Chapter	Table	Title	Page No.
2	2B.1	FT-IR assignments of the three ionic salts	2 22
	2B.2	ICP analyses of the three disulfoimidazolium chlrometallates ($\underline{2a}$ - $\underline{2c}$)	2 25
	2B.3	Hammett acidity function H° of <u>2a</u> -2c	2 31
	2B.4	Optimization of the catalyst amount for the preparation of β -amino ketone derivative at room temperature	2 33
	2B.5	Substrate scope study using <u>2a</u> , <u>2b</u> and <u>2c</u> as catalysts	2 34-35
	2B.6	Analysis and instruments	2 37
3	3B.1	Optical density calculation from IR absorbance spectra	3 25
	3B.2	Relative % crystallinity table for the hybrid materials	3 29
	3B.3	Hammett acidity values of the hybrid materials of [Dsim] ₂ [NiCl ₄]/HZSM-5	3 33
	3B.4	Summary of BET analysis	3 37
	3B.5	MB dye degradation rate (%) with reaction time	3 40
	3B.6	Calculation of degradation rate (%) of methylene blue for recycled catalyst	3 44
4	4B.1	FTIR peaks assignment of <u>1</u> @HZSM-5	4 14
	4B.2	Optical density calculation from IR absorbance spectra	4 15
	4B.3	Relative % crystallinity table for the hybrid materials	4 18
	4B.4	Hammett acidity values of [Dsim] ₂ [ZnCl ₄]@HZSM-5	4 20
	4B.5	Summary of BET analysis	4 23

List of Tables

Chapter	Table	Title	Page No.
	4B.6	Optimization of the catalyst amount for the	4 25
		synthesis of <u>3a</u>	
	4B.7	Comparison of catalytic activity of $2d$ with	4 25
		different catalysts	
	4B.8	Substrate scope study of indole derivatives using $\underline{1}$ @HZSM-5 = 17% ($\underline{2d}$) as catalyst	4 26
	4B.9	ICP-OES results of recycled 2d	4 28
5	5B.1	Calculation of Hammett acidity function (H°)	5 37
	5B.2	Optimization of POMs catalyst amount for nitration of naphthalene	5 38
	5B.3	Comparison of catalytic activity for nitration of toluene	5 38-39
	5B.4	Substrate scope study for nitration of aromatics compounds using hybrid catalysts	5 39
6	6B.1	FT-IR band assignments of piperazinium ionic	6 18
		liquids	
	6B.2	Hammett acidity calculation (A _{max} = 379 nm)	6 22
	6B.3	Optimization of the reaction condition for the synthesis of $\underline{2a}$	6 24
	6B.4	Substrate scope study for the synthesis of $2a$ using 2.5 mol% of [TSPi][CF ₃ SO ₃] ₂ under solvent-free grinding condition	6 24

Chapter	Figure	Title	Page No.
1	1.1	Three generations of ionic liquid	1 1
	1.2	Types of ionic liquids on the basis of their design	1 2
	1.3	Classification of ionic liquids based on functionality with examples	1 3
	1.4	Brönsted acidic ionic liquids of different types	1 4
	1.5	Structures of some Lewis acidic halometallates	1 5
	1.6	Various applications of halometallate ILs	1 6
	1.7	Schematic representation of SILPs	1 7
	1.8	Representation of semiconductor band gap excitation and photocatalytic activity	1 8
	1.9	(a) Keggin structure $(XM_{12}O_{40}^{n-})$ & (b) Dawson structure $(X_2M_{18}O_{62}^{n-})$	1 9
	1.10	Three catalysis models of solid POM catalysts	1 9
	1.11	Examples of (a) symmetrical DIL & (b) asymmetrical DIL	1 10
	1.12	Example of asymmetric heteroanionic DIL	1 10
2	2A.1	Summarized presentation of halometallate ILs as catalyst	2 2
	2A.2	Structures of diethyl disulfoammonium chlorometallates	2 6
	2A.3	Structure of [C ₃ SO ₃ Hmim][Cl]-[ZnCl ₂]	2 9
	2A.4	Structures of $[Bmim]_2[NiCl_4]$ and $ImimNi^{2+}$ -IL/SiO ₂	2 11
	2A.5a	Structures of Brönsted acidic ionic liquids	2 16
	2A.5b	Structure of Mannich base	2 16
	2A.6	Structure of 1, 1, 3, 3-tetramethylguanidinium based ILs	2 16

List of Figures

Chapter	Figure	Title	Page No.
	2A.7	Structure of Carboxyl functionalized IL	2 17
	2A.8	Structures of -N alkylsulfonic functionalized	2 17
		imidazolium and phosphonium ILs	
	2A.9	Structure of [TMBSA][HSO ₄] IL	2 17
	2A.10	Structure of [DDPA][HSO ₄] IL	2 18
	2A.11	Structure of geminal Brönsted acidic ILs (GBAILs)	2 18
	2A.12	1-methyl-3-(3-sulfopropyl)-imidazolium ionic liquids	2 19
	2A.13	Structures of –SO ₃ H functionalized surfactant based ionic liquids	2 19
	2A.14	Structure of MSI ₃ PW	2 20
	2A.15	Structure of [Ch-OSO ₃ H]Cl·2ZnCl ₂	2 20
	2A.16	Structure of ILSO ₃ H-TiCl ₅ @Sn-MCM-41 catalyst	2 21
	2B.1	FT-IR spectra of 1, 3- disulfoimidazolium chlorometallates	2 22
	2B.2	¹ H NMR spectra of (a) $2a$ and (b) $2c$	2 24
	2B.3	¹³ C NMR spectra of (a) $\underline{2a}$ and (b) $\underline{2c}$	2 25
	2B.4	 (a) UV-visible absorbance spectra and (b) TAUC plot of <u>2a</u>, <u>2b</u> and <u>2c</u> 	2 26
	2B.5	SEM images of (a) [Dsim] ₂ [ZnCl ₄], (b) [Dsim][FeCl ₄] and (c) [Dsim] ₂ [NiCl ₄]	2 27
	2B.6	EDX images of (a) [Dsim] ₂ [ZnCl ₄], (b) [Dsim][FeCl ₄] and (c) [Dsim] ₂ [NiCl ₄]	2 28
	2B.7	TGA curves of the three ionic solids	2 28
	2B.8	Powder XRD pattern of <u>2a</u>	2 29
	2B.9	Raman spectra of <u>2a</u> , <u>2b</u> and <u>2c</u>	2 30
	2B.10	Hammett plot for three ionic salts in ethanol	2 31

Chapter	Figure	Title	Page No.
	2B.11	Bar diagram for recyclability of catalysts	2 36
3	3A.1	(a) Tetrahedral structure of TO_4 unit ($T = Si$, Al), (b) Single ring tetrahedron structure of zeolite framework & (c) Typical zeolite structure showing three dimensional cages and channels	3 1
	3A.2	(a) Pentasil unit of ZSM-5 and (b) Structure of ZSM-5	3 3
	3A.3	Metal immobilized ZSM-5	3 7
	3A.4	Chemical structures of 4, 4'- (hexafluoroisopropylidene) diphthalicanhydride (6FDA)–2, 3, 5, 6-tetramethyl-1, 4- phenylenediamine (TeMPD) PI and 1-butyl-3- methyl-imidazolium bis(trifluoromethyl- sulfonyl)imide([C ₄ mim][Tf ₂ N])	3 10
	3A.5	Mechanism of photocatalytic degradation	3 14
	3A.6	Structure of methylene blue dye	3 15
	3A.7	Structure of [C ₈ mim] ₂ [Mo ₆ O ₁₉]	3 16
	3A.8	Structure of Rhodamine B	3 16
	3A.9	Structure of methyl orange	3 17
	3A.10	Structure of acid orange 7	3 19
	3B.1	IR spectra of <u>1</u> /HZSM-5 (<u>2a</u> - <u>2e</u>)	3 23
	3B.2	IR absorbance spectra of $\underline{1}$ /HZSM-5 ($\underline{2a-2e}$) with respect to parent HZSM-5 for optical density calculation	3 25
	3B.3	O-H stretching vibrations of <u>1</u> /HZSM-5 (<u>2a-2e</u>)	3 26
	3B.4	TGA graph of <u>1</u> /HZSM-5 (<u>2a</u> - <u>2e</u>) with respect to parent HZSM-5	3 27

Chapter	Figure	Title	Page No
	3B.5	PXRD pattern of <u>1</u> /HZSM-5 (<u>2a</u> - <u>2e</u>) with respect	3 28
		to parent HZSM-5	
	3B.6	Percentage crystallinity graph of <u>1</u> /HZSM-5 (<u>2a</u> -	3 28
		<u>2e</u>) with respect to parent HZSM-5	
	3B.7	Raman spectra of $\underline{1}$ /HZSM-5 ($\underline{2a} \& \underline{2d}$) with	3 29
		respect to parent HZSM-5	
	3B.8	SEM images of <u>2a</u> , <u>2d</u> & HZSM-5	3 30
	3B.9	EDX images of [Dsim] ₂ [NiCl ₄]/HZSM-5	3 31
		composite <u>2d</u>	
	3B.10	Low resolution TEM image of 2d at 0.5µm &	3 32
		high resolution TEM images of HZSM-5, 2a and	
		<u>2d</u> at 20 nm	
	3B.11	Hammett plot of <u>1</u> /HZSM-5 in ethanol	3 32
	3B.12	UV-Visible DRS spectra of <u>1</u> /HZSM-5 (<u>2a-2d</u>)	3 34
		and HZSM-5	
	3B.13	N ₂ -isotherm of (a) HZSM-5, $2c$ and $2d$ (b) $2a$	3 34
		and <u>2b</u>	
	3B.14	BJH plots of <u>2a</u> - <u>2d</u> and HZSM-5	3 35
	3B.15	t-plots of HZSM-5, <u>2a</u> - <u>2d</u>	3 36
	3B.16	(a) Photoluminescence emission spectra of	3 37
		$\underline{1}$ /HZSM-5 ($\underline{2a}$ - $\underline{2d}$) & (b) Gaussian fitting curves	
		of <u>2b</u>	
	3B.17	UV-Visible analysis of MB dye degradation	3 38
		using HZSM-5, <u>2c</u> and <u>2d</u>	
	3B.18	(a) Plot of degradation rates (%) of MB with	3 40
		respect to reaction time for <u>2c</u> , <u>2d</u> and HZSM-5	
		(b) Plot of A_t/A_0 versus irradiation time	
	3B.19	1 st order regression plots of MB dye degradation	3 41
	3B.20	MB degradation using 20 mg of <u>2c</u>	3 41
	3B.21	Schematic representation of methylene blue	3 42
		degradation	

Chapter	Figure	Title	Page No.
	3B.22	TOC removal percentage of $\underline{2c}$ and $\underline{2d}$ with	3 43
		respect to HZSM-5	
	3B.23	FTIR spectra of methylene blue (MB) before	3 43
		degradation and after degradation	
	3B.24	UV-visible analysis of MB dye degradation by	3 44
		recycled catalyst <u>2c</u>	
	3B.25	Dye degradation rate (%) of $2c$ for four	3 45
		consecutive cycles	
	3B.26	(a) FTIR spectra & (b) PXRD pattern of <u>2c</u>	3 45
		(recycled) with the fresh $\underline{2c}$	
4	4A.1	Importance of indoles	4 2
	4A.2	Some examples of biologically active indole	4 3
		derivatives	
	4A.3	Classification of indole synthesis	4 4
	4A.4	Structure of choline chloride.2ZnCl ₂	4 6
	4A.5	Structure of Brönsted acidic ionic liquids	4 6
	4A.6	Structure of [(HSO ₃ -p) ₂ im][CF ₃ SO ₃]	4 8
	4A.7	Structure of [cmmim][BF ₄]	4 8
	4B.1	FTIR spectra of <u>1</u> @HZSM-5 (<u>2a-2e</u>) & HZSM-	4 13
		5	
	4B.2	IR absorbance spectra of <u>1</u> @HZSM-5 (<u>2a-2e</u>)	4 14
	4B.3	OH stretching vibrations of <u>1</u> @HZSM-5 (<u>2a-2e</u>)	4 15
	4B.4	TGA graph of <u>1</u> @HZSM-5 (<u>2a-2e</u>), HZSM-5 &	4 16
		1	
	4B.5	(a) PXRD patterns of <u>1</u> @HZSM-5 (<u>2a-2e</u>),	4 17
		HZSM-5 & $\underline{1}$ and (b) Percentage crystallinity	
		graph of <u>1</u> @HZSM-5 (<u>2a-2e</u>) with respect to	
		parent HZSM-5	

Chapter	Figure	Title	Page No.
	4B.6	Raman spectra of <u>1</u> @HZSM-5 (<u>2a</u> & <u>2d</u>) with	4 18
		respect to parent HZSM-5	
	4B.7	SEM & EDX images of <u>2a</u> , <u>2d</u> and HZSM-5	4 19
	4B.8	Hammett plot of $\underline{1}$ @HZSM-5 in ethanol	4 20
	4B.9	FTIR analysis of Lewis acidity determination of	4 21
		<u>1</u> @HZSM-5 using pyridine	
	4 B .10	UV-Visible DRS spectra of <u>1</u> @HZSM-5 (<u>2a</u> -	4 22
		<u>2d</u>) with respect to HZSM-5	
	4 B .11	(a) N ₂ -isotherm of HZSM-5 and $\underline{2d}$ (b) BJH	4 22
		curve of HZSM-5 and <u>2d</u>	
	4B.12	t-plots of HZSM-5 and <u>2d</u>	4 23
	4B.13	Recyclability profile of <u>2d</u>	4 28
	4B.14	PXRD pattern of recycled $2d$ alternative cycles	4 28
5	5A.1	Structure of [MIMPSH] _n H _{3-n} PW	5 4
	5A.2	Structure of SWIL	5 7
	5A.3	Structures of heteropolyacid based ionic salts	5 9
	5A.4	Structure of P(VB-VMS)PW	5 10
	5A.5	Structures of heteropolyanion-based ionic	5 13
		hybrids S2SiIH, S2PIH and S4SiIH	
	5A.6	Structures of gel electrolyte POM	5 13
	5A.7	Structures of general cations	5 17
	5A.8	Cation and anions of the two ionic liquids	5 18
	5A.9	Structure of caprolactum based ionic liquids	5 18
	5A.10	Structures of quaternary ammonium cations used by Wang <i>et al.</i>	5 19
	5A.11	Structure of [bmim][HSO ₄] ionic liquid	5 19
	5A.12	Structure of –SO ₃ H functionalized ionic liquids	5 21

Chapter	Figure	Title	Page No.
	5A.13	Structures of trialkanylammonium based	5 21
		sulfonic acid functionalized IL	
	5A.14	Structure of [Msim]-NO ₃	5 23
	5A.15	Structure of [pyridine–SO ₃ H][NO ₃]	5 24
	5B.1	¹ H NMR spectra of (a) [mdsim] ₃ [PW ₁₂ O ₄₀] &	5 26
		(b) [mdsim] ₃ [PMo ₁₂ O ₄₀]	
	5B.2	13 C NMR of (a) [mdsim] ₃ [PW ₁₂ O ₄₀] & (b)	5 27
		$[mdsim]_{3}[PMo_{12}O_{40}]$	
	5B.3a	³¹ P NMR spectra of (a) $[mdsim]_3[PW_{12}O_{40}]$ &	5 28
		(b) phosphotungstic acid	
	5B.3b	³¹ P NMR spectra of (a) [mdsim] ₃ [PMo ₁₂ O ₄₀]	5 29
		& (b) phosphomolybdic acid	
	5B.4	FTIR spectra of $[mdsim]_3[PW_{12}O_{40}]$,	5 30
		[mdsim] ₃ [PMo ₁₂ O ₄₀], PTA, PMA and	
		[mdsim][Cl]	
	5B.5	TGA graph of POMs with respect to the	5 31
		parent [mdsim][Cl]	
	5B.6	Powder XRD analysis of two polyoxometalate	5 32
		salts	
	5B.7	Raman spectra of the polyoxometalates	5 32
	5B.8	UV-Vis diffuse reflectance spectra of (a)	5 33
		$[mdsim]_3[PW_{12}O_{40}]$ with $H_3PW_{12}O_{40}$ (PTA)	
		and (b) $[mdsim]_3[PMo_{12}O_{40}]$ with	
		H ₃ PMo ₁₂ O ₄₀ (PMA)	
	5B.9	SEM images of (a) $[mdsim]_3[PW_{12}O_{40}]$ & (b)	5 34
		$[mdsim]_{3}[PMo_{12}O_{40}]$	
	5B.10	EDX images of (a) $[mdsim]_3[PW_{12}O_{40}]$ and	5 35
		(b) [mdsim] ₃ [PMo ₁₂ O ₄₀]	
	5B.11(a)	EDX mapping of N, S, O and W for	5 35
		$[mdsim]_{3}[PW_{12}O_{40}]$	

Chapter	Figure	Title	Page No.
	5B.11(b)	EDX mapping of N, S, O, P and Mo for	5 36
		$[mdsim]_{3}[PMo_{12}O_{40}]$	
	5B.12	Hammett plots of 2-methyl	5 36
		disulfoimidazolium POM salts with respect to	
		the parent acids	
	5B.13	Reusability profile of the [mdsim] ₃ [PW ₁₂ O ₄₀]	5 41
	5D 14	catalyst	C 4 1
	5B.14	(a) PXRD and (b) FT-IR spectra of fresh and	5 41
6	6A.1	recycled $[mdsim]_3[PW_{12}O_{40}]$ catalyst Structure of N, N, N', N'-	6 2
U	0A.1	tetramethylpiperazinium dication	0 2
	6A.2	Structure of 1, 4-piperazinium hydrogen	6 4
		sulfate	-1-
	6A.3a	Some monosubstituted pyrimidine based	6 6
		antibacterial drugs	
	6A.3b	Some disubstituted pyrimidine based drugs	6 6
	6A.3c	Some trisubstituted pyrimidine derivatives	6 6
	6A.3d	Some important tetrasubstituted pyrimidine	6 7
		derivatives	
	6A.4	Pyrimidine molecules containing drugs with	6 7
		anti-cancer activities	
	6A.5	Structures of Si-[sbSipim][PF ₆] and MNPs-IL-	6 12
		HSO ₄	
	6A.6	Structure of [msi] ₃ [PW]	6 12
	6A.7	Structures of BAIL catalysts used for	6 13
		Biginelli-type reaction	
	6B.1	FT-IR spectra of $[TSPi][X]_2$ (X = Cl, CF ₃ SO ₃ ,	6 17
		TsO)	
	6B.2	(a) ¹ H NMR and (b) ¹³ C NMR of $[TSPi][Cl]_2$	6 19
	6B.3	(a) ¹ H NMR and (b) ¹³ C NMR of	6 20
		[TSPi][TsO] ₂	

Chapter	Figure	Title	Page No.
	6B.4	TGA graph of $[TSPi][X]_2$ (X = Cl, CF ₃ SO ₃ ,	6 21
		TsO)	
	6B.5	Hammett plot of dicationic ionic liquids in	6 22
		ethanol	
	6B.6	Recyclability profile of [TSPi][CF ₃ SO ₃] ₂	6 26
	6B.7	FTIR spectra of used catalyst (after 3 rd cycle)	6 26
		with parent IL	

Chapter Scheme		Title	Page No.	
2	2A.1	Synthesis of $[HO_3S-(CH_2)_3-NEt_3]Cl-FeCl_3$ (x = 0.67)	2 4	
	2A.2	Synthesis of 3-methyl-1-sulfonic acid imidazolium metal chlorides	2 4	
	2A.3	Synthesis of <i>bis</i> (indolyl) methane derivative	2 5	
	2A.4	Synthesis of triphenyl sulfo phosphonium chlorometallates $[TPSP]_n[X]$ where $n = 1$ or 2; X = FeCl ₄ ⁻ , Zn ₂ Cl ₆ ²⁻ , NiCl ₄ ²⁻ , MnCl ₄ ²⁻	2 5	
	2A.5	Three component synthesis of 2, 3-dihydro-1, 2, 3-trisubstituted-1 <i>H</i> -naphth [1, 2-e] [1, 3] oxazines	2 6	
	2A.6	Synthesis of acridines using [DEDSA][FeCl ₄] and [DEDSA] ₂ [Zn ₂ Cl ₆] catalysts	2 6	
	2A.7	Synthesis of (a) (3-sulfonic acid)-propyltriethyl ammonium chlorozincinates $[HSO_3-(CH_2)_3-NEt_3]Cl-ZnCl_2$ and (b) 1-(3-sulfonic acid)-propyl-3-methylimidazole chlorozincinates ($[HO_3S-(CH_2)_3-mim]Cl-ZnCl_2$)	2 8	
	2A.8	Dimerization of rosin	2 9	
	2A.9	Synthesis of 1, 3-disulfoimidazolium chlorometallates	2 12	
	2A.10	Synthesis of β -amino carbonyl compounds	2 12	
	2A.11	Three component Mannich reaction	2 14	
	2A.12	One-pot Mannich-type reaction catalyzed by Yb(OTf) ₃ in ionic liquid	2 15	
	2A.13	HPA catalyzed Mannich reaction in ionic liquid	2 15	
	2A.14	H ₃ BO ₃ –SiO ₂ /ionic liquid ([bmim][PF ₆]) catalyzed Mannich reaction	215	

Chapter	Scheme	Title	Page No.	
	2A.15	-SO ₃ H functionalized morpholinium ILs synthesized by Yue <i>et al</i> .	2 18	
	2A.16	Mannich reaction catalyzed by BASCs	2 20	
	2A.17	Mannich reaction catalyzed by $(MSI)_3PW$ in $[BMI][NTf_2]$	2 20	
	2B.1	Plausible mechanism of -SO ₃ H bearing IL catalyzed Mannich-type reaction	2 35	
3	3A.1	Formation of "hydroxyl nest"	3 5	
	3A.2	Synthesis of [bmim][PF ₆]- Pd(OAc) ₂ immobilized ionic liquid functionalized MFI catalyst	3 8	
	3A.3	Suzuki coupling reaction catalyzed by IL supported catalyst	3 8	
	3A.4	ZSM-5-([mim][BF ₄]) catalyzed synthesis of spiro[N-substituted indole-pyridothiazines]	3 9	
	3A.5	Synthesis of spiro [pyrazolo[3, 4- e][1,5]benzothiazepine] derivatives	3 9	
	3A.6	Photocatalytic degradation mechanism of [bmim][OH]-TiO ₂ system	3 15	
	3A.7	Mechanistic pathway of MO photodegradation over IL-BiOI	3 17	
	3A.8	Synthesis of the catalytic membrane	3 18	
	3A.9	Schematic illustration of $PW_{12}O_{40}^{3-}$ based PIL Janus nanosheets as a solid surfactant in degradation of MO	3 19	
	3A.10	Stepwise synthesis of Silica-PIL-Au	3 21	
	3A.11	Preparation of $[Dsim]_2[MCl_4]/HZSM-5$ composites where $M = Ni^{+2}$	3 22	

Chapter	Scheme	Title	Page No.
	3A.12	Method of photocatalytic degradation of methylene blue (MB) using [Dsim] ₂ [NiCl ₄]/HZSM-5 composites	3 22
4	4A.1	Synthesis of [Dsim] ₂ [ZnCl ₄]@HZSM-5	4 2
	4A.2	Fischer indole synthesis reported by Rebeiro <i>et al</i> .	4 6
	4A.3a	Brönsted acidic ILs bearing two alkyl sulfonic acid groups	4 7
	4A.3b	Preparation of indoles using -N alkylsulfonic acid IL catalyst	4 7
	4A.4	(a) Synthesis of tetrahydrocarbazole derivatives and (b) synthesis of 2, 3-dimethyl indole derivatives	4 9
	4A.5	Synthesis of 1, 3-dialkylimidazolium bromide ILs	4 9
	4A.6a	Synthesis of supported ILSO ₃ H-SiO ₂	4 10
	4A.6b	Fischer indole synthesis catalyzed by $ILSO_3H-SiO_2$	4 10
	4A.7a	Synthesis of [TMGH][Carboxylate]	4 11
	4A.7b	Synthesis of [TMGHPS][X] ionic liquids	4 11
	4A.7c	Synthesis of indoles from 7-methoxy-2- tetralones toward alkaloid core	4 11
	4A.8	Synthesis of DMAP based ionic liquids	4 11
	4A.9	Fischer indole reaction	4 12
	4B.1	Synthesis of 1, 2, 3, 4-tetrahydrocarbazole	4 24
	4B.2	Mechanism of Fischer indole synthesis catalyzed by $\underline{1}$ @HZSM-5 = 17% ($\underline{2d}$)	4 27

Chapter	Scheme	Title	Page No.	
5	5A.1	Synthesis of heteropolyacid (HPA) salts	5 3	
	5A.2	Three component Mannich and Hantzsch reactions catalyzed by (MSI) ₃ PW supported in [bmim][NTf ₂] ionic liquid	5 4	
	5A.3	Synthesis of 2-arylbenzimidazoles using MSI ₃ PW	5 5	
	5A.4	Synthesis of $[SO_{3}H(CH_{2})_{4}Mim]_{n}H_{3-n}PMo_{12}O_{40}$ (n = 1, 2, 3)	5 6	
	5A.5	Synthesis of (PYBS) ₃ PW ₁₂ O ₄₀	5 6	
	5A.6	(PYBS) ₃ PW ₁₂ O ₄₀ catalyzed synthesis of 14-aryl- 14 <i>H</i> dibenzo[a, j]xanthenes	5 6	
	5A.7	Synthesis of Poly(VMPS)-PW	5 7	
	5A.8	Synthesis of SWIL/SiO ₂	5 8	
	5A.9	Transesterification of trimethylolpropane	5 9	
	5A.10	Preparation of poly(VPyPS)-PW	5 9	
	5A.11	Poly(VPyPS)-PW catalyzed synthesis of 2,3- dihydroquinazolin-4(1H)-ones	5 10	
	5A.12	Synthesis of [Ch-OSO ₃ H] ₃ W ₁₂ PO ₄₀	5 11	
	5A.13	Synthesis of immobilized HPW-PMIMPS-SBA- 15 materials	5 11	
	5A.14	Synthesis of S4SiIL and S3PIL	5 12	
	5A.15	Synthesis of [Simp] ₃ PW ₁₂ O ₄₀	5 14	
	5A.16	Synthesis of N-SO3H functionalized 1, 3- disulfoimidazoliumPOM-salts POM-salts [mdsim]3[PW12O40] and [mdsim]3[PM012O40]	5 15	
	5A.17	Reaction of toluene and 67% nitric acid in three different ionic liquids	5 17	

Chapter	Scheme	Scheme Title	
	5A.18	Brönsted acidic ionic liquid catalyzed nitration by Qiao <i>et al</i> .	5 20
	5A.19	Mononitration of phenols using [Msim][Cl]	5 22
	5A.20	Mechanism of aromatic nitration catalyzed by PS-[SO ₃ H PMIM][HSO ₄]	5 23
	5B.1	Mechanism for nitration of naphthalene using POM salt as catalyst	5 40
6	6A.1	Synthesis of 1, 4-disulfopiperazine-1, 4- diiumchloride	6 2
	6A.2	Preparation of 2, 2'-arylmethylene- <i>bis</i> (3- hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) (I) & 1, 8-dioxooctahydroxanthene (II) derivatives using [H-pi]HSO ₄	6 3
	6A.3	[H-pi]HSO ₄ catalyzed synthesis of imidazo [1, 2- a] pyrimidines (I) and triazolo [4, 3-a] pyrimidines (II)	6 3
	6A.4	Synthesis of piperazine-1, 4-diium dihydrogenphosphate	6 4
	6A.5	Synthesis of 5-arylidene barbituric acid derivatives (I) & pyrano [2, 3, d] pyrimidinone(thione) derivatives (II) using $[H_2-Pip][H_2PO_4]_2$	6 4
	6A.6	Synthesis of $[TSPi][X]_2$ (X = Cl, CF ₃ SO ₃ & TsO)	6 5
	6A.7	Classical Biginelli reaction	6 8
	6A.8	Synthesis of 5-unsubstituted-3, 4- dihydropyrimidin-2(1H)-ones	6 8
	6A.9	Synthesis of 5-cyano-dihydropyrimidinones reported by Schmidt <i>et al</i> .	6 8

Chapter	Scheme	Title	Page No.
	6A.10	Biginelli-type reaction mediated by Brönsted base	6 8
	6A.11	TMSCl catalyzed synthesis of DHPMs from dimedone	6 9
	6A.12	One-pot synthesis of dihydropyrimidines	6 9
	6A.13	Synthesis of 4, 6-(4-substituted aryl)-2-thioxo- 1,2,3,4-tetrahydro-pyrimidin-5-yl-propanoic acid	6 9
	6A.14	Biginelli reaction involving cyclopentanone	6 9
	6A.15	Microwave assisted synthesis of DHPMs	6 10
	6A.16	Multistep route for 5-unsubstituted 3, 4- dihydropyrimidin- $2(1H)$ -ones	6 10
	6A.17	General scheme for Biginelli reaction	6 12
	6A.18	Conversion of dihydropyrimidones to 2-alkyl pyrimidines via Suzuki coupling	6 14
	6A.19	Transformation of dihydropyrimidones to pyrimidin-2-amines via Mitsunobu reaction	6 15
	6A.20	Synthesis of 2-amino-4-arylpyrimidines	6 15
	6A.21	One pot two step synthesis of 2-amino pyrimidine derivatives	6 16
	6B.1	Synthesis of 2-amino-4, 6-phenyl pyrimidine	6 23
	6B.2	Mechanism for two step synthesis of 2-amino pyrimidine derivative	6 25

List of Abbreviations

$^{1}\mathrm{H}$	Proton NMR
¹³ C	Carbon-13 isotope
MWI	Microwave Irradiation
NMR	Nuclear Magnetic Resonance
PXRD	Powder X-ray Diffraction
BET	Brunauer-Emmett-Teller
BJH	Barrett-Joyner-Halenda
SEM	Scanning Electron Microscopy
EDX	Energy Dispersive X-Ray
TEM	Transmission Electron Microscope
FT-IR	Fourier Transform-Infrared
CHN	Carbon Hydrogen Nitrogen
ICP-OES	Inductively Coupled Plasma Atomic Emission Spectroscopy
TOC	Total Organic Carbon
JCPDS	Joint Committee on Powder Diffraction Standards
TLC	Thin Layer Chromatography
ILs	Ionic Liquids
[Dsim]	Di-sulfonic Imidazolium
[Mdsim]	Methyl-disulfoimidazoium
[TSPi]	Tetrasulfopiperazinium
PTA	Phosphotungstic acid
PMA	Phosphomolybdic acid
POMs	Polyoxometalates
BAILs	Brönsted Acidic Ionic Liquids
<i>p</i> -TSA	Para Toluene Sulfonic acid
CDCl ₃	Deuterated chloroform (used as NMR solvent)
DMSO-d ₆	Dimethyl sulfoxide (used as NMR solvent)
DCM	Dichloromethane
Me	Methyl
MeOH	Methanol
EtOH	
EIOH	Ethanol

0	Ortho
т	Meta
i.e.	That is
J	Coupling constant (in NMR)
S	Singlet (NMR)
d	Doublet (NMR)
t	Triplet (NMR)
mg	Milligram
mL	Millilitre
mmol	Millimole
mol	Mole
Mp.	Melting Point
No.	Number
ppm	Parts per million (in NMR)
r.t.	Room Temperature
UV-Vis	Ultra Violet Visible
VOC	Volatile Organic Compound
W	Watt
°C	Degree Celsius
%	Percentage
<,>	Greater or smaller than
δ	chemical shift (in NMR)
Fig.	Figure
λ	Wavelength