Lists of schemes

Chapter	Scheme	Title	Page
			no
1	1	Cu catalyzed Glaser coupling reaction.	13
	2	Ullmann homocoupling reaction.	13
	3	Mizoroki-Heck reaction between Iodobenzene and	13
		Styrene.	
	4	Sonogashira cross-coupling reaction.	14
	5	Negishi coupling reaction.	14
	6	Suzuki-Miyaura cross-coupling reaction.	15
	7	Ligand based conventional Suzuki-Miyaura reaction.	18
	8	Ullmann and Goldberg coupling reactions.	23
	9	Buchwald and Hartwig coupling reactions.	23
	10	Cu catalyzed Chan-Lam cross-coupling reaction.	24
	11	Collmann and Zhong method.	24
2	1	Optimization of the reaction.	5
3	1	Model reaction for Suzuki-Miyaura cross-coupling	5
		reaction.	
4	1	N-Arylation of imidazoles and anilines with	2
		arylboronic acid.	
	2	Optimized reaction of N-arylation reaction of aniline.	4
	3	Optimized reaction of N-arylation reaction of	5
		imidazole.	
5.1	1	Model reaction for Sonogashira cross-coupling	4
		reaction.	
5.2	1	Model reaction for Suzuki-Miyaura cross-coupling	26
		reaction.	

Lists of figures

Chapter	Figure	Title	Page no.
1	1	Schematic representation of biosynthesis of metal NPs.	7
	2	Mechanism of Suzuki-Miyaura cross-coupling reaction.	17
	3	Mechanism of Sonogashira cross-coupling reaction.	20
	4	Deprotonation mechanism for Cu-free Sonogashira cross	21
		coupling reaction.	
	5	Carbopalladation mechanism for Cu-free Sonogashira cross	22
		coupling reaction.	
	6	Mechanism of Chan-Lam cross-coupling reaction.	25
2	1	Image of C. esculenta Linn plant.	3
	2(B)	UV-Visible spectra of plant extract.	5
	2(C)	UV-Visible spectra of PdCl ₂ solution.	5
	2(D)	UV-Visible spectra of Pd NPs solution after bioreduction.	5
	2(E)	UV-Visible spectra of dry Pd NPs.	5
	3(a)	FT-IR spectrum of the plant extract.	6
	3(b)	FT-IR spectrum of biosynthesized Pd NPs.	6
	4(a)	PXRD pattern of PdCl ₂ .	7
	4(b)	PXRD pattern of Pd NPs.	7
	5(a)	SEM image of Pd NPs.	7
	5(b)	EDX spectrum of Pd NPs.	7
	6(a)	TEM image of Pd NPs	8
	6(b)	HRTEM image of Pd NPs	8
	6(c)	Particle size distribution of Pd NPs	8
	7	Reusability of the catalyst.	12
	8	Hot filtration test	12
3	1	Image of Sapindus mukorossi and dried seeds	3
	2	EDX image of ground S. mukorossi. Seed.	5
	3(a)	UV-visible spectra of Pd(OAc) ₂ .	6
	3(b)	UV-visible spectra of Pd(OAc) ₂ after 30 min	6
	3(c)	UV-visible spectra of Pd(OAc) ₂ after 2 h.	6
	4(a)	PXRD pattern of synthesized Pd NPs.	7
	4(b)	EDX pattern of synthesized Pd NPs.	7

	5(a)	TEM image of Pd NPs.	7
	5(b)	HRTEM image of Pd NPs.	7
	5(c)	Particle size distribution plot of Pd NPs.	7
	5(d)	SAED pattern of Pd NPs.	7
	5(e)	Comparison between SAED and XRD pattern of Pd NPs.	7
	6	FT IR spectra of (a) soapnut shell extract and (b) Pd NPs.	8
	7	Reusability of Pd nanocatalyst.	12
	8(a & b)	TEM images of Pd NPs before the reaction and their	13
		corresponding particle size distribution.	
	8(c & d)	TEM images of Pd NPs after second cycle and their	13
		corresponding particle size distribution.	
	8(e & f)	TEM images of Pd NPs after fifth cycle and their	13
		corresponding particle size distribution.	
	9	Hot filtration test of the catalyst.	14
4	1	FT-IR spectrum of synthesized CuO NPs.	5
	2	PXRD pattern of CuO NPs.	6
	3	SEM images of synthesized CuO NPs.	7
	4	TGA thermogram of CuO NPs.	7
	5	N ₂ adsorption/desorption of the CuO NPs.	8
	6	EDX pattern of CuO NPs.	8
	7(a)	TEM image of the CuO NPs.	9
	7(b)	HRTEM image of the CuO NPs.	9
	7(c)	Particle size distribution of the CuO NPs.	9
	8(a & b)	XPS spectra of the catalyst.	10
	8(c & d)	XPS spectra of the recycled catalyst.	10
	9	Reusability of CuO NPs.	15
5.1	1	N ₂ adsorption-desorption isotherm.	5
	2(a)	Pore size distribution curve of Biosilica	5
	2(b)	Pore size distribution curve of Pd-BioSiO	5
	3	EDX analysis of Pd-BioSiO.	6

	4	PXRD pattern of the biosilica and Pd-BioSiO.	7
	5(a)	SAED pattern of Pd-BioSiO.	8
	5(b-d)	TEM images of Pd-BioSiO.	8
	5(e)	HRTEM image of Pd-BioSiO.	8
	5(f)	Particle size distribution plot of Pd-BioSiO.	8
	6	Reusability of the catalyst.	11
	7	Hot filtration test of the catalyst.	12
5 2	1	Reusability of the catalyst	29

Lists of tables

Chapter	Table	Title	Page no
2	1	Optimization of the reaction condition for base and	9
		solvent.	
	2	Optimization of the reaction condition for the amount	10
		of catalyst.	
	3	Suzuki-Miyaura cross-coupling reactions of various	11
		aryl halides with arylboronic acids using Pd-	
		NPs@PEG as catalyst.	
3	1	Optimization of reaction.	10
	2	Suzuki-Miyaura cross-coupling reactions of various	11
		aryl halides and arylboronic acids catalyzed by Pd NPs.	
4	1	Optimization of reaction conditions.	11-12
	2	N-Arylation of aniline using different copper(II) salts.	12
	3	Substrate study.	13-14
5.1	1	Surface properties of biosilica and biosilica supported	6
		catalyst.	
	2	Optimization of reaction condition for catalyst, solvent	9
		and base.	
	3	Pd-BioSiO catalyzed Sonogashira reaction.	10
5.2	1	Optimization of reaction condition for catalyst, solvent	27
		and base.	
	2	Suzuki-Miyaura cross-coupling reactions of various	27-28
		aryl halides and arylboronic acids catalyzed by Pd-	
		BioSiO.	

Lists of abbreviations

DNA	Deoxyribonucleic acid
nm	Nanometer
m	Meter
AD	Anno Domini
STM	Scanning tunnelling microscope
TEM	Transmission electron microscopy
SFM	Scanning force microscope
AFM	Atomic tunnelling microscope
0-D	Zero-dimensional
1-D	One-dimensional
2-D	Two-dimensional
3-D	Three-dimensional
NPs	Nanoparticles
PVA	Polyvinylalcohol
UV	Ultraviolet
IR	Infrared
Pd NPs	Palladium nanoparticles
CuO NPs	Copperoxide nanoparticles
mmol	Milimole
XRD	X-ray diffraction technique
PXRD	Powder X-ray diffraction
EDS or EDAX	Energy dispersive X-ray spectroscopy

HRTEM	High resolution transmission electron
	microscopy
SPM	Scanning probe microscopy
FT-IR	Fourier-transform infrared spectroscopy.
C-C	Carbon-carbon
C-Heteroatom	Carbon-heteroatom
C-N	Carbon-nitrogen
Pd-NHC	Palladium-N-heterocyclic carbene
NHC	N-heterocyclic carbene
DAPCy	Trans-
	bis(dicyclohexylamine)palladiumacetate.
DABCO	1,4-Diazabicyclo[2.2.2]octane.
TPPTS	Tris(3-sulfophenyl)phosphine trisodium salt.
TMEDA	Tetramethylethylenediamine
TEMPO	2,2,6,6-tetramethylpiperidinyl-1-oxyl
CuFAP	Copper fluoroapatite
br	Broad
d	Doublet
BET	Branauer-Emmett-Teller
$^{1}\mathrm{H}$	Proton
J	Coupling constant
m	Multiplet
NMR	Nuclear magnetic resonance

PEG	Polyethylene glycol
t	Triplet
TLC	Thin Layer Chromatography
TMS	Tetramethylsilane
SPR	Surface Plasmon Resonance
rt	Room temperature
wt%	Weight percentage
h	Hour
M	Molarity
ml	Mililiter
MHz	Megahertz
¹³ C	Carbon
kV	Killovolt
rpm	Revolutions per minute
IP	Isopropanol
SAED	Selected area (electron) diffraction
ppm	Parts per million
δ	Chemical Shift
-Me	Methyl
-OMe	Methoxy
-СНО	Formyl
-COCH ₃	Acetyl
МеОН	Methanol

TGA Thermogravimetric analysis XPS X-ray photoelectron spectroscopy DE Diatomaceous earth DMF Dimethylformamide THF Tetrahydrofuran BJH Barrett-Joyner-Halenda Å Angstrom **JCPDS** Joint Committee on Powder Diffraction Standards % Percentage Gram g