and the whole system (protein + solvent) can evolve in time. 

3.2.5 Production phase  

Production phase is the last step of MD simulation. It is performed for desired time 

scale to generate trajectory of protein molecule in compliance with particular 

equilibrium conditions (NPT). In production phase of MD simulation thermodynamic 

parameters can be calculated. The timescale can be varied from several hundred 

picoseconds to microseconds or more.  

3.2.6 Analysis  

In this step, stored coordinates and velocities of the system are used for further analysis. 

MD trajectory files are required for analysis. MD simulations can help to visualize and 

understand conformational changes at an atomic level when combined with 

visualization software (e.g VMD) which can display the structural parameters of interest 

in a time dependent way. Using cpptraj or ptraj module of AMBER12, quantities like 

time average structure, Root Mean Square Deviation (RMSD) difference between two 

structures, Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg), Secondary 
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Structure Analysis: The secondary structure using DSSP algorithm, Total energy of 

system can be calculated  

(i) Time average structure: This particular structure is obtained by considering 

coordinate frames which have been averaged over sliding time windows of a certain 

size.  

(ii) RMSD: The deviation of a structure with respect to a particular conformation is 

measured by RMSD. It is defined as:  

                    RMSD = (
∑ (𝑅𝑖−𝑅𝑖

0)
2

𝑁

𝑁
)

1/2

………………………………………… 3.17 

where N is the total number of atoms/residues considered in the calculation, and Ri is 

for the vector position of particle i (target atom) in the snapshot, Ri
0 is the coordinate 

vector for reference atom i. RMSD was computed based on backbone atoms and taking 

the first frame of the simulation as the reference.  

 (ii) RMSF: It is useful for characterizing local changes along the protein chain. It is    

calculated as:  

 

             RMSF = (
1

𝑇
∑ (𝑟𝑖(𝑡) − 𝑟𝑖

𝑟𝑒𝑓)2𝑇
𝑡=1 )

1/2

…………………………………. 3.18 

T is the trajectory time over which the average is taken, ri (t) is the position of the atoms 

in residue i and ri
ref is the reference position of particle i. 

(iii) Rg: It calculates the distribution of the components of an object around the axis. 

It gives the compactness of a protein. It is calculated as: 

            Rg = (
1

𝑁
 ∑ (𝑟𝑖 −  𝑟𝑐𝑚)2

𝑖 )
1/2

………………………………………………….3.19 

where ri - rcm is the distance between atom i and the center of mass of the molecule. 

(iv) Secondary Structure Analysis: The secondary structure content of each protein 

was calculated using DSSP algorithm which recognizes cooperative secondary 



CHAPTER 3 2018 
 

Himakshi Sarma | 48 

 

structures as repeats of the elementary hydrogen-bonding patterns “turn” and 

“bridge.” Repeating turns are “helices,” repeating bridges are “ladders,” 

connected ladders are “sheets. We consider that a secondary structure element is 

stable at a given position of the protein if it is the predominant in more than 50% 

of the collected snapshots [178]. 

 

3.3. 3-D structure visualization tools 

3.3.1 Visual molecular dynamics (VMD): VMD is a molecular modelling and 

visualization computer program [179]. VMD is mainly a tool to view and analyze the 

results of MD simulations. It also includes tools for working with volumetric data, 

sequence data, and arbitrary graphics objects. 

3.3.2 UCSF Chimera: UCSF Chimera is a highly extensible program for interactive 

visualization and analysis of molecular structures and related data, including density 

maps, supramolecular assemblies, sequence alignments, docking results, and 

conformational ensembles [180]. Chimera is developed by the Resource for 

Biocomputing, Visualization, and Informatics (RBVI), supported in part by the National 

Institutes of Health. 

 

3.4. Potential of mean force  

The potential of mean force (PMF) [181] is a concept of the free energy changes as a 

function of some inter or intramolecular coordinates of molecular systems which may 

be the distance between two atoms, or the torsion angle of a bond within a molecule.  

The PMF incorporates solvent effects along with the intrinsic interaction between the 

two particles when the system is in a solvent. The transition state for the process is 

related to the point of highest energy on the free energy profile, from which rate 

constant can be derived. There exist various methods to calculate the PMF. The 

simplest type of PMF is the free energy change when the separation (r) between the 

particles is changed [182]. PMF can be calculated from the radial distribution function 

using the expression for the Helmholtz free energy: 

                                     A (r) = -kB T ln g (r) + constant ……………………………… 3.20 
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The PMF may vary by several multiples of kBT over the relevant range of the 

parameter r. The logarithmic relationship between the PMF and radial distribution 

function means that a relatively small change in the free energy may correspond to g(r) 

changing by an order of magnitude from its most likely value. Unfortunately, MD 

simulation method does not sufficiently sample regions where the radial distribution 

function differs drastically from the most likely value, leading to inaccurate values from 

the PMF.  To avoid this problem one of the most widely used sampling techniques is 

the umbrella sampling (US). 

3.4.1 Umbrella sampling 

To calculate potentials of mean force (at least for simple distance, angle, or torsion 

variables) umbrella sampling [183] is used to overcome the sampling problem by 

restraining a system to a specific region of its conformational space by modifying the 

potential function so that the unfavorable states are sampled appropriately.   The 

modification of the potential function can be written as: 

                             𝜗′ (𝑟𝑁) =  𝜗 (𝑟𝑁) + 𝑊 (𝑟𝑁)………………………………………… 3.21 

Where W (rN) is a weighting function, which takes a quadratic form: 

                             𝑊 (𝑟𝑁) =  𝑘𝑊 (𝑟𝑁 − 𝑟0
𝑁)2…………………………………………... 3.22 

For configurations that are far from equilibrium state 𝑟0
𝑁the weighting function will be 

large and so a simulation using the modified energy function 𝜗′(𝑟𝑁) will be biased 

along some relevant ‘reaction coordinate’ (RC) away from the configuration r0
N. The 

resulting distribution will, of course, be non-Boltzmann. The corresponding Boltzmann 

averages can be extracted from the non-Boltzmann distribution using a method 

introduced by Torrie and Valleau [183]. The result is: 

                                 < 𝐴 > =  
<𝐴 (𝑟𝑁)exp [ +𝑊

𝑟𝑁

𝑘𝐵 𝑇
]> 𝑊

<exp [+
𝑊(𝑟𝑁)

𝑘𝐵 𝑇
]> 𝑊

 ………………………………….3.23 
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The subscript W indicates that the average is based on the probability PW (r
N), which in 

turn is determined by the modified energy function 𝜗′(𝑟𝑁). It is usual to perform an 

umbrella sampling calculation in a series of stages, each of which is characterized by a 

particular value of the coordinate and an appropriate value of the forcing potential W 

(rN). However, if the forcing potential is too large, the denominator in eqn 3.23 is 

dominated by contributions from only a few configurations with especially large values 

of exp [W (rN)] and the average takes too long to converge. 

3.4.2 Running the umbrella sampling calculations 

Using a relaxed starting structure MD can be run on the individual umbrella 

windows. The main point to remember when selecting the number of windows is that 

the end points must overlap, that is, window 1 must sample some of window 2 and so 

on. The force constant similarly has to be big enough to ensure that the subset of phase 

space are sampled but not too strong that the windows become too narrow and can’t 

overlap.  

                          

      "\" =    lower bound linear response region  

      "/" =    lower bound linear response region  

      "…" = parabola 

      "_" = flat region 
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Normally, one can vary the size of the windows and the constraints as a function of 

position along the pathway. The amount of simulation we do in each window needs to 

be such that we can converge our sampling. To specify the harmonic restraint a 

reference file is employed where R1, R2, R3, R4 define a flat-welled parabola which 

becomes linear beyond a specified distance. Essentially between r1 and r2 will be 

harmonic with force constant rk2, between r2 and r3 it will be flat and between r3 and 

r4 it will be harmonic with force constant rk3. 

3.4.3 The Weighted Histogram Analysis Method (WHAM) for free-energy calculations 

 

The WHAM method [184, 185] is an extension of the US method but it has a 

number of advantages over the conventional US method. The WHAM method, in 

addition is used to optimize the links between simulations, also it allows multiple 

overlaps of probability distributions to obtain better estimates of the free-energy 

differences. The older method of obtaining a single distribution function by requiring 

that the probability distributions agree at some point in the overlap region will fail to 

yield unique free-energies if three or more distributions are involved in the overlap 

region. This algorithm provides a built-in estimate of errors that give investigators 

objective estimates of the optimal location and length of additional simulations to 

improve the accuracy of their results. The WHAM method takes into account all the 

simulations that produce overlapping distributions. The WHAM method links the 

different simulations through the overlapping histograms in an optimal manner. The 

WHAM equations can also be readily used to generate PMFs and free energies as a 

function of the coupling parameter(s) hi and/or the temperature. This is useful as 

simulations can be carried out at a range of temperatures to improve conformational 

sampling and the results extrapolated (or interpolated) to the desired temperature [184]. 

 

3.5 Binding free energy calculation using Molecular Mechanics 

energies combined with the Poisson-Boltzmann or Generalized 

Born and Surface Area continuum solvation method (MM-

PBSA/GBSA)  
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3.5.1 Free energy calculation using Perl Script (mm_pbsa.pl) 

The MM-PBSA and MM-GBSA [186-188] methods are popular approaches to estimate 

the free energy of the binding of small ligands to receptor protein or protein-protein 

complex. They are typically based on MD simulations of the protein–ligand complex 

and can often be reproduced with good accuracy. 

In MM-PBSA or MM-GBSA, the binding free energy (∆Gbind) between a ligand 

and a receptor to form a protein-ligand complex is calculated as  

ΔGbind  = ΔGcomplex,solv  – (ΔGprotein,solv + ΔGligand,solv) ………………3.24 

where ΔGcomplex,solv, ΔGprotein,solv, and ΔGligand,solv are the free energy differences for the 

complex, the protein, and the ligand with or without solvent, respectively. Herein, a 

subscript “solv” in Eq. (3.24) represents the aqueous solution. The solvation free 

energies are calculated as follows; 

ΔGcomp, solv = EMM + ΔGsolvation – TSsolute ………………………..3.25 

EMM = Eintra + Eelec + EvdW                …………………………… 3.26 

Einternal = Ebond + Eangle – Etorsion         …………………………. ...3.27 

ΔGsolvation =ΔGPB/GB solvation–elec  +  ΔGSASA,nonpolar  …………….....3.28 

Where ‘comp’ in Eqn. 3.25 represents the complex (protein +ligand). EMM is the 

molecular mechanics (MM) energy from the force field without the solvent. E 

intra consists of three intramolecular contributions, i.e. Ebond, Eangle, and Etorsion. 

Eelec and EvdW are the intermolecular electrostatic and van der Waals interaction 

energies, respectively. ΔGsolvation is the solvation free energy, and ΔGsolvation–elec is 

estimated from the Poisson–Boltzmann method. ΔG nonpolar is estimated from the 

solvent-accessible surface area (SASA). T and Ssolute are the temperature and the entropy 

of a solute. We show the relationship for each energy in Figure 3.7. 

Using PB and GB method the electrostatic solvation energy can be determined. The 

dielectric constants used for the interior (solute) and exterior (water) were set to 1 and 
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80 respectively. Atomic radii and charges are same as used in the MD simulations. 

From solvent accessible surface-area, the non-polar contribution (ΔGSASA) to the 

solvation free energy was calculated using eqn. 3.29. 

∆GSASA= γ × SASA + b        …………………………… 3.29 

Here, SASA is the solvent-accessible surface-area and γ is surface tension parameter. 

‘γ’ is set as 0.005 kcal (mol-1Å-2) for PB and 0.0072 kcal (mol-1Å-2) for GB. ‘b’ is a 

parameterized value set as 0.92 kcal mol-1 for PB and 0 kcal mol-1 for the GB method. 

The probe radius of the solvent is set to 1.4 Å. The entropy calculation was neglected in 

the above calculation as we are interested in calculating only relative binding energy 

contribution to the formation of protein-ligand complex. 

 

Figure 3.7. Computational schemes of the binding free energies based on MM-

PBSA/GBSA. The free energies colored in black are directly calculated, while the free 

energy of interest colored in blue is indirectly did using the thermodynamic cycle of 

other free energies. Modified from [189]. 

3.5.2 Free energy decomposition using Python Script MMPBSA.py 

Using either the GB or PB models, Amber12 provides several schemes to decompose 

calculated free energies into specific residue contributions [190], following the work of 



CHAPTER 3 2018 
 

Himakshi Sarma | 54 

 

Gohlke et al [191, 190]. For each residue, interactions can be decomposed by including 

only those interactions in which one of the residue’s atoms is involved which is called 

per-residue energy decomposition. On the other hand, interactions can be decomposed 

by specific residue pairs by including only those interactions in which one atom from 

each of the analyzed residues is participating which is called as pairwise decomposition. 

These decomposition schemes can provide useful insights into important interactions in 

free energy calculations [191, 190]. However, it is important to note that solvation free 

energies using GB and PB are not strictly pairwise decomposable, since the dielectric 

boundary defined between the protein and the bulk solvent is inherently nonlocal and 

depends on the arrangement of all atoms in space. Thus, care must be taken when 

interpreting free energy decomposition results.  

We can calculate partial binding free energy contribution to the amino acid 

residue Y, (ΔGY bind) by using Per-residue decomposition method in Python Script 

MMPBSA.py [192]. Per-residue based decomposition can determine the contribution of 

individual residue to the total binding free energy [190, 193-196]. To obtain ΔGY bind 

we first divide terms in Eqn. (3.25) into its atomic contribution. The contribution of 

each atom a to the total electrostatic interaction energy is obtained by 

𝐸𝑒𝑙𝑒𝑐
𝑎 =

1

2
∑

𝑞𝑎𝑞𝑏

𝑟𝑎𝑏
𝑏≠𝑎    …………………………………..3.30 

where qa and qb are atomic partial charge of the atom a and b, rab is the distance 

between them. Similarly, one half of the pairwise energy for van der Waals interaction 

energy between protein and ligand, Ea
vdW, to avoid double counting. Using the SASA of 

each atom a, a non-polar part of solvent effects on binding free energy is represented as 

ΔGa
nonpolar,solv =  γ{(SASAa,complex – (SASAa,protein + SASAa,ligand)} …………3.31 

Where, SASAa, protein and SASAa,ligand is equal to zero depending on which component 

the atom belong to. γ is set to 0.0072 kcal mol–1 Å–2 in AMBER 12. To calculate the 

contribution of atom a, to the electrostatic part of solvent effects, the generalized Born 

(GB/PB) approach is used. The contribution of atom a is given by; 
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∆Gelec,sol
a = −

1

2
∑𝑎 (1 −

ℯ−𝑘∫𝑎𝑏
𝐺𝐵

𝜀𝜔
) 

𝑞𝑎  𝑞𝑏

∫ (𝑟𝑎𝑏)
𝐺𝐵

𝑎𝑏

+
1

2
∑𝑏≠𝑎

𝑞𝑎 𝑞𝑏

𝑟𝑎𝑏
    ………….. 3.32 

∫ =
𝐺𝐵

𝑎𝑏
[ 𝑟𝑎𝑏 

2 +𝛼𝑎𝛼𝑏 exp (
−𝑟𝑎𝑏

2

4 𝛼𝑎 𝛼𝑏
)]1 2⁄                   ……………………......3.33 

where κ is the Debye-Huckel screening parameter. εω is a dielectric constant for the 

solvent set as 80. αa and αb are the effective Born radii of atoms a and b, respectively. 

Using these contributions to each atom, the partial binding free energy contribution to 

the amino acid residue Y is evaluated as 

∆𝐺𝑏𝑖𝑛𝑑
𝑌 = ∑𝑎∈𝑌(𝐸𝑒𝑙𝑒𝑐

𝑎 +  𝐸𝑣𝑑𝑤
𝑎 + ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟,𝑠𝑜𝑙𝑣

𝑎 + ∆𝐺𝑒𝑙𝑒𝑐,𝑠𝑜𝑙𝑣
𝑎 )   ………3.34 

Here the entropic and intra-molecular contributions appearing in eqn. (3.25) and (3.26) 

are neglected in this analysis. 

Another way of decomposing free energies is to introduce specific mutations in 

the protein sequence and analyze how binding free energies or stabilities are affected 

[197]. Alanine scanning mutagenesis, is a technique in which an amino acid in the 

system is mutated to alanine, which can highlight the importance of the electrostatic and 

steric nature of the original side chain [198]. Assuming that the mutation will have a 

negligible effect on protein conformation, we can incorporate the mutation directly into 

each member of the original ensemble. This avoids the need to perform an additional 

MD simulation to generate an ensemble for the mutant. 

3.6 Molecular docking 

Using molecular docking, the interaction between a protein and small molecule or 

between two proteins can be modelled at the atomistic level, which allows to know the 

behavior of small molecules at the binding site of target protein or we can get the 

interacting interface residues in protein-protein interaction which may reveal 

fundamental biochemical processes [199]. The docking process involves two steps. In 

the first step the pose of ligand at the binding site. In the second step rank is allotted to 

the conformers of ligands using scoring function that is based on the binding affinity. 

Initially the sampling algorithms reproduce the experimental binding mode and then 
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scoring function should be able to rank it highest among all conformations that is 

generated.  

3.6.1 Docking methodologies 

3.6.1.1. Rigid ligand and rigid receptor docking 

In rigid docking the search space is very limited because both the receptor and ligand 

are considered as rigid bodies, and also the  degrees of freedom is restricted to only the 

three translational and three rotational. In this circumstances, the ligand flexibility is 

addressed using a pre-computed set of ligand conformations. This protocol has been 

followed in previous version of DOCK [200-204]. 

 3.6.1.2. Flexible ligand and rigid receptor docking 

In the systems wherein, it follows the induced fit model [205, 206], both the ligand and 

receptor are consider to be flexible, so that a perfect-fit complex with minimum energy 

can be obtained. If both receptor and ligand are considered to be flexible, then the cost 

becomes very high and also time consuming. But cost can be minimized if ligand is 

kept flexible while the receptor is kept rigid during docking. This particular 

methodology is followed in AutoDock [207] and FlexX [208]. In AutoDock 3.0 Monte 

Carlo simulated annealing, evolutionary, genetic and Lamarckian genetic algorithm 

methods [209] are used to model the flexible ligand and keeping the receptor rigid. The 

scoring function is based on the AMBER force field, which includes, van der Waals 

interactions, hydrogen bonding, electrostatic interactions, conformational entropy and 

desolvation terms. Each term is weighted using an empirical scaling factor obtained 

from experimental data. In AutoDock 4.0 the flexible receptor is modelled by allowing 

the side-chains to move. In addition this version of Autodock supports the interaction of 

protein-protein docking [210]. In this thesis we have used the recent version of 

AutoDock that is AutoDock 4.2 [211] to dock small molecules with LMTK3 domain. 

3.6.1.3.   Steps performed in AutoDock 4.2 

Step 1. Coordinate File Preparation: Initially, AutoDock 4.2 [211] prepare protein and 

ligand which add polar hydrogen atoms to the protein, but not hydrogen atoms bonded 
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to carbon atoms. Then, PDBQT file is generated which is used for coordinate files that 

includes atomic partial charges and atom types. The current AutoDock force field uses 

several atom types for the most common atoms, including distinct types for aliphatic 

and aromatic carbon atoms, and separate types for polar atoms that form hydrogen 

bonds and those that do not. PDBQT files also include information on the torsional 

degrees of freedom.  

Step2. AutoGrid Calculation: In the AutoGrid process the protein is embedded in a 3-D 

grid box and a probe atom is placed at each grid point (Figure 3.8). The energy of 

interaction of single atom with the protein is assigned to the grid point. AutoGrid 

affinity grids are calculated for each type of atom in the ligand, usually carbon, oxygen, 

nitrogen and hydrogen, along with the grids of electrostatic and desolvation potentials. 

When AutoDock calculation is performed, the energetics of a particular ligand 

conformation is evaluated using the values from the grids.  

 

Figure 3.8. Viewing Grids in AutoDockTools. The protein is shown on the left in white 

bonds, and the grid box is shown on the right side. The blue contours surround areas in 

the box that are most favorable for binding of carbon atoms, and the red contour areas 

that favor oxygen atoms. A ligand is shown inside the box at upper right. Taken from 

Autodock user guide [212]. 



CHAPTER 3 2018 
 

Himakshi Sarma | 58 

 

 Step 3. Docking using AutoDock: Docking is carried out using a number of search 

methods. The Lamarckian genetic algorithm (LGA) is the most efficient method, but 

traditional genetic algorithms and simulated annealing are also available. AutoDock is 

run for a typical systems for several times and provide quite a few docked 

conformations. Analysis of the docked conformations with predicted energy and the 

consistency of results is combined to identify the best solution with high affinity of 

binding.  

Step 4. Analysis using AutoDockTools: For analyzing the results of docking simulations, 

AutoDockTools includes various methods, such as tools for clustering results by 

conformational similarity, visualizing conformations, visualizing interactions between 

ligands and proteins, and visualizing the affinity potentials created by AutoGrid. 

3.7. In silico prediction of protein-protein interaction 

Protein-protein interaction (PPIs) is an essential driving mechanism in many 

physiological processes in the cell, which is also involved in the pathogenesis of 

numerous diseases [213-215]. Due to the diversity of protein–protein interactions there 

is a need for careful examination of the nature of the protein interface. The determinant 

of the specificity and stability of protein–protein interaction is important. The size of the 

protein interface decides whether the complex will be transient or obligatory. The 

interface between two proteins typically has an area of 1500-3000 Å2 with 

approximately 750-1500 Å2 of surface area buried in each protein [216-218]. The 

protein-protein interaction sites are formed by proteins with good shape 

complementarity [219-221], driven by hydrophobic effects [222], which occur between 

the nonpolar regions of protein residues through van der Waals contacts. Electrostatic 

complementarity of the interacting protein surfaces between two proteins promotes the 

formation and lifetime of the complex. For some interface, hydrogen bonding and 

electrostatic interaction play a major role in directing one protein to dock with the 

binding site of the second protein. Prediction of protein-protein interaction is crucial in 

drug discovery. Many physiological and pathological cellular processes depends on the 

protein-protein interaction which can be disturbed by external compounds. The modern 
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drug discovery process involves two main steps: identification of prospective drug 

target, investigating its properties and designing of a corresponding ligand [223]. 

Therefore, the knowledge of protein-protein interaction can be useful in designing 

modulators that can target the protein complex.  

Computerized prediction of protein-protein interaction and protein-small 

molecule interaction is one of the most challenging task in structural biology. Many 

biological studies, in academic world as well in industry, may benefit from reliable 

high-accuracy interaction prediction. In the protein-protein docking the problem is to 

find the accurate association of two interacting molecules. The accurate prediction is 

based on the residues contacts involved in the target interaction. Many docking 

algorithms [224-228] have been developed. However only a few algorithms are 

currently available as a free web service. The algorithms mostly differ in the method for 

searching the six-dimensional transformation space that they apply, and in their 

evaluation of the resolved complexes. In this thesis we used PatchDock [229] and 

ClusPro [230] server for protein-protein docking. 

3.7.1. PatchDock web server 

PatchDock is a very efficient algorithm for protein-protein and protein-small ligand 

docking which performs rigid docking. It is a geometry-based molecular docking 

algorithm [229]. The algorithm was verified on the enzyme-inhibitor and antibody-

antigen complexes from benchmark 0.0 [231], where it successfully found near-native 

solution for most of the cases. The algorithm was also successfully tested in [232-234] 

of the Critical Assessment of Prediction of Interaction (CAPRI) [235]. 

PatchDock is based on local shape feature matching algorithm established by 

Kuntz [236]. This algorithms employ shape complementarity constraints, when 

searching for the correct association of molecules. At first, it detects those molecular 

surface areas which have a high probability to belong to the binding site. This reduces 

the number of potential docking solutions and retaining the correct conformation. It 

identified docking transformations that yield good molecular shape complementarity. 

The algorithm functions through three major stages: 
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(i) Molecular Shape Representation - Molecular surface of the molecule is compute in 

this step. Next, a segmentation algorithm is applied for the detection of geometric 

patches (concave, convex and flat surface pieces). The patches are filtered, in order to 

retain those patches which contain ‘hot spot’ residues [237].  

(ii) Surface Patch Matching - A hybrid of the Geometric Hashing [238] and Pose-

Clustering [239] matching techniques are applied to match the patches those are 

detected in the previous step. Here concave patches are matched with convex and flat 

patches are matched with any type of patches (Figure 3.9)  

(iii) Filtering and Scoring – In this step, the candidate complexes from the previous step 

are examined. RMSD clustering is applied to the candidate solutions to discard the 

redundant solutions or unacceptable penetrations of the atoms of the receptor to the 

atoms of the ligand. Finally, the remaining candidate transformations are evaluated by 

scoring function that considered both geometric fit (geometric shape complementarity 

score) and atomic desolvation energy [240].  

 

 

Figure 3.9. (A) Surface topology graphs for trypsin inhibitor (PDB code 1ba7). The 

caps, belts and pits are connected with edges. (B) Geometric patches: the patches are in 

light colors and the protein is dark. Taken from [229]. 

 

3.7.1.1 PatchDock web server: Input, output and user interface 

PatchDock algorithm is available at https://bioinfo3d.cs.tau.ac.il/PatchDock/. When the 

docking request is submitted by the user, the prediction process starts by PatchDock 

algorithm. The user is notified by an email when the results are ready, it contains a link 

https://bioinfo3d.cs.tau.ac.il/PatchDock/
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to the web page where the prediction results are presented. On this page user can view 

specific predictions as well as download the compressed file of the top scoring solutions 

(Figure 3.10) 

 

Figure 3.10. The PatchDock user interface: The receptor molecule and the ligand 

molecule are given either by the PDB code of the molecule (chain IDs are optional) or 

by uploading a file in PDB format. Taken from [241] 

 

Input 

For protein-protein docking, the input is two protein molecules in PDB format. The 

molecules are either uploaded to the server or it can be retrieved from the Protein Data 

Bank. In the second case the user can enter the PDB code. In order to dock two protein, 

the user should specify those two proteins in a desired chain IDs. For result notification 

the user has to provide email ID. 

Output 

The user receives an email message with the URL of the web link, wherein, top 20 

solutions (docked complexes) will be automatically generated. In a table, in each row 

the solutions are presented. Figure 3.11 depicts the geometric score, desolvation energy 

[242], interface area size and the actual rigid transformation of the solution. A link to a 
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PDB file that presents the docking solution is also available in each line. The user may 

view or download it. There is also an option to view additional, lower ranking solutions 

by pressing the ‘next 20 solutions’ button at the lower right corner of the table (Figure 

3.11). In the solutions page an option to download the top scoring solutions is available. 

The solutions are downloaded as a compressed ZIP file format. This compressed file 

contains the PDB files of the top scoring solutions.  

 

Figure 3.11.  The solutions page presents the geometric score, interface area size and 

desolvation energy of the 20 top scoring solutions. Modified from [241] 

3.8. ClusPro web server 

ClusPro a web based server (https://cluspro.org) was introduced in 2004 [243,244] and 

has been substantially modified and expanded later on [245-247]. ClusPro, is used for 

direct docking of two interacting proteins [248]. For docking the server needs two 

protein files in PDB format. During docking the server performs three computational 

steps: 
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(i) Sampling billions of conformations, using rigid body docking. 

(ii) Clustering of 1000 lowest energy structures based on root-mean-square deviation 

(RMSD), in order to find the largest clusters that represent the most likely models of the 

complex.  

(iii) Refinement of the selected structures using energy minimization (Figure 3.12). The 

rigid body docking step uses PIPER, [249] a docking program based on the Fast Fourier 

Transform (FFT) correlation approach.  

 

Figure 3.12. Representation of the ClusPro algorithm, the number of structures 

retained after each step is shown in a blue box. Taken from [248] 

3.9. PDBsum web server 

PDBsum (http://www.ebi.ac.uk/pdbsum) [250] is a web-based database provides 

pictorial summary of the important information on each macromolecular structure 

deposited at the Protein Data Bank (PDB). It includes images of the structure, annotated 

plots of each protein chain’s secondary structure, detailed structural analyses, summary 

PROCHECK results and schematic diagrams of protein–protein, protein-small molecule 

and protein–DNA interactions. RasMol scripts highlight the important features of the 

structure, such as the protein’s domains, PROSITE patterns and protein–protein/ligand 

http://www.ebi.ac.uk/pdbsum
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interactions. PDBsum is updated whenever any new structures are released by the PDB 

and is freely accessible via http://www.biochem.ucl.ac.uk/bsm/pdbsum. 

3.9.1. Wiring diagram 

For each unique protein chain of a structural model, PDBsum provides a ‘protein page’ 

that includes a schematic diagram of the protein's secondary structure that is ‘wiring 

diagrams’ (Figure 3.13) 

 

Figure 3.13. Schematic diagrams from the PDBsum for entry 1a5z: (A) The ‘wiring 

diagram’ shows the protein's secondary structure elements (α-helices and β-sheets) 

together with β- and γ-turns, and β-hairpins. The yellow linking bars labelled 1 and 2 

represent disulphide bonds. The single-letter amino acid codes showing the protein's 

sequence are coloured red or blue depending on whether they belong to CATH [251] 

structural domain. Red dots above the single-letter codes signify residues that interact 

with any bound ligand(s) while coloured lines underneath represent residues belonging 

to a PROSITE pattern, the redder the colour the more highly conserved the residue in 

the pattern. (B) Topology diagram illustrates the β-strands by the large arrows joined 

side-by-side (pink colour), forming central β-sheet. The α-helices represented by the red 

http://http/www.biochem.ucl.ac.uk/bsm/pdbsum
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cylinders. The small arrows indicate the directionality of the protein chain, from the N- 

to the C-terminus. Taken from [252] 

3.9.2. Topology diagram 

The protein page also includes a topology diagram that display the arrangement and 

connectivity of the protein's helices and strands (Figure 3.13 B). Where the protein 

chain consists of more than one domain, a separate diagram is generated for each and is 

colour-coded according to the domain coloring on the wiring diagram. The topology 

diagrams are generated from the hydrogen bonding plots of Gail Hutchinson's HERA 

program [253]. 

3.9.3. Protein-protein interfaces 

In PDBsum another new feature that demonstrates the interactions across protein–

protein interfaces. When the protein-protein complex contains more than one protein 

chain (e.g. Figure 3.14 A), the interfaces between the chains are depicted by three types 

of plot: first summarizes an overview of which chain interact with which (Figure 3.14 

B), the second summarizes the interactions across any selected interface (Figure 3.14 

C), and the third shows which residues actually interacting across that interface in detail 

(Figure 3.14 D). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686501/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686501/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686501/figure/F3/
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Figure 3.14 Protein–protein interaction diagrams in PDBsum for PDB entry 1mmo: 

(A) Thumbnail image of the 3D structural model which contains six protein chains (B) 

Schematic diagram showing the interactions between the chains. The area of each 

circle is proportional to the surface area of the corresponding protein chain. The 

joining lines are coloured light blue for hydrogen bonds and orange for non-bonded 

contacts. (C) A schematic diagram showing the numbers of interactions across one of 

the interfaces, namely the B–G protein interface, and the numbers of residues involved. 

(D) Detail of the individual residue–residue interactions across this interface. 

Hydrogen bonds (blue lines), non-bonded contacts (orange tick‐marks), and salt 

bridges (red lines) between residues on either side of the protein‐protein interface. 

Taken from [252] 
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From the input of protein-ligand complex in PDB format, LIGPLOT program 

[254] generates a 2-D schematic depiction of the hydrogen bonds and non-bonded 

interactions between ligand and the residues of the protein with which it interacts 

(Figure 3.15). The output is a color, or black-and-white, PostScript file gives a simple 

and informative representation of the intermolecular interactions and their strengths, 

including hydrogen bonds, hydrophobic interactions and atom accessibilities. The 

program is completely general for any ligand and can also be used to show other types 

of interaction in proteins and nucleic acids. 

 

Figure 3.15. PDBsum interaction plot for PDB entry 5trd in LIGPLOT (A) LIGPLOT 

diagram showing the protein residues that interact with the CTP (cytidine‐5′‐

triphosphate) ligand, with hydrogen bonds shown by the green dashed lines and non-

bonded contacts by the brown rays, and; (B) as in (A), but for residues interacting with 

the bound sodium ion; (C) Diagram of protein‐DNA interactions, with H‐bonds as blue 

dashed lines and non-bonded contacts as brown dashed lines. Taken from [250] 

3.10. Hot spot residue prediction 

The residues on the protein-protein interface do not contribute equally to the protein-

protein interactions (PPIs). A small subset of residues contributes to the majority of the 

binding free energy, they are called as hot spots [255]. A hot spot is defined as a 

residue, when substitution by an alanine leads to the significant increase in the binding 

free energy of at least 2.0 kcal mol-1 [256]. Conversely, Null-spots (NS) corresponds to 
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residues with (change in binding free energy) ΔΔG binding are lower than 2.0 kcalmol−1 

when mutated to alanine and null-spots exist in the surrounding regions of the hots pots and 

protect them from solvent exposure [257]. Hot spot residues exist in clusters and are well 

conserved and more buried in comparison to other interface residues in the protein-

protein complex [258-261]. Tyr, Arg and Trp amino acids have a greater tendency in 

being a ho tspot [262], while Leu, Thr, Ser and Val are less likely to act as a hot spot. 

Similarly, Asp and Asn have been observed as hot spots more frequently than Glu and 

Gln [263,262].   

       Identifying these hot spot residues within the protein-protein interfaces can help us 

to understand protein-protein interactions and may also help us to modulate protein-

protein binding [264]. We have identified hot spots at protein-protein interface by using 

different computational methods which are freely available online servers including 

KFC (Knowledge-based FADE and Contacts) [265], PredHS [266], Robetta [267, 268] 

and DrugScorePPI server [269].  

     KFC server is a machine learning based tool that utilizes in silico alanine scanning 

mutagenesis, considering hydrogen bonds, atomic contacts and residue sizes for hot 

spot identification [265].  

    PredHS server is a structure-based hot spot prediction method which predicts hot spot 

residues using algorithms based on structural neighborhoods, and then selects optimal 

features using random forest and sequential backward elimination algorithms [266].  

      Robetta [267,268] and DrugScorePPI [269] server predicted hot spot residues 

computational alanine scanning mutagenesis. 

3.11. Virtual Screening  

To access novel drug like compounds, virtual screening has become an important tool. 

To carry out the biological screening of billions of compounds, the experimental efforts 

generally requires more time and cost, therefore, computer-aided drug design 

approaches have become attractive alternatives. In the recent years, virtual screening 

has reached a status of a dynamic and beneficial technology in searching for drug-like 
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novel compounds in the pharmaceutical industry [270].  Virtual screening methods are 

of two types. 

3.11.1. Ligand-based virtual screening 

Ligand based virtual screening can rank novel ligands by 3-D similarity searching or by 

pharmacophore pattern matching. It involves different sequential computational phases, 

including database or library creation, and ranking of compounds accordingly for 

testing. These computational or theoretical methods can be employed to predict the 

putative binding affinities between small molecules and biological receptors of 

pharmaceutical interest [271].  

3.11.2. Structure based virtual screening 

When the target protein structure is available, rapid docking algorithms are used to dock 

the available candidate compounds within the active site of the target protein of interest 

and then the activity of compounds is ranked based on the steric and electrostatic 

components. Structure based virtual screening involves automated and fast docking of a 

large number of chemical compounds against a protein-binding or active site [272-274]. 

3.11.2.1. Structure based virtual screening using DOCK Blaster server 

In this thesis DOCK Blaster server [275] is used to screen potential inhibitors against 

LMTK3 domain. Dock Blaster is an online virtual screening server that picks and scores 

thousands of small molecules when user uploads a target protein structure. DOCK 

Blaster utilizes DOCK 3.6 for docking and ZINC database [276] for ligands. And use 

Pocket Pickker (CLIPPERS) [277] to identify the binding pockets in the target protein. 

The details of virtual screening has been described in Chapter 8 section: 8.3.1.2 

3.12. Energy optimized (E) Pharmacophore model generation 

A pharmacophore is a description of molecular features that are necessary for molecular 

recognition of a ligand by a biological macromolecule. It can also be defined as an 

ensemble of steric and electronic features that is necessary to ensure the optimal 

supramolecular interactions with a specific biological target to trigger (or block) its 
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biological response [278]. Typical pharmacophore features include hydrophobic 

centroids, aromatic rings, hydrogen bond acceptor or donor, cations and anions. These 

pharmacophoric features may be located on the ligand itself or may be located on the 

receptor. In this thesis, Schrodinger drug discovery suite is used for e-pharmacophore 

modelling of LMTK3 inhibitors. Here, at first protein is prepared in Maestro 9.0.111 

(Maestro v 9.0.111 Schrodinger LLC, New York, NY) [279] wherein protein is 

minimized with the restraints using the OPLS 2005 (optimized potential for liquid 

simulations 2005) force field [280]. The Asinex database is used to screen the lead 

compounds and the compounds are then prepared using the Ligprep program (LigPrep, 

version 2.5, Schrodinger, LLC, New York, NY, 2011). This program generates the 

ligands based on the variations in their ionization states, wide pH ranges 5-9, 

combinations of stereoisomers, and tautomers [281]. The processed compounds are 

subjected to high throughput virtual screening protocol using the Glide docking 

algorithm implemented in Maestro 9.2V. The Glide scoring is done based on the Chem 

Score function of Eldridge and group [282], which identifies various types of 

interactions likes hydrophobic interaction, stable hydrogen bonding and metal-ligation 

interactions, and restricts any type of steric interactions. This hierarchical screening 

approach includes high throughput virtual screening (HTVS), standard precision 

docking (SP) and extra precision docking (XP).  

Finally Energy-based pharmacophoric features are generated using the default chemical 

features: hydrogen bond acceptor, donor, hydrophobic (H), negative, positive, and 

aromatic ring, wherein Glide scoring terms are computed and energies are mapped onto 

the atom [283]. Each pharmacophoric feature is first assigned with an energetic value 

which is equal to the sum of the Glide XP contributions made by all the atoms present 

in that site. Based on the energetic terms used in the Glide XP descriptors, the sites are 

quantified and ranked. The e-pharmacophore model generation is explained in detail in 

Chapter 9, section 9.3.3. 
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