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1.1 Ionic liquids: A brief overview as catalyst 

Ionic liquids (ILs) have been explored as room temperature liquids or molten salts with 

enormous importance in organic synthesis as reaction medium or solvent-catalyst. The 

three generations of ionic liquids (Fig.1.1) namely (1) 1
st
 generation in 1980s-

chloroaluminates, (2) 2
nd

 generation in 1990s-air and water stable ILs and (3) 3
rd

 

generation in 2000-task specific ILs [1] mainly composed of endless number of 

appropriate combination of cations and anions involving ionic-covalent interactions 

which led to modification of physical and chemical properties of the ionic material to 

achieve their required target specificity [2-7]. In organic reactions, they have been 

employed as benign solvent owing to diverse physical properties accordance to their ion-

pair composition which includes viscosity, thermal stability, vapor pressure, non-

flammability etc. Most of the ionic liquids have been studied as excellent homogeneous 

catalytic systems with greater catalytic ability and efficiency in the field of organic 

synthesis [1, 3 & 8]. A large number of heterogeneous catalytic systems have been 

developed to improve thermal, air and water sensitivity of the ILs after immobilization on 

high surface area materials like silica, alumina, zeolite, clay, polymer etc. through 

physical or chemical interactions [9-11]. 
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Fig.1.1: Three generations of ionic liquid 

Further they can be widely divided into different categories according to the nature of 

their design (Fig.1.2). 
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Fig.1.2: Types of ionic liquids on the basis of their design 

Synthetic strategies of designing an IL catalyst consist of variation of ionic counter parts 

and involve suitable procedure to achieve the same. Properties like homogeneity and 

heterogeneity can be introduced by following specific predefined designs or the modified 

ones. Thus a vast array of IL catalysts has been growing since last few decades and 

extending its viability through the unlimited scopes they possess. 

1.2 Ionic liquids derived catalysts: Basis and synthetic perspective 

Catalysts designed from ionic liquids are multidirectional in terms of functionality. They 

have been synthesized according to the specific necessity regarding the application which 

they perform. The different types of ionic liquid material can be categorized as mono, di, 

tri, tetra cationic etc. based on the number of cations in their structure (Fig.1.3) [12]. In 

addition to that they can also be subdivided as acidic [13], basic [14], metal based [3], 

chiral [15], neutral [16, 17] ILs etc. according to their nature of cation or anion and also 

characteristic functional groups tethered to the ions for the definite target. 

Impregnation of acidic, basic or metal based ionic liquids on porous support transfer the 

specific function of these ILs to its surface by distribution of active sites of the ILs which 

fulfill the need of efficient reusable heterogeneous catalyst [18]. This method eliminates 
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several limitations of IL catalysis in liquid state such as viscosity, hydrophilicity, non-

recyclability and also thermal degradability. Depending on their characteristic task-

specific nature, the ionic liquid derived materials are utilized in organic transformations 

[19-23], asymmetric synthesis [24] analytical process [25], surfactants [26], biomass 

conversion [27], electro catalysts [28], electrochemistry, photochemistry and other 

physicochemical processes [29-32]. These designs solely depend on the properties of 

those catalysts which are only aimed for some particular applications. For example, some 

room temperature ionic liquids exhibit good electrochemical stability within 

electrochemical window of 4.0-5.7 V. Such types of IL have been used as appropriate 

electrolyte in conducting polymer based electrochemical devices [33-35]. Metal based 

ionic liquids with semiconductor properties can be utilized as photocatalyst for various 

photochemical reactions. Thus owing to such diverse properties ionic liquids are the 

preferable candidates in the field of catalysis. 
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Fig.1.3: Classification of ionic liquids based on functionality with examples 
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This section offers brief description of some important types of ionic liquid catalysts 

including Brӧnsted and Lewis acidic, halometallates, supported ionic liquid phase, 

polyoxometalates and dicationic ionic liquids. 

1.2.1 Brӧnsted and Lewis acidity in ionic liquids 

Acidity of ionic liquids can be described as Lewis acidic (LA) or Brӧnsted acidic (BA) 

depending on the deficiency of electrons or presence of ionizable proton(s). Some of the 

ionic liquids contain more than one Brӧnsted or Lewis acidic sites and also possess 

combination of both acidic functionalities. The acidic proton(s) of Brӧnsted acidic ionic 

liquids (BAILs) are generally found on nitrogen and oxygen atom of the anion or cation 

or both ion-pairs. Many times these protons reside on acidic substituents like -COOH, -

SO3H etc. which are tethered to the cation (Fig. 1.4) .They are also sub-classified as 

protic ionic liquids (PILs) containing one or more acidic protons either on the cation, the 

anion or both the ionic components. The -SO3H functionalized BAILs are especially 

useful as efficient alternative recyclable liquid phase catalysts of Brӧnsted acids like 

H2SO4, HCl etc. in organic reactions [36] Anchoring of -SO3H groups on ammonium, 

pyridinium or imidazolium cations can be done by introducing -N alkyl sulfonic or -

NSO3H groups with the cations of ILs in presence of variety of organic or inorganic 

anions or complex metal halide anions [37]. On the other hand, electron accepting ability 

of the Lewis acidic ionic liquids (LAILs) are commonly located in the complex metal 

based anions (Fig.1.5). They are synthesized after treatment of neutral ionic liquid with 

Lewis acidic metal salts. For example [FeCl4]
-
 anion obtained from the reaction of 

anhydrous FeCl3  with neutral 1-butyl-3-methyl imidazolium chloride under anhydrous 

condition exhibits Lewis acidic properties [38]. 
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Fig.1.4: Brӧnsted acidic ionic liquids of different types 
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Fig.1.5: Structures of some Lewis acidic halometallates 

Moisture sensitivity is one of the major limitations of chloroaluminate ionic liquids which 

cover a large number of Lewis acidic ionic liquids [39, 40]. Many attempts have been 

made to continuous search for moisture stable LAILs by mixing halide salts of transition 

metal (e.g. Fe, Co, Zn, Cu, Sn, Mn etc.) or Group IIIA metal (e.g. Ga, In) [41-44] or rare 

earth elements [45] in different ratios with neutral organic halides. Interestingly, some of 

them were isolated as molten salts or in solid state at room temperature with higher 

melting points [46-49]. Being very powerful Lewis acid they can actively take part in 

organic reactions. 

1.2.2 Halometallates: Versatile approaches 

Halometallates are formed by the reaction of a metal halide with an organic halide salt, 

and notably, in the early days the research was limited almost exclusively to air and 

moisture sensitive chloroaluminate(III) ionic liquids [4]. Reviews of literature mentioned 

a large number of halometallate ionic liquid systems with varied thermal and water 

sensitive nature such as chlorocuprate(I) [50], chlorogallate(III) [51], [C4mim][Cl-NbCl4], 

[C4mim][Cl-ZnCl2] [52], chloroferrate(II) [53], chloroindate(III) [54], chlorostannate(II) 

[55, 56], tetrachlorometallate(II) ([MCl4]
2-

, M = Fe, Ni, Co, Zn) [57], 

tetrachloroaureate(III) [58] etc. Anionic speciation leads to variation in physical 

properties like viscosity, electrical conductivity, Lewis acidity, moisture and thermal 

stability depending on the identity and concentration of metal species [59]. The nature of 

metal and mole fraction of metal chloride to organic chloride salts (χMClx) are two main 

factors that induce the anionic speciation in Group IIIA halometallate ILs and 

consequently determine their catalytic activity [60-66]. Due to their tunable properties, 

halometallate ILs were explored in the fields of electrochemistry, catalysis, and 

separation processes as well as in biomass processing [3-6, 67]. They have been 

extensively studied in various catalytic and physicochemical activities (Fig.1.6). 
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Fig.1.6: Various applications of halometallate ILs 

1.2.3 Supported ionic liquid phase: Advances in catalysis 

In spite of the excellent catalytic ability of room temperature ionic liquids or melts they 

have been facing several shortcomings because of high cost, hygroscopic nature, water 

miscibility and problem of recyclability in liquid state etc. Immobilization of ionic liquids 

on to various inorganic/organic supports creates very stable catalytic systems which limit 

the use of excess amount of expensive ionic liquids in catalysis. These immobilized or 

supported ionic liquids are known as supported ionic liquid phase (SILPs). Inorganic 

porous material such as silica gel, zeolites, clay are considered as better support for ionic 

liquids as they can preferably interact with the functionalized sites of the respective ionic 

liquids by covalent anchoring or by physisorption making the concentration of active 

species higher in the interface of the support [7, 68]. Also the larger surface area provides 

many advantages of heterogeneous catalyst (Fig.1.7). 
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Fig.1.7: Schematic representation of SILPs 

Olefin hydroformylation [7], gas phase hydroformylation of propene [69], Friedel-Crafts 

alkylation [70] are some examples of SILPs catalyzed reactions along with Rh and other 

metal complexes. The meso structured hybrid organic-inorganic silica materials 

containing imidazolium and Si-C covalently bonded moiety synthesized by conventional 

sol-gel procedures in the presence of surfactant template and tetraethyl orthosilicate have 

recently been used as supports to immobilize transition metal complexes such as Pd for 

Suzuki cross coupling reactions and for in situ formation of NHC-stabilized nanoparticles 

[71, 72]. Another type of support such as polystyrene functionalized resins synthesized 

from Merrifield resin produce SILPs with variation in linker length, the loading level of 

the IL portion and the nature of the IL anion [73]. Best catalytic properties were noticed 

for the materials with longest linker. Polyethylene glycol was also an efficient support for 

the ILs which have also been found to enhance catalytic reactions such as C-C coupling 

with Pd(OAc)2, thus providing a ligand less recyclable system [74]. Thus, SILPs are the 

materials of greater ability as tunable catalysts. 

1.2.4 Low band gap materials: Supported photocatalysts 

Review of literature reveals that many transition metal oxide and other metal salts have 

been studied as homogeneous or heterogeneous photo catalysts for numerous organic 

reactions including photocatalytic degradation of organic pollutants e.g. dye, pesticide 

etc. [75, 76]. Semiconductor materials with low band gap values are widely employed as 

photocatalysts [77]. The use of heterogeneous photocatalysts provides easy separation of 

photo catalyst from reaction mixture without loss of much catalytic activity for next cycle 

of reaction for a large variety of reactions at different pH values. Semiconductor 
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heterogeneous photocatalysis involving advanced oxidation process (AOP) is a versatile, 

low-cost and environmentally benign treatment technology for a host of pollutants 

(Fig.1.8) [78, 79]. This semiconductor concept can also be applied for the halometallate 

ILs which have certain low band gap values due to metal halide anion and can be 

considered as semiconductor materials. As the halometallates face some disadvantages 

such as moisture sensitivity, low thermal stability, they can acquire advantages by 

modified into the SILPs. Those semiconductor halometallates immobilized on siliceous 

zeolite like ZSM-5 will have the ability to photocatalyze degradation of dye molecules in 

aqueous solution involving AOP under sunlight or UV light. Thus a new class of 

halometallate based SILP supported materials is the probable candidate for the 

photocatalysis. 

 

Fig.1.8: Representation of semiconductor band gap excitation and photocatalytic activity 

1.2.5 Polyoxometalates: Heteropolyacid based catalysts 

Polyoxometalates are the combination of cations and polyanion clusters [80] in which the 

oxo metal polyhedra of MOx (x = 5, 6) are the basic construction units and M generally 

represents early transition metals (TMs) in their high oxidation state (e.g. W, Mo, V, Nb, 

Ta) which can be partly substituted by other metals (e.g. Al, Ti, Cr, Mn, Fe, Co, Ni, Zn, 

Zr, Ru, Pd, Ln, etc.) [81-83]. Parent acids of these POMs are mainly heteropolyacids 

centered with heteroatom containing only proton as their cation (HPAs). Unlimited 

numbers of organic cations deal in multiple ways to introduce different functionality in 

POMs as they are designable and flexible enough to tune into diverse properties. On the 

other hand, the limited numbers of inorganic cations include mainly H
+
, Na

+
, K

+
, Cs

+
, 

NH
4+, 

Ag
+
, etc. which are unlikely to undergo any modification. Ability of artificial 
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tuning and structural variations of polyhedral framework in POMs instigate nature like 

acidity, basicity, redox stability and chirality. Between Keggin-type and Dawson type 

POMs, Keggin types are the most tempting structures in catalysis due to their unique 

stability and have been well studied for decades (Fig.1.9) [84]. 

 

Fig.1.9: (a) Keggin structure (XM12O40
n−

) & (b) Dawson structure (X2M18O62
n-

) 

From the catalytic point of view, active sites in POMs/HPA are Brӧnsted acidic protons, 

basic oxygen atoms on the surface of POM anions and metals present in them. Most 

significant role is played by the metals in POMs/HPA as they are main active sites for 

almost all oxidative reactions, some acid catalyzed reactions and other reactions [85-87]. 

Thus multiple active site bearing POMs/HPAs have also attractive stability [88-90], 

photoactivity [91, 92], electrocatalytic ability [93, 84] which can also be used as excellent 

homogeneous and heterogeneous catalysts in plenty of reactions. While homogeneous 

catalysis is quite simple, heterogeneous catalysis by POMs/HPA is more complicated. 

There are three types of heterogeneous catalysis which are surface type, pseudoliquid 

bulk type and bulk type respectively (Fig.1.10) [94]. 

 

Fig.1.10: Three catalysis models of solid POM catalysts 

Being stupendously active polyoxometalate anions can combine with ionic liquids 

resulting in very stable organic cation based POM salt which could be used in all above 
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mentioned catalytic processes. Thus ionic liquids expand their region by including the 

class of POMs/HPAs within it and hence widen the field of their applications. 

1.2.6 Dicationic ionic liquids 

The trend of ionic liquid synthesis initially started with monocationic ILs in presence of 

inorganic or organic counter anion which led to development of multicationic ionic 

liquids especially dicationic ionic liquids (DILs) consist of two charged head groups 

linked by a rigid or flexible spacer possessing wider liquid range temperature and better 

thermal stability [95]. The known DILs can be classified as homoanionic dicationic [96] 

and heteroanionic dicationic [97] ionic liquids which can be further categorized as 

symmetrical (germinal) [96] and asymmetrical DILs [98] for both homoanionic and 

heteroanionic DILs. The term ‘homoanionic’ indicates that the corresponding DIL 

consists of two identical anions along with a dication. Symmetrical or asymmetrical 

properties depend on the structure, composition and connectivity of ionic counterparts 

(Fig.1.11). The literature expressed melting point of some germinal DILs in the range of 

450-673 K in contrast to corresponding monocationic ionic liquids below 373 K [99]. 
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Fig.1.11: Examples of (a) symmetrical DIL & (b) asymmetrical DIL 

Heteroanionic dicationic ILs are both symmetrical and asymmetrical containing two 

dissimilar anions (Fig.1.12). 
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Fig.1.12: Example of asymmetric heteroanionic DIL 

Implementation of dicationic ionic liquids in various fields has been limited till date. 

Though several DILs have been available in literature, but the range of their applications 
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is quite low. Having characteristics almost similar to monocationic ionic liquids, DILs 

display proficiency in catalysis. Above this, DILs can be used as supported ionic liquid 

membranes for gases such as CO2 and CH4 produced in fossil fuel and coal gasification 

[100]. Pyridinium, piperidinium, imidazolium and ammonium ionic liquids are most 

common DILs which have been found to be employed in catalytic processes such as 

hydrolysis/H2 production [101], biodiesel production [102-104], esterification of 

carboxylic acid [105, 106], other chemical reactions [107-110] and also used as potential 

electrolytes [98, 111], structure-directing agents (SDA) for the synthesis of zeolite Beta 

[112], non-toxic and antimicrobial materials [113] etc. Owing to this multifaceted 

behavior, DILs open new doors to researchers to explore further. 
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