Abstract				(i)
Declaration				(vi)
Certificate of supervisor				(vii)
Certificate of	of oral	defense		(viii)
Acknowledg	gemen	its		(ix)
Table of Co	ontents	8		(xi)
List of Figu	ires			(xx)
List of Tab	les			(xxxiv)
Abbreviatio	ns			(xxxvi)
List of Pub	licatio	ns		(xxxviii)
Conference	Proce	edings		(xxxix)
СНАРТЕК	R 1:	Mo	tivation & outline of the Thesis	1-4
1.1		Mo	tivation of the present work	2
1.2		Out	cline of the thesis	3
CHAPTER	R 2:	Int	roduction & Review of Literature	5-29
2.1		Breast	cancer	6
	2.1.1	Classit	fication of breast cancer	6
	2.1.2	Therap	pies	10
		2.1.2.1	Endocrine therapies	10
		2.1.2.2	Drugs targeting Receptor Tyrosine Kinases (RTKs)	10
		2.1.2.3	Chemotherapy and radiotherapy	11
	2.1.3	Endoc	rine therapy resistance	11
2.2		Protein	n kinases	12
	2.2.1	Genera	al architecture of protein kinase	13
		2.2.1.1	N-terminal lobe	13
		2.2.1.2	C-terminal lobe	14
	2.2.2	Active	and inactive structures of protein kinases	16
2.3		Lemur	Tyrosine kinase-3 (LMTK3)	16
	2.3.1	The Ll	MTK family	16
	2.3.2	LMTK	3 and its structure	20
	2.3.3	LMTK	3 and its association with different types of cancers	21

	2.3.4	Role of LMTK3 in breast cancer	22
	,	2.3.4.1 Implication of LMTK3 in ERα positive breast	22
		cancer	
		2.3.4.2 LMTK3 a regulator of ERα	23
	2.3.5	Implication of LMTK3 in triple negative breast cancer	25
		promotes tumor invasion and metastasis through GRB2	
		mediated induction of integrin β_1	
	2.3.6	Role of phosphorylation in LMTK3 activation by CDK5 and its	27
		contribution in breast cancer progression	
	2.3.7	LMTK3 inhibitors	29
2.4		Main objectives of the thesis	29
CHAPT	ER 3:	COMPUTATIONAL METHODS	30-70
3.1		Molecular dynamics (MD) simulations	31
	3.1.1	Historical Background	32
	3.1.2	Theory of molecular dynamics simulation	33
	3.1.3	Force field	34
	3.1.4	Periodic boundary conditions	36
	3.1.5	Long range interactions Ewald sum	37
	3.1.6	SHAKE algorithm	38
	3.1.7	Temperature and pressure computation and control	39
	3.1.8	Water molecule models	40
3.2		Simulation Methodology in AMBER	41
	3.2.1	Simulation environment	42
	3.2.2	Energy minimization	43
	3.2.3	Heating the system	45
	3.2.4	Equilibration	46
	3.2.5	Production phase	46
	3.2.6	Analysis	46
3.3		3D Structure visualization tools	48
	3.3.1	Visual molecular dynamics (VMD)	48
	3.3.2	UCSF Chimera	48
3.4		Potential of mean force	48

	3.4.1	Umbrella sampling	49
	3.4.2	Running the umbrella sampling calculations	50
	3.4.3	The Weighted Histogram Analysis Method (WHAM) for	51
		free-energy calculations	
3.5		Binding free energy calculation using Molecular Mechanics	51
		energies combined with the Poisson-Boltzmann or	
		Generalized Born and Surface Area continuum solvation	
		method (MM-PBSA and MM-GBSA)	
	3.5.1	Free energy calculation using MM-PBSA/GBSA.pl script	52
	3.5.2	Free energy decomposition using MM/PBSA.py script	53
3.6		Molecular docking	55
	3.6.1	Docking methodologies	56
	3	3.6.1.1 Rigid ligand and rigid receptor docking	56
	3	3.6.1.2 Flexible ligand and rigid receptor docking	56
	3	3.6.1.3 Steps performed in AutoDock	56
3.7		In silico prediction of protein-protein interaction	58
	3.7.1	PatchDock web server	59
	3	3.7.1.1 Patchdock web server: Input, output and user	60
		interface	
3.8		ClusPro web server	62
3.9		PDBsum web server	63
	3.9.1	Wiring diagram	64
	3.9.2	Topology diagram	65
	3.9.3	Protein-protein interfaces	65
3.10		Hot spot residue prediction	67
3.11		Virtual Screening	68
	3.11.1	Ligand-based virtual screening	69
	3.11.2	Structure-based virtual screening	69
	3	3.11.2.1 Structure based virtual screening using Dock	69
		Blaster server	
3.12		Energy optimized (E-)pharmacophore model generation	69

CHAPTER 4:		Sali	ient	structural	features	of	Human	Lemur	71-97
		Tyr	cosine	e Kinase-3 (l	LMTK3) d	omai	n from M	olecular	
		dyn	amic	s simulation	study				
4.1		Abstra	.ct						72
4.2		Introdu	uction	ı					72
4.3		Materi	als ar	nd Methods					74
	4.3.1	Structu	ıral m	nodelling and	validation	of LN	MTK3 dor	nain	74
	4.3.2	Seque	nce al	lignment of L	MTK3 don	nain v	with other	kinases	75
	4.3.3	Molec	ular E	Oynamics (M	D) simulati	on of	LMTK3	domain	75
	4.3.4	Analys	sis						75
	4.3.5	LMTK	3-AT	ΓP binding m	echanism				77
4.4		Result	s and	Discussions					77
	4.4.1	Structu	ıral v	alidation of I	LMTK3 dor	nain			77
	4.4.2	Identif	icatio	on of conserv	ed regions i	n LN	ITK3 dom	ain	81
		using 1	nultip	ple sequence	alignment				
	4.4.3	Structu	ıral cl	haracteristics	features of	LM	ΓK3 doma	in	84
		4.4.3.1	RMS	SD analysis					84
		4.4.3.2	Radi	ius of gyratic	on				84
	4	4.4.3.3	B-fa	ctor analysis	and RMSF	ï			85
		4.4.3.4	SAS	SA analysis					85
	4	4.4.3.5	Seco	ondary struct	ure analysis	;			86
	4	4.4.3.6	Hyd	rophobic cor	ntact analysi	is and	l Hydroph	obicity	89
	4	4.4.3.7	Elec	trostatic pote	ential				91
	4	4.4.3.8	Hyd	rogen bond a	ınalysis				92
	•	4.4.3.9	Bind	ding cavity					94
	4.4.4	ATP	bindi	ng pocket of	LMTK3 do	main	l		96
4.5		Conclu	ısions	S					97
CHAPT	ER 5:	Un	veilin	g the trans	ient Protei	n-Pr	otein inte	eractions	98-114
		tha	t mod	dulate the ac	ctivity of E	strog	en Recep	tor(ER)-	
		αb	у Н	uman Lemi	ır Tyrosin	e Ki	nase-3 (I	LMTK3)	
		don	nain:	An in silico	study				
5.1		Abstra	.ct						99

5.2		Introduction	99
5.3		Materials and Methods	102
	5.3.1	Structural modelling and validation of ERa and LMTK3	102
		domain	
	5.3.2	Protein – Protein Docking	103
	4	5.3.2.1 Rigid docking	103
	4	5.3.2.2 Refinement of Complex Structure	103
	5.3.4	Prediction of Interface residues between $\text{ER}\alpha$ and LMTK3	103
		domain	
	5.3.5	ERα-MAPK interaction	103
	5.3.6	Molecular Dynamics simulation of ERα-LMTK3 complex	104
5.4		Results and Discussions	104
	5.4.1	Validation of ERα and LMTK3 structures	104
	5.4.2	Protein-Protein interaction study	105
	5.4.3	Interaction profile between ERα and MAPK	109
	5.4.4	MD simulation study on the $ER\alpha$ -LMTK3 complex	111
5.5		Conclusions	113
СНАРТІ	ER 6:	Unveiling the Protein-Protein interactions between	115-134
СНАРТІ	ER 6:	Unveiling the Protein-Protein interactions between GRB2 and LMTK3 that induce integrin $\beta 1$ during	115-134
СНАРТІ	ER 6:		115-134
СНАРТІ	ER 6:	GRB2 and LMTK3 that induce integrin β1 during	115-134
CHAPTI 6.1	ER 6:	GRB2 and LMTK3 that induce integrin β1 during breast cancer progression and metastasis: an <i>in silico</i>	115-13
	ER 6:	GRB2 and LMTK3 that induce integrin β1 during breast cancer progression and metastasis: an <i>in silico</i> study	
6.1	ER 6:	GRB2 and LMTK3 that induce integrin β1 during breast cancer progression and metastasis: an <i>in silico</i> study Abstract	116
6.1 6.2	ER 6:	GRB2 and LMTK3 that induce integrin β1 during breast cancer progression and metastasis: an <i>in silico</i> study Abstract Introduction	116 116
6.1 6.2		GRB2 and LMTK3 that induce integrin \(\beta 1 \) during breast cancer progression and metastasis: an in silico study Abstract Introduction Materials and Methods	116 116 119
6.1 6.2	6.3.1	GRB2 and LMTK3 that induce integrin \(\beta 1 \) during breast cancer progression and metastasis: an in silico study Abstract Introduction Materials and Methods Modelling and validation of protein structures	116 116 119 119
6.1 6.2	6.3.1 6.3.2	GRB2 and LMTK3 that induce integrin \(\beta 1 \) during breast cancer progression and metastasis: an in silico study Abstract Introduction Materials and Methods Modelling and validation of protein structures Protein-Protein Docking of GRB2 and LMTK3 domain	116 116 119 119 120
6.1 6.2	6.3.1 6.3.2	GRB2 and LMTK3 that induce integrin \(\beta 1 \) during breast cancer progression and metastasis: an in silico study Abstract Introduction Materials and Methods Modelling and validation of protein structures Protein-Protein Docking of GRB2 and LMTK3 domain Molecular dynamics simulations of GRB2-LMTK3	116 116 119 119 120
6.1 6.2	6.3.1 6.3.2 6.3.3	GRB2 and LMTK3 that induce integrin \(\beta 1 \) during breast cancer progression and metastasis: an in silico study Abstract Introduction Materials and Methods Modelling and validation of protein structures Protein-Protein Docking of GRB2 and LMTK3 domain Molecular dynamics simulations of GRB2-LMTK3 complex	116 116 119 119 120 120
6.1 6.2	6.3.1 6.3.2 6.3.3	GRB2 and LMTK3 that induce integrin \(\beta 1 \) during breast cancer progression and metastasis: an in silico study Abstract Introduction Materials and Methods Modelling and validation of protein structures Protein-Protein Docking of GRB2 and LMTK3 domain Molecular dynamics simulations of GRB2-LMTK3 complex Hot spot residue identification at GRB2-LMTK3 interface	116 116 119 119 120 120

	6.4.2	Molecular dynamics simulation analysis	127
	6.4.3	Hot Spot residues at GRB2-LMTK3 interface	131
	6.4.4	Binding free energy using MM-GBSA method	133
6.5	0.4.4	Conclusions Conclusions	134
CHAPTI	ER 7a:	Unveiling the Transient Protein-Protein Interactions	135-150
		that Regulate the Activity of Human Lemur Tyrosine	
		Kinase-3 (LMTK3) Domain by Cyclin Dependent	
		Kinase 5 (CDK5) in Breast Cancer: An in silico	
		Study	
7a.1		Abstract	136
7a.2		Introduction	136
7a.3		Materials and Methods	138
	7a.3.1	Prediction of activation segment and probable	138
		phosphorylation sites in LMTK3 domain	
	7a.3.2	Protein – protein docking	138
	,	7a.3.2.1 Rigid docking	138
	,	7a.3.2.2 Refinement of complex structure	139
	7a.3.3	Prediction of interface residues between CDK5 and	139
		LMTK3 domain	
	7a.3.4	Molecular dynamics simulation of CDK5-LMTK3 complex	139
7a.4		Results and Discussions	141
	7a.4.1	Activation segment and phosphorylation sites determined	141
		in LMTK3 domain	
	7a.4.2	Protein-protein interaction study	142
	7a.4.3	MD Simulation study on the CDK5-LMTK3 complex	147
7a.5		Conclusions	150
СНАРТЕ	E R 7 b:	Effect of activation loop phosphorylation on Human	151-163
		Lemur Tyrosine Kinase-3 (LMTK3) activity: A	
		Molecular Dynamics Simulation Study	
7b.1		Abstract	152
7b.2		Introduction	152

7b.3	Materials and Methods	154
	7b.3.1 Prediction of activation segment and phosphorylation sit	e 154
	in LMTK3 domain: A comparative study with other	er
	kinases (PKA and ERK2)	
	7b.3.2 In silico phosphorylation and mutation of LMTK3 domai	n 154
	at activation segment	
	7b.3.3 Molecular Dynamics (MD) simulation of phosphorylated	d, 155
	unphosphorylated and mutated LMTK3 domain	
	7b.3.4 Trajectory analysis	155
7b.4	Results and Discussions	156
	7b.4.1 Activation segment and phosphorylation site prediction	156
	7b.4.2 Molecular Dynamics (MD) simulation analysis	156
	7b.4.2.1 Stability and Flexibility analysis from RMSD an	d 156
	RMSF	
	7b.4.2.2 Radius of gyration	160
	7b.4.2.3 Energetics	161
7b.5	Conclusions	162
СНАРТЕ	R 8: Structure based virtual screening of high-affinity	164-186
CHAPTE	R 8: Structure based virtual screening of high-affinity ATP competitive inhibitors against Human Lemur	164-186
СНАРТЕ		164-186
СНАРТЕ	ATP competitive inhibitors against Human Lemur	164-186
CHAPTE 8.1	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel	164-186 165
	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel therapeutic target for breast cancer	
8.1	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel therapeutic target for breast cancer Abstract	165
8.1 8.2	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel therapeutic target for breast cancer Abstract Introduction	165 165
8.1 8.2	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel therapeutic target for breast cancer Abstract Introduction Materials and Methods	165 165 167
8.1 8.2	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel therapeutic target for breast cancer Abstract Introduction Materials and Methods 8.3.1 Molecular docking and virtual screening	165 165 167 167 167
8.1 8.2	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel therapeutic target for breast cancer Abstract Introduction Materials and Methods 8.3.1 Molecular docking and virtual screening 8.3.1.1 LMTK3-ATP docking	165 165 167 167 167
8.1 8.2	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel therapeutic target for breast cancer Abstract Introduction Materials and Methods 8.3.1 Molecular docking and virtual screening 8.3.1.1 LMTK3-ATP docking 8.3.1.2 Virtual screening and molecular docking of lea compounds for LMTK3 domain Molecular Dynamics (MD) simulation of LMTK3	165 165 167 167 167 d 167
8.1 8.2	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel therapeutic target for breast cancer Abstract Introduction Materials and Methods 8.3.1 Molecular docking and virtual screening 8.3.1.1 LMTK3-ATP docking 8.3.1.2 Virtual screening and molecular docking of lear compounds for LMTK3 domain	165 165 167 167 167 d 167
8.1 8.2	ATP competitive inhibitors against Human Lemur Tyrosine Kinase-3 (LMTK3) domain- a novel therapeutic target for breast cancer Abstract Introduction Materials and Methods 8.3.1 Molecular docking and virtual screening 8.3.1.1 LMTK3-ATP docking 8.3.1.2 Virtual screening and molecular docking of lear compounds for LMTK3 domain Molecular Dynamics (MD) simulation of LMTK3 8.3.2	165 165 167 167 167 d 167

	8	3.3.3.2	Umbrella sampling simulations	171
8.4		Result	s and Discussions	172
	8.4.1	ATP b	inding pocket of LMTK3 domain	172
	8.4.2	Potent	ial inhibitors for LMTK3	174
	8.4.3	Bioava	ailability of LMTK3-inhibitors	179
	8.4.4	MD si	mulation and free energy calculations	180
	8	3.4.4.1	MM-PBSA/GBSA free energy calculation	183
	8	3.4.4.2	Umbrella Sampling	184
8.5		Conclu	usions	186
CHAPTI	E R 9:	Ide	ntification of potential inhibitors against Human	187-212
		Ler	nur Tyrosine Kinase-3 (LMTK3) domain: An E-	
		pha	armacophore approach	
9.1		Abstra		188
9.2		Introdu	uction	188
9.3		Materi	als and Methods	189
	9.3.1	Structu	aral Modeling and validation	189
	9.3.2	Molec	ular dynamics simulation of Apo- LMTK3 domain	190
	9.3.3	Steps f	for E-Pharmacophore model generation	191
	Ģ	9.3.3.1	Protein preparation	191
	9	9.3.3.2	Receptor Grid Generation	191
	Ģ	9.3.3.3	Small molecular library preparation	191
	g	9.3.3.4	High throughput Virtual Screening (HTVS)	192
	g	9.3.3.5	Energy Optimized (E)-Pharmacophore model	192
			generation	
	9.3.4	Molec	ular dynamics (MD) simulation of the LMTK3-hit	192
		comple	exes	
	9.3.5	Bindin	g free energy calculation and per residue energy	193
		decom	position	
	9.3.6	Potent	ial of mean force (PMF) calculation using Umbrella	194
		Sampl	ing simulations method	
9.4		Result	s and Discussions	194

		Bibliography	
10.2		Future prospects	216
10.1		Overview of results	214
CHAPTER	10:	Summary and Future prospects	214-215
7.3		Conclusions	212
9.5	7.1.0	Conclusions	212
(9.4.6	PMF calculations	211
		decomposition	
Ó	9.4.5	MM-PBSA free energy calculation and per residue energy	205
Ó	9.4.4	MD trajectory analyses of LMTK3-hit complexes	202
Ģ	9.4.3	Binding mode analysis of three best compounds	199
Ç	9.4.2	Database screening and the molecular interaction studies	197
Ģ	9.4.1	Structural validation of LMTK3 domain	194