LIST ABBREVIATIONS AND SYMBOLS USED

AFM	atomic force microscopy
Al_2O_3	Aluminium oxide
Ag ⁻¹	Ampere per gram
Ag	Silver
Au	Gold
AgCl	Silver chloride
4-AP	4-aminophenol
CH_4	methane
cm^{-1}	per centimetre
$cm^3 g^{-1}$	cubic centimetre per gram
$cm^2 V^{-1} s^{-1}$	centimetre square per volt per second
C_0	initial concentration
Ce	equilibrium concentrations
CHCl ₃	chloroform
CMG	chemically modified graphene
CNTs	carbon nanotubes
СО	carbonmonooxide
CO_2	carbondioxide
Co	cobalt
Co_3O_4	Cobalt oxide
Cu	copper
CuCl	cuprous chloride
CuO	copper oxide
Cu ₂ O	cuprous oxide
CV	cyclic voltammetery
CVD	chemical vapor deposition
Cs	specific capacitance
DI	deionised water
DLS	dynamic light scattering
DETA	diethylenetriamine
DMFCs	direct methanol fuel cells
EIS	electrochemical impedance spectroscopy

ECSA	electrochemically active surface area
EDLC	electrical double layer capacitance
eV	electron volt
Fg^{-1}	Faraday per gram
Fe	Iron
Fe ₂ O ₃	Iron oxide
FTIR	Fourier transform infrared
g	gram
GCE	glassy carbon electrode
GCD	galvanostatic charge-discharge
Ge	Germenium
GO	graphene oxide
GPa	Gigapascal
GS	graphene sponge
h	hours
H_2	Hydrogen gas
HER	hydrogen evolution reaction
H_2O_2	Hydrogen peroxide
HNO ₃	Nitric acid
H_2SO_4	Sulfuric acid
HCl	Hydrochloric acid
Hz	Hertz
Ι	net current
Ir	Irridium
I_D/I_G	ratio of intensities of D and G bands in Raman spectrum
K	Kelvin
k	rate constant
K _L	Langmuir constants
K _F	Freundlich constants
kJ mol ⁻¹	kilojoules per mole
KBr	Potassium bromide
KMnO ₄	Potassium permanganate
КОН	Potassium hydroxide
m	metre
т	mass

Μ	molar
mA	miliampere
mA/cm ²	miliampere per centimeter square
mg	milligram
$m^2 g^{-1}$	square metre per gram
min	minutes
mL	milliliter
mmol	millimolar
MnO	Manganese oxide
MoO ₃	Molybedenum trioxide
МО	methyl orange
MV	methyl violet
mV	millivolt
$mV s^{-1}$	millivolt per second
MWCNT	multiwalled carbonnano tube
Na	Sodium
N_2	Nitrogen
NaBH ₄	Sodium borohydride
nm	nanometer
4-NP	4-nitrophenol
NaNO ₃	Sodium nitrate
NaOH	Sodium hydroxide
Ni	Nickel
NiO	Nickel oxide
Ni(OH) ₂	Nickel hydroxide
ORR	oxygen reduction reaction
Pd	Paladium
Pt	Platinum
PDDA	poly (diallyldimethylammonium chloride)
PECVD	plasma enhanced chemical vapor deposition
PPy	polypyrrole
PPD	<i>p</i> -phenylenediamine
PVP	polyvinylpyrrolidone
q _e	adsorption capacity
$q_{\rm m}$	maximum adsorption capacity

rGO	reduced graphene oxide
Rh	Rhodium
Ru	Ruthenium
RuO_2	Ruthenium oxide
R _{CT}	interfacial charge-transfer resistance
R _s	series resistance
R _w	Warburg impedance
S	seconds
Sn	Tin
SnO ₂	Tin oxide
S cm ⁻¹	Siemens per centimetre
SEM	scanning electron microscope
SG	sulfonated graphene
SWNT	singlewalled carbonnano tube
Т	absolute temperature
TEM	transmission electron microscope
TiCl ₃	Titanium trichloride
TiO ₂	Titanium dioxide
UV	ultraviolet
UV-vis	ultraviolet-visible
V	voltage
V	volume
V _{max}	maximum voltage
wt%	weight percentage
Х	degradation factor
XRD	X-ray diffraction
XPS	X-ray photoelectron spectroscopy
Z'	impedance (real)
Ζ"	impedance (imaginary)
ZnO	Zinc oxide
ZrO ₂	Zirconium oxide
ZrOCl ₂	Zirconium oxychloride
°C	degree Celsius
θ	elevation angle
λ_{max}	maximum absorption wavelength

LIST OF FIGURES

Chapter 1: General introduction

Fig.1.1 Graphene, the basic building material for other allotropes of carbon, 0D 1.2 fullerene, 1D carbon nanotube and 3D graphite 1.5 Fig.1.2 Illustration on the preparation of GO and rGO Fig.1.3 (i) Single layer graphene, first observed by Geim (ii) XRD of (a) pristine graphite, (b) GO, (c) chemically reduced GO and (d) electrochemically reduced GO and (iii) Raman spectra for graphite and graphene 1.6 Fig.1.4 (a) Schematic Lerf-Klinowski model of GO (b) TEM image of GO and (c) XPS of graphene and GO 1.7 **Fig.1.5** (a) π - π or C-H^{...} π interactions of graphene (b) both π - π and hydrogen bonds with GO 1.9 Fig.1.6 Suggested reaction pathway for the oxidation of acrolein to acrylic acid at the graphitic carbon surface 1.15 Fig.1.7 Oxidation of benzyl alcohol and *cis*-stilbene and hydration of 1-ethynylbenzene catalyzed by GO 1.16 Fig.1.8 Suzuki-Miyaura reactions of aryl bromides with Pd/GO 1.16 Fig.1.9 (a) Schematic of the chemical structures of the composite (b) CV of ORR on exfoliated graphene, GO, and composite (c) Electrochemical activity for (Fe-P)n MOF, GO and the composite 1.19 Fig.1.10 CV curve of Pt/Ni(OH)₂/rGO in 1 M KOH. (b) CV curves of Pt/Ni(OH)₂/rGO, Pt/rGO hybrid and standard 20 wt% Pt/C in 1 M methanol/1 M KOH. (c) Short-term durability measurement of the materials 1.20 Fig.1.11 Illustration of the three-step electron transfer process involved in making graphene a 2D conducting support 1.21 Figure 1.12 (a) Diffuse reflectance absorption spectra of P25-graphene, (b) structure of P25-graphene and possible process of photo-degradation; comparison of photocatalytic 1.22 activity under (c) UV light and (d) visible light Fig. 1.13 The proposed charge transfer mechanism during the photo degradation of dye in the presence of Ce or Fe doped graphene-TiO₂ nanocomposite 1.23

Fig.1.14 (a) and (b) A GS in rhodamine B solution (a) at the beginning and (b) for 180 min (c) and (d) The same GS adsorbed with rhodamine B in ethanol for (c) 2 min and (d) 10 min 1.23

Chapter 2: Section A-Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4nitrophenol

Fig.2.1.1 FTIR spectrum of (a) GO, (b) CuCl and (c) CuO-rGO nanocomposite		
Fig.2.1.2 XRD patterns of (a) GO, (b) CuCl and (c) CuO-rGO nanocomposite		
Fig. 2.1.3 SEM images of (a) CuCl and (b) CuO-rGO nanocomposite		
Fig. 2.1.4 EDX spectrum of CuO-rGO nanocomposite		
Fig. 2.1.5 UV-vis absorption spectra of the reduction of 4 -NP by NaBH ₄ in the presence		
of (a) $CuO_{0.01}$ -rGO (b) $CuO_{0.05}$ -rGO (c) $CuO_{0.1}$ -rGO.	2.8	
Fig. 2.1.6 Plots of $ln(C/C_0)$ of 4-NP versus reaction time in the presence of (a) $CuO_{0.01}$ -		
rGO (b) CuO _{0.05} -rGO (c) CuO _{0.1} –rGO.		
Fig. 2.1.7 (a) Plots of ln(C/Co) of 4-NP versus reaction time for successive 5 cycles (b)		
Value of k for each cycle with CuO-rGO _{0.05} nanocomposite as catalyst	2.10	

Chapter 2: Section B-Copper oxide/reduced graphene oxide as an electrocatalyst for methanol electro-oxidation

Fig.2.2.1 FTIR spectrum of (a) GO, (b) CuO, (c) CuO-rGO and (d) CuO-rGO_{calcined} 2.20 nanocomposites Fig.2.2.2 XRD spectrum of (a) GO, (b) CuO, (c) CuO-rGO and (d) CuO-rGO_{calcined} 2.21 nanocomposites Fig.2.2.3 Raman spectra of (a) GO, (b) CuO-rGO and (c) CuO-rGO_{calcined} 2.23 nanocomposites Fig.2.2.4 SEM images of (a) GO, (b) CuO, (c) CuO-rGO and (d) CuO-rGO_{calcined} 2.24 nanocomposite Fig.2.2.5 EDX spectrum of CuO-rGO_{calcined} nanocomposites 2.24 Fig. 2.2.6 Particle size distribution of CuO-rGO_{calcined} nanocomposite 2.25 Fig.2.2.7 CVs of the (a) CuO-rGO, (b) CuO and (c) CuO-rGO_{calcined} in 1.0 M methanol solution containing 0.1 M NaOH. Scan rate: 50 mV s⁻¹. 2.26

Fig.2.2.8 Chronoamperograms of (a) CuO and (b) CuO-rGO_{calcined} for methanol oxidation in methanol solution (1.0 M) containing 0.1 M NaOH at a fixed potential of 0.4 V.

Fig. 2.2.9 CVs of the CuO-rGO_{cal} in 1.0 M methanol solution containing 0.1 M NaOH atscan rate: 50 mV s^{-1} for 100 cycles.2.28

Chapter 3: Multifunctional ternary nanocomposites of Ni/polypyrrole/reduced graphene oxide as supercapacitor and electrocatalyst in methanol oxidation

Fig.3.1 FTIR spectra of (a) GO (b) rGO (c) PPy (d) PPy/rGO (e) Ni/PPy/rGO		
Fig.3.2 XRD pattern of (a) GO (b) rGO (c) PPy/rGO and (d) Ni/PPy/rGO		
Fig.3.3 Raman spectra of (a) GO (b) PPy (c) PPy/rGO and (d) Ni/PPy/rGO		
Fig.3.4 SEM images of (a) GO (b) PPy (c) PPy/rGO and (d) Ni/PPy	y/rGO	
nanocomposites	3.9	
Fig. 3.5 EDX analysis of Ni/PPy/rGO nanocomposites3.9		
Fig. 3.6 (a) TEM and (b) XPS analysis of Ni/PPy/rGO nanocomposites 3.10		
Fig. 3.7 Particle size distribution of Ni/PPy/rGO nanocomposites		
Fig.3.8 Cyclic voltammograms of (a) Ni/PPy/rGO (b) PPy/rGO (c) rGO and (d) Ni/rGO		
	3.12	
Fig.3.9 (a) CVs recorded at different scan rate and (b) CVs for continuous 200 cycles for		
Ni/PPy/rGO	3.13	
Fig. 3.10 (a) Charge/discharge curves of Ni/PPy/rGO at different current densities (b)		
Specific capacitances of Ni/PPy/rGO at different current densities and (c) Cyclic sta	ability	
of Ni/PPy/rGO upto 200 charge/discharge cycles		
Fig.3.11 Charge/discharge curves of (a) Ni/PPy/rGO, (b) PPy/rGO and (c) rGO		
Fig.3.12 Nyquist impedance plots of (a) Ni/PPy/rGO and (b) PPy/rGO		
Fig.3.13 CVs of the different composites (a) Ni/PPy/rGO, (b) Ni/rGO and (c) PPy/rGO		
in 1KOH + 1M methanol at 25°C and at the scan rate of 50 mVs ⁻¹ scan rate	3.17	
Fig.3.11 Chronoamperograms of (a) Ni/PPy/rGO (b) Ni/rGO and (c) PPy/rGO in 1M		
KOH + 1M methanol at operational potential of 0.035V	3.18	

Chapter 4: Photocatalytic degradation of dye over zirconium oxide supported on sulfonated graphene under visible light

Fig.4.1 FTIR spectrum of (a) GO, (b) SG, (c) m-ZrO₂/rGO _{1200°C}, and (d) m-ZrO₂/SG _{1200°C} 4.5

Fig.4.2 XRD pattern of (a) SG, (b) m-ZrO₂/rGO_{600°C}, (c) m-ZrO₂/rGO_{1000°C}, (d) m-ZrO₂/rGO_{1200°C} and (e) m-ZrO₂/SG_{1200°C} 4.6

Fig.4.3 Raman spectra of (a) rGO, (b) SG, (c) m-ZrO₂/rGO_{1200°C} and (d) m-ZrO₂/SG_{1200°C} 4.7

Fig.4.4 SEM image of (a) rGO, (b) ZrO_2 (c) $m-ZrO_2/rGO_{1200^{\circ}C}$ and (d) $m-ZrO_2/rGO_{1200^{\circ}C}$ 4.8

Fig.4.5 (a) EDX analysis of m-ZrO2/rGO1200°C (b) EDX analysis m-ZrO2/SG1200°C4.9Fig.4.6 (a) UV-vis spectrum of the dye after treatment in visible light (a) in absence of
catalyst, (b) in presence of SG4.10

Fig.4.7 Degradation factor vs time plots of (a) (a) in absence of catalyst, (b) in presence of SG 4.10

Fig.4.8 (a) UV spectrum of photocatalytic degradation of MV by (a) m-ZrO₂/rGO_{600°C}, (b) m-ZrO₂/rGO_{1000°C}, (c) m-ZrO₂/rGO_{1200°C} and (d) m-ZrO₂/SG_{1200°C} 4.11

Fig.4.9 Degradation factor vs time (minutes) plots for (a) m-ZrO₂/rGO_{600°C}, (b) m-ZrO₂/rGO_{1000°C}, (c) m-ZrO₂/rGO_{1200°C} and (d) m-ZrO₂/SG_{1200°C} 4.12

 Fig.4.10 Column graph showing change in concentration of MV solution versus number

 cycles.
 4.13

Chapter 5: Selective dye adsorption by pH modulation on amine functionalized reduced graphene oxide-carbon nanotube hybrid

Fig.5.1 FTIR spectrum of (a) GO, (b) MWCNT, (c) GO-CNT (d) rGO-CNT-PPD (e)		
rGO-PPD and (f) CNT-PPD	5.6	
Fig.5.2 XRD patterns of (a) GO, (b) CNT, (c) GO-CNT and (d) rGO-CNT-PPD	5.7	
Fig.5.3 SEM images of (a) GO-CNT and (b) rGO-CNT-PPD hybrid	5.7	
Fig.5.4 TEM images of (a) GO-CNT and (b) rGO-CNT-PPD hybrid. Inset in (a) is the		
TEM image of GO-CNT hybrid at higher resolution.	5.8	
Fig.5.5 Effect of contact time on adsorption capacity at pH 7.0 and pH 3.0 onto rGO-		
CNT-PPD hybrid	5.9	

Fig.5.6 Effect of pH on adsorption of MV-MO mixture on rGO-CNT-PPD hybrid at 464nm and 582 nm and (b) uv-visible spectra of MO+MV solution before adsorption (red),after adsorption at pH 7.0 (yellow) and at pH 3.0 (violet).5.12Fig.5.7 Removal efficiency of MV at pH 7.0 on rGO-CNT-PPD hybrid in differentcycles.5.14

LIST OF SCHEMES

Chapter 1: General introduction

 Scheme 1.1 Procedure to design TiO2-graphene nanosheet
 1.11

 Scheme 1.2 Illustration of the one-step electro deposition of ZrO2-graphene nanocomposite and its application for the extraction and electrochemical detection of MP

 1.12

 Scheme 1.3 Schematic illustration of the preparation of GN-ZnSe nanocomposites

 1.14

 Scheme 1.4 Schematic A plausible mechanism for the reduction of 4-nitrophenol catalyzed by the Pd/graphene catalyst in the presence of NaBH4

Chapter 5: Selective dye adsorption by pH modulation on amine functionalized reduced graphene oxide-carbon nanotube hybrid

Scheme 5.1 Effect of pH on adsorption of MV and MO 5.13

LIST OF TABLES

Chapter 1: General introduction

Table 1.1 Physical properties of graphitic carbon materials1.3Table 1.2 Comparison of preparation methods for metal-graphene nanocomposites,
accompanied by the corresponding metal precursors and particle size1.10Table 1.3 Comparison of preparation methods for graphene-metal oxide
nanocomposites, accompanied by the corresponding metal precursors and particle size1.111.131.131.13

Table 1.4 Comparison of the methanol oxidation reaction performances with graphene-based noble-metal nanocomposites as electrocatalysts1.20

Chapter 2: Section A- Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4nitrophenol

Table 2.1.1 Catalytic rate constants of reduction of 4-NP in the presence of CuO_x -rGOnanocomposites and the R² values for the $ln(C/C_0)$ vs t plots2.9

Table 2.1.2 Comparison of values of rate constant for 4-NP reduction to 4-AP catalyzedby various catalysts2.11

Chapter 4: Photocatalytic degradation of dye over zirconium oxide supported on sulfonated graphene under visible light

 Table 4.1 Raman Shift of D & G-band of the mentioned materials and their intensity

 ratio
 4.7

 Table 4.2 Degradation time of MV and % degradation for the subsequent photocatalysts

 4.12

Chapter 5: Selective dye adsorption by pH modulation on amine functionalized reduced graphene oxide-carbon nanotube hybrid

Table 5.1 Kinetic Parameters for the adsorption of MV at pH 7.0 and MO at pH 3.0 ontorGO-CNT-PPD hybrid5.10Table 5.2 Isotherm Parameters for the adsorption of MV and MO by rGO-CNT-PPDhybrid at pH 7.0 and 3.0 respectively5.11

Table 5.3 Comparison of adsorption capacities of MV and MO onto various adsorbents