LIST OF TABLES

Chapter	Table	Title	Page No.	
2	2.1	List of chemicals	36	
3	3.1	Comparison of the ORR performance parameters of	68-69	
		$Pd_{3}Fe_{0.5}Cu_{0.5}/C$ with recently reported some seminal works of		
		Pd-based electrocatalysts in 0.1 M KOH solution.		
6 6A.1		Comparison of k_{app} of Cu, Fe_2O_3 and Cu/Fe_2O_3 for the	140	
		reduction of 4-NP		
6A.2		Optimization of Reaction Condition for the Reduction of	141	
		4-NP		
	6A.3	Catalytic performances of the Cu/Fe ₂ O ₃ NPs for reduction	142-143	
		of various nitroaromatics using NaBH _{4.}		
	6A.4	Reusability Studies of the Cu/Fe ₂ O ₃ NPs upto 5 th cycles.	146	
	6B.1	Catalytic performances of the CuNi NPs for reduction of	151-152	
		various nitroaromatics using 2-propanol KOH as base		
	6B.2	Recyclability test of the reduction of 4-iodo 1-	153	
		nitrobenzene with CuNi catalyst system		
	6B.3	Comparison table for previously reported catalytic system	155	
		for the reduction of nitrobenzene through transfer		
		hydrogenation		

LIST OF FIGURES

Chapter	Figure	Title	Page No.
1	1.1	The Lycurgus cup in reflected light (left) and in	2
		transmitted light (right)	
	1.2	Five original bottled samples prepared by Micheal	3
		Faraday	
	1.3	Various types of carbon based materials.	5
	1.4	Some of the core areas of applications of metal NPs.	8
	1.5	Schematic presentation of proton exchange membrane	15
		fuel cell	
	1.6	(a) SEM image of Pd/N-G, (b, c) Low and high resolution	17
		TEM images of Pd/N-G. Inset in (b) shows the diffraction	
		pattern of Pd/N-G and the scale bar corresponds to 5	
		nm^{-1} . Inset in (c) shows the histogram of the Pd NPs	
		distribution in Pd/N-G electrocatalyst. (d) EDX spectra of	
		Pd/N-G.	
	1.7	ORR on Pd-CNx composite in 0.5 M KOH medium: (a)	18
		CVs of Pd-CNx composite in O_2 and N_2 -saturated 0.5 M	
		KOH solution with scan rate 100 mV/s, (b) Comparison	
		of LSV curves of porous Pd-CNx, Pt/C and Pd/C	
		modified GC electrode in O ₂ -saturated 0.5 M KOH with	
		1600 rpm rotation at 100 mV/s scan rate, (c) LSV curves	
		of Pd-CNx modified electrode in O2-saturated 0.5 M	
		KOH solution with rotating speed varying from 600 rpm	
		to 2700 rpm, (d) The corresponding K-L plots at different	
		potentials, (e) Mass transfer corrected Tafel slope of Pd-	
		CNx composite in comparison with Pt/C and Pd/C	
		catalyst in basic medium, (f) The mass activity and	
		specific activity of Pd-CNx, Pt/C and Pd/C modified	

electrode at different potentials, (g) Steady state chronoamperometric response of Pd-CNx composite, Pt/C and Pd/C at a constant potential of 0.7 V.

20

- 1.8 XRD pattern of different Cu-compounds (a); UV-visible spectra of $Cu_2Cl(OH)_3$ (b); TEM image of in-situ generated Cu NPs (c); particle size distribution of Cu NPs (d); UV-visible absorption spectra (e) of 4-nitrophenol before (black line) and after (red line) addition of NaBH₄ and 4-aminophenol (blue line) and plot of $ln(A_t/A_0)$ against reaction time (f) derived from absorption spectra (inset) of 4-nitropehnol reduction in presence of in-situ Cu nanocatalyst.
- 1.9 Time dependent UV-visible absorption spectra over CuNi
 (a) and CuNi/Co₃O₄ (b); plots of ln (A_t/A₀) against reaction time derived from absorption spectra (c) and recyclability test over CuNi/Co₃O₄ nanocatalyst for the 4-NP reduction, respectively.

- 3.1 EDS elemental mapping of $Pd_3Fe_{0.5}Cu_{0.5}/C$ NPs. 53
 - 3.2 TGA profile of $Pd_3Fe_{0.5}Cu_{0.5}/C$ NPs in air atmosphere 53
 - 3.3 (a) XRD patterns of the Pd₃Fe_{0.5}Cu_{0.5}/C, Pd₃Fe/C, 55
 PdFe/C, and PdFe₃/C electrocatalysts, and (b) N₂
 adsorption-desorption isotherm of Pd₃Fe_{0.5}Cu_{0.5}/C. Inset
 of (b) shows the corresponding pore size distribution
 - 3.4 Typical (a) low, (b,c) medium, and (d-f,h) high 55 resolution-TEM images of Pd₃Fe_{0.5}Cu_{0.5}/C, (g) corresponding SAED pattern, (e) is magnified HR-TEM image taken from (d), marked by the rectangle.
 - 3.5TEM and HR-TEM images of Pd3Fe/C NPs.563.6(a) C 1s, (b) Pd 3d, (c) Fe 2p, and (d) Cu 2p XP spectra of58

 $Pd_{3}Fe_{0.5}Cu_{0.5}/C.$

2 3

ι

- 3.7 The core-level XP spectrum of (a) Pd 3d and (b) Fe 2p of Pd₃Fe/C NPs.
- 3.8 (a) CV plots of $Pd_3Fe_{0.5}Cu_{0.5}/C$, N_2 and O_2 -saturated 0.1 M KOH solution with a scan rate of 50 mV s⁻¹, (b) Rotating rate-dependent ORR polarization curves for respective NPs with the scan rate of 10 mV s⁻¹, (c) K-L plots of j⁻¹ vs. $\omega^{-1/2}$ for Pd₃Fe_{0.5}Cu_{0.5}/C NPs at different potential obtained from (b), and (d) The plot of the number of transferred electrons vs. potential for Pd₃Fe_{0.5}Cu_{0.5}/C NPs.
- 3.9 Electrochemical data for ORR over PdFe₃/C NPs. (a) CV plots in the N₂- and O₂-saturated 0.1 M KOH solution with a scan rate of 50 mV s⁻¹, (b) Rotating rate-dependent ORR polarization curves with the scan rate of 10 mVs⁻¹, (c) K-L plots of j⁻¹ vs. ω^{-1/2} at different potential obtained from ORR results, and (d) The plot of the number of transferred electrons vs. potential.
- 3.10 Electrochemical data for ORR over PdFe/C NPs. (a) CV plots in the N₂- and O₂-saturated 0.1 M KOH solution with a scan rate of 50 mV s⁻¹, (b) Rotating rate-dependent ORR polarization curves with the scan rate of 10 mV s⁻¹, (c) K-L plots of j⁻¹ vs. ω^{-1/2} at different potential obtained from ORR results, and (d) The plot of the number of transferred electrons vs. potential.
- 3.11 Electrochemical data for ORR over Pd₃Fe/C nanocatalyst.
 (a) CV plots in the N₂- and O₂-saturated 0.1 M KOH solution with a scan rate of 50 mV s⁻¹, (b) Rotating rate-dependent ORR polarization curves with the scan rate of 10 mV s⁻¹, (c) K-L plots of j⁻¹ vs. ω^{-1/2} at different potential obtained from ORR results, and (d) The plot of

61

58

59

60

the number of transferred electrons vs. potential.

- 3.12 (a) CV plots of all the electrocatalysts at N₂-saturated 0.1 M KOH solution at a scan rate of 50 mV s⁻¹, (b) Comparison of rotating rate-dependent ORR polarization curves for different catalyst at 1600 rpm, (c) Tafel plots, and (d) Mass activities of NPs under different potential at 1600 rpm. (These values are calculated as per the loading mass of the NPs).
- 3.13 Comparison of Tafel plots Pd₃Fe/C, PdFe/C and PdFe₃/C 63 NPs.
- 3.14 (a) CA curves of different catalysts, recorded at -0.3 V in a O₂-saturated 0.1 M KOH solution with a rotation rate of 1600 rpm towards ORR, (b) ORR polarization curves of Pt/C and (c) ORR polarization curves of Pd₃Fe_{0.5}Cu_{0.5}/C at 1600 rpm before and after the stability test at different potential scans, (d) Comparison of mass activity after the stability test at different potential scans at 1600 rpm.
- 3.15 Electrochemical data for ORR over $Pd_3Fe_{0.5}Cu_{0.5}/C$ NPs. (a) CV plots of $Pd_3Fe_{0.5}Cu_{0.5}/C$, N₂- and O₂-saturated 0.5 M H₂SO₄ solution with a scan rate of 50 mV s⁻¹, (b) Rotating rate-dependent ORR polarization curves for respective NPs with the scan rate of 10 mV s⁻¹, (c) K-L plots of j⁻¹ vs. $\omega^{-1/2}$ for Pd₃Fe_{0.5}Cu_{0.5}/C NPs at different potential obtained from (b), and (d) The plot of the number of transferred electrons vs. potential for Pd₃Fe_{0.5}Cu_{0.5}/C NPs.
- 3.16 TEM and HR-TEM images of Pd₃Fe_{0.5}Cu_{0.5}/C after CA 66 test.distribution curve (inset) for Pd₃Ni₇ nanoparticles
- 3.17 Correlation of binding energy change of Pd 3d to ORR activity in terms of mass activity for Pd₃Fe_{0.5}Cu_{0.5}/C

67

65

(red), Pd₃Fe/C (black), and Pd/C (green) NPs. 4A.1 TGA plots of Pd₃Cu_{0.5}Ni_{0.5}/C NPs at air atmosphere 79 4A.2 (a) XRD pattern of Pd₃Cu_{0.5}Ni_{0.5}/C and Pd/C NPs. (b) N_2 80 adsorption-desorption isotherm of Pd₃Cu_{0.5}Ni_{0.5}/C. inset of (b) corresponding pore size distribution. 4A.3 81 TEM (a-d) and HRTEM (e,f) images of $Pd_3Cu_{0.5}Ni_{0.5}/C$. 4A.4 XP spectrum of C 1s (a), Pd 3d (b), Cu 2p (c) and Ni 2p 82 (d) of $Pd_3Cu_{0.5}Ni_{0.5}/C$. (a) CV plots of Pd₃Cu_{0.5}Ni_{0.5}/C, N₂- and O₂-saturated 0.1 83 4A.5 M KOH solution with a scan rate of 50 mV s^{-1} , (b) Rotating rate-dependent ORR polarization curves for respective NPs with the scan rate of 10 mV s-1, (c) Koutecky-Levich (K-L) plots of j^{-1} vs. $\omega^{-1/2}$ for $Pd_3Cu_{0.5}Ni_{0.5}/C$ at different potential obtained from (b), and (d) The plot of the number of transferred electrons vs. potential for $Pd_3Cu_{0.5}Ni_{0.5}/C$. 4A.6 CV plots of various NPs in the N₂-saturated 0.1 M KOH 84 solution with a scan rate of 50 mV s⁻¹. 4A.7 Comparison of rotating rate-dependent ORR polarization 84 curves for different NPs at 1600 rpm 4A.8 85 Tafel plots of the Pd₃Cu_{0.5}Ni_{0.5}/C, Pd₃Cu/C and Pd₃Ni/C NPs. 4A.9 (a) Mass activities and (b) Specific activity of 86 electrocatalyst under different potential at 1600 rpm. (These values are calculated as per the loading mass of the electrocatalyst). CA curves of different catalysts, recorded at -0.3 V in a 86 4A.10 O₂-saturated 0.1 M KOH solution with a rotation rate of 1600 rpm towards ORR

4B.1	EDS spectrum of the Pd ₂ CuCo/C NFs.	88	
4B.2	TGA profile of Pd ₂ CuCo/C NFs in air atmosphere.	89	
4B.3	XRD patterns (a), XP spectrum of Pd 3d (b), Cu 2p (c)	89	
	and Co 2p (d) of Pd ₂ CuCo/C NFs.		
4B.4	Correlation of binding energy change of Pd 3d in	90	
	Pd ₂ CuCo/C NFs and Pd/C.		
4B.5	TEM (a) and HRTEM (b-d) images of Pd ₂ CuCo/C NFs.	91	
4B.6	EDS elemental mapping of (a) Carbon (b) Pd (c) Cu (d)		
	Co and (e) overlap image of Pd ₂ CuCo/C NFs.		
4B.7	(a) N_2 adsorption-desorption isotherm of Pd ₂ CuCo/C	92	
	NFs. (b) corresponding pore size distribution.		
4B.8	CV plots of various NPs in the N_2 -saturated 0.1 M KOH	93	
	solution with a scan rate of 50 mV s ^{-1} .		
4B.9	(a) CV plots of Pd ₂ CuCo/C NFs, N ₂ - and O ₂ -saturated 0.1	94	
	M KOH solution with a scan rate of 50 mV s ^{-1} , (b)		
	Rotating rate-dependent ORR polarization curves for		
	respective NC with the scan rate of 10 mV s-1, (c)		
	Koutecky–Levich (K-L) plots of j^{-1} vs. $\omega^{-1/2}$ for		
	Pd ₂ CuCo/C NFs at different potential obtained from (b),		
	and (d) The plot of the number of transferred electrons vs.		
	potential for Pd ₂ CuCo/C NFs.		
4B.10	(a) Comparison of rotating rate-dependent ORR	94	
	polarization curves for different catalyst at 1600 rpm, (b)		
	Tafel plots.		
4B.11	(a) Mass activities and (b) Specific activity of	95	
	electrocatalyst under different potential at 1600 rpm.		
	(These values are calculated as per the loading mass of		
	the Pd or Pt).		
4B.12	(a) Comparison of rotating rate-dependent ORR	96	
	polarization curves for different catalyst at 1600 rpm at		

xxiii

0.5 M H_2SO_4 (b) Mass activities and (c) Specific activity of electrocatalyst under different potential at 1600 rpm. (These values are calculated as per the loading mass of the Pd or Pt).

- 4B.13 CA curves of different catalysts, recorded at -0.3 V in a 96
 O₂-saturated 0.1 M KOH solution with a rotation rate of 1600 rpm.
- 4B.14 (a) ORR polarization curves of Pd₂CuCo/C NFs and (b) 97 ORR polarization curves of Pt/C at 1600 rpm before and after 1000 CV cycles.
- 5A.1 XRD patterns (a) Cu-CuFe₂O₄/C (black line) and bare 107 Cu-CuFe₂O₄. (red line) (b) TGA Curve (c) N₂ adsorptiondesorption isotherm of Cu-CuFe₂O₄/C (d) Pore size distribution curve of Cu-CuFe₂O₄/C
 - 5A.2 (a) XPS survey spectrum of Cu-CuFe₂O₄/C. Highresolution XP spectra of (b) Cu 2p, (c) Fe 2p, (d) C 1 s for Cu-CuFe₂O₄/C.
 - 5A.3 High-resolution XPS spectra of (a) Cu 2p, (b) Fe 2p, for 109 Cu-CuFe₂O₄.
 - 5A.4 (a) TEM images of Cu-CuFe₂O₄/C, inset of (a) shows the 109
 SAED pattern, (b) HRTEM image of Cu-CuFe₂O₄/C
 showing black contrast of metal/metal oxide and carbon,
 (c,d) HRTEM image of Cu-CuFe₂O₄/C with lattice
 fringes corresponding to various constituents.
 - 5A.5 (a) TEM images of Cu-CuFe₂O₄, (b) High magnitude 110 TEM image of Cu-CuFe₂O₄
 - 5A.6 (a) CVs of the Cu-CuFe₂O₄/C, Cu-CuFe₂O₄ + C mixture, 112
 Cu- CuFe₂O₄, and carbon on GCEs in an O₂-saturated (solid line) or N₂-saturated (dashed line) 0.1 M KOH solutions and (b) LSVs of the Cu-CuFe₂O₄/C, Cu-CuFe₂O₄ + C, Cu-CuFe₂O₄, carbon, and Pt/C in an O₂-

5

xxiv

saturated 0.1 M KOH solution at 1600 rpm.

- 5A.7 (a) LSVs of the Cu-CuFe₂O₄/C NPs in O₂-saturated 0.1 113 M KOH solution at various rotation rates at a scan rate of 10 mV/s, (b) K-L plots in the potential range of -0.4 to -0.7 V, (c) the plot of the number of transferred electrons *vs.* potential for Cu-CuFe₂O₄/C NPs., (d) Tafel plots of Pt/C and Cu-CuFe₂O₄/C NPs.
- 5A.8 (a) LSVs of the Cu-CuFe₂O₄+C in O₂-saturated 0.1 M 113 KOH solution at various rotation rates at a scan rate of 10 mV/s, (b) K-L plots in the potential range of -0.4 to -0.7 V, (c) the plot of number of transferred electrons *vs.* potential for Cu-CuFe₂O₄+C.
- 5A.9 (a) LSVs of the bare Cu-CuFe₂O₄ NPs in O₂-saturated 0.1 114 M KOH solution at various rotation rates at a scan rate of 10 mV/s, (b) K-L plots in the potential range of -0.4 to -0.7 V, (c) the plot of number of transferred electrons *vs*. potential for bare Cu-CuFe₂O₄ NPs.
- 5A.10 (a) LSVs of the CuFe₂O₄/C NPs in O₂-saturated 0.1 M 115 KOH solution at various rotation rates at a scan rate of 10 mV/s, (b) K-L plots in the potential range of -0.4 to -0.7 V, (c) the plot of number of transferred electrons *vs.* potential for CuFe₂O₄/C NPs.
- 5A.11 CV curves of a) Cu-CuFe₂O₄/C and c) CuFe₂O₄/C NPs
 with different scan rates, charging current density differences as function of scan rates for b) Cu-CuFe₂O₄/C and d) CuFe₂O₄/C.
- 5A.12 ORR polarization curves of (a) Cu-CuFe₂O₄/C and (b) 20 117
 wt% Pt/C at 1600 rpm in 0.1 M KOH solution before and after the stability test of different potential scans.
- 5A.13 CA curves of different NPs recorded at -0.3 V in O₂- 117

	saturated 0.1 M KOH solution with a rotation rate of 1600 rpm.		
5A.14	CV curves of different catalysts recorded in N ₂ -saturated	118	
	0.1 M KOH solution.		
5B.1	XRD patterns of CuCo/CuO-Co ₃ O ₄ /C and CuO-Co ₃ O ₄ /C	120	
	NPs.		
5B.2	TGA curve of CuCo/CuO-Co ₃ O ₄ /C in air atmosphere		
5B.3	$N_{\rm 2}$ adsorption/desorption isotherm and the pore size		
	distribution curve (inset) of CuCo/CuO-Co ₃ O ₄ /C NPs.		
5B.4	(a),(b) TEM images of CuCo/CuO-Co ₃ O ₄ /C NPs at	122	
	different resolution.		
5B.5	XPS analysis for CuCo/CuO-Co ₃ O ₄ /C NPs (a) the survey	123	
	spectrum; and the high resolution core-level XP-spectrum		
	of (b) C 1s, (c) Cu 2p and (d) Co 2p region.		
5B.6	CV plots of (a) Co/C, (b) Cu/C, (c) CuO-Co ₃ O ₄ /C, (d)	124	
	CuCo/CuO-Co ₃ O ₄ + C, (e) CuCo/CuO-Co ₃ O ₄ /C and (f)		
	CuCo/CuO-Co ₃ O ₄ NPs in both N_2 and O ₂ -saturated 0.1		
	M KOH solution.		
5B.7	Rotating rate dependent LSVs at the scan rate of 10 mVs ⁻	125	
	1 in O ₂ -saturated 0.1 M KOHover (a) Co/C, (b) Cu/C, (c)		
	$CuO-Co_3O_4/C$, (d) $CuCo/CuO-Co_3O_4$ + C, (e)		
	$CuCo/CuO-Co_3O_4/C$ and (f) $CuCo/CuO-Co_3O_4$,		
	respectively.		
5B.8	Koutecky-Levich plots at different potentials for (a)	125	
	Co/C, (b) Cu/C, (c) CuO-Co ₃ O ₄ /C, (d) CuCo/CuO-		
	Co_3O_4+ C, (e) CuCo/CuO-Co ₃ O ₄ /C and (f) CuCo/CuO-		
	Co ₃ O ₄ , respectively.		
5B.9	LSVs of the all electrocatalysts in O_2 -saturated 0.1 M	127	
	KOH solution at 1600 rpm.		
5B.10	The Tafel plots of Pt/C and CuCo/CuO-Co ₃ O ₄ /C NPs.	127	
5B.11	CV curves of a) CuCo/CuO-Co ₃ O ₄ /C and c) CuCo/CuO-	128	

 Co_3O_4 NPs with different scan rates. (D) Charging current density differences as function of scan rates for b) $CuCo/CuO-Co_3O_4/C$ and d) $CuCo/CuO-Co_3O_4$.

- 5B.12 CA curves of different catalysts, recorded at -0.3 V in 128
 O₂-saturated 0.1 M KOH solution with a rotation rate of 1600 rpm.
- 6A.1 (a) XRD patterns of the Fe₂O₃, Cu and Cu/Fe₂O₃, (b) 137
 TGA analysis of Cu/Fe₂O₃ in air atmosphere, and (c) N₂
 adsorption-desorption isotherm of Cu/Fe₂O₃.
 - 6A.2 (a-d) TEM images of Cu/Fe₂O₃, inset of (c) shows the 137 SAED pattern and (e-g) HRTEM images of Cu/Fe₂O₃ showing the lattice fringes of Cu and Fe₂O₃.
 - 6A.3 (a) XPS survey spectrum of Cu/Fe₂O₃. High-resolution 138 XPS spectra of (b) Cu 2p, (c) Fe 2p, and (d) O 1 s for Cu/Fe₂O₃.
 - 6A.4 Time-dependent absorption spectra of the reaction 140 solution of 4-NP reduction to 4-AP over (a) Cu, (b) Fe_2O_3 , (c) Cu/Fe_2O_3 and (d) plot of $ln(A_t/A_0)$ against the reaction time of the catalytic reduction of 4-NP to 4-AP over Cu/ Fe_2O_3.
 - 6A.5 Conversion against no. of cycles, (b) plot of $ln(A_t / A_0)$ 146 against the reaction time of the catalytic reduction of 4-NP to 4-AP for different cycles.
 - 6A.6 The magnetic hysteresis loops of the Cu/Fe₂O₃ NPs. 146 Inset shows the separation of Cu/Fe₂O₃ NPs from aqueous solution accomplish by an external magnet.
 - 6B.1XRD pattern of CuNi NPs along with diffraction lines148from JCPDS database corresponding to Cu and Ni.
 - 6B.2 TEM (a,b) and HR-TEM (c,d) of CuNi NPs. Inset in the 149 figure (d) shows the SAED pattern of the NPs
 - 6B.3 (a) XPS survey spectra of CuNi, core level XP spectra of 150

(b) Cu 2p and (c) Ni 2p and (d) O1s.

6B.4	(a) XRD pattern of CuNi NPs after three catalytic cycles.	153
------	---	-----

LIST OF SCHEMES

Chapter	Scheme	Title	Page No.
1	1.1	Schematic representation of 'Top-down' approach	9
	1.2	Schematic representation of 'bottom-up' approach	9
	1.3	Schematic representation of different catalysts.	11
6	6A.1	Reaction mechanism proposed by Haber for the	145
		reduction of nitroaromatics compounds	
	6B.1	Transfer hydrogenation of nitroaromatics to	151
		corresponding anilines over bimetallic CuNi NPs	