
5 Two texture zero neutrino mass in
left-right symmetric model with Z8 × Z2

In this chapter, we present a phenomenological study on the neutrino mass matrix Mν

favoring two zero texture in the framework of left-right symmetric model (LRSM) where

type I and type II seesaw naturally occurs. The type I SS mass term is considered to be

following a trimaximal mixing (TM) pattern. The symmetry realizations of these texture

zero structures have been realized using the discrete cyclic abelian Z8×Z2 group in LRSM.

We have studied six of the popular texture zero classes named as A1, A2, B1, B2, B3 and

B4 favored by neutrino oscillation data in our analysis. We focused on the implications of

these texture zero mass matrices in low energy phenomenon like neutrinoless double beta

decay (NDBD) and lepton flavor violation (LFV) in the LRSM scenario. For NDBD, we

have considered only the dominant new physics contribution coming from the diagrams

containing purely RH current and another from the charged Higgs scalar while ignoring

the contributions coming from the left-right gauge boson mixing and heavy light neutrino

mixing. The mass of the extra gauge bosons and scalars has been considered to be of the

order of TeV scale which is accessible at the colliders.

5.1 Introduction

Global analysis of neutrino oscillation data has quite precisely determined the best fit and 3σ

ranges of neutrino parameters, viz., the mixing angles, mass squared differences, the Dirac

CP phase δ [1], but the absolute neutrino mass and the additional CP phase (for Majorana
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particles) α and β are not accurately found yet. Nevertheless, several other questions are

yet not perceived amongst which notable is understanding the origin and dynamics of the

neutrino mass and the lepton flavor structures of the fermions. The role of symmetry in

particle physics [2] cannot be overestimated. It is utmost important to understand the

underlying symmetry in order to understand the origin of the tiny neutrino mass and the

large leptonic mixing. Symmetries can link two or more free parameters or can even make

them vanish, thereby making the model more predictive. One of the possible role flavor

symmetry can play is to impose texture zeros [3, 4, 5, 6, 7] in the mass matrix and to reduce

the number of free parameters. For a symmetricMν , it has six independent complex entries.

If n of them are considered to be vanishing, we arrive at 6Cn = 6!
n!(6−n)! different textures.

A texture of n > 3 is not compatible with current experimental data and neutrino mixing

angles. Texture zero approaches have been established as a feasible framework for explaining

the fermion masses and mixing data in quark as well as lepton sector and has been studied

in details in a large number of past works like [8, 9, 10, 11, 12, 13, 14, 15, 16]. Specifically,

two texture zero mass matrices are considered to be more interesting as they can reduce

the maximum number of free parameters. Two independent zeroes in the matrix can lead

to four relations among the nine free parameters in the neutrino mass matrix which can be

checked against the available experimental data.

In the simplest case, one can presume the charged lepton mass matrix to be diagonal and then

consider the possible texture zeros in the symmetric Majorana mass matrix. Considering the

basis in which charged lepton mass matrix is diagonal there are different categories of two

zero texture neutrino mass matrix out of which some are ruled out and some are marginally

allowed. Glashow et al.[4] have found seven acceptable textures of neutrino mass matrix

(out of total fifteen) with two independent vanishing entries in the flavor basis for a diagonal

charged lepton mass matrix to be consistent with current experimental data.

Neutrino mass and mixing matrix have different forms based upon some flavor symmetries.

Amongst them, the most popular one which is consistent with neutrino oscillation data is

the Tribimaximal mixing (TBM) [17] structure as proposed by Harison, Perkins and Scott.

The resulting mass matrix in the basis of a diagonal charged lepton mass matrix is both 2-3

symmetric and magic. By magic, it means the row sums and column sums are all identical.

The reactor mixing angle θ13 vanishes in TBM because of the bimaximal character of the
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third mass eigenstate ν3. However θ13 has been measured to be non-zero by experiments like

T2K, Daya Bay, RENO and DOUBLE CHOOZ [18, 19, 20], which demands a correction to

the TBM form which may be a correction or some perturbation to this type. Henceforth,

owing to the current scenario of neutrino oscillation parameters several new models have

been theorized and studied by the scientific communities. Amongst several neutrino mass

models, Trimaximal mixing (TM) [21, 22, 23, 24, 25, 26, 27, 28] is one in which non-zero

reactor mixing angle can be realized. The mixing matrix consists of identical second column

elements similar to the TBM type. However, it relaxes some of the TBM assumptions, since

it allows for a non-zero θ13 as well as preserves the solar mixing angle prediction. Besides the

zeros in the neutrino mass matrix which is one of currently studied approaches for precisely

explaining neutrino masses and mixing can also be examined using the TM mixing.

As we have mentioned in the earlier chapters that one of the important processes which

undoubtedly establishes the Majorana nature of neutrinos (violation of lepton number by

two units) is neutrinoless double beta decay (NDBD) (for a review see[29]). Besides, the

observation of NDBD would also throw light on the absolute scale of neutrino mass and

in explaining the matter-antimatter asymmetry of the universe. The NDBD experiments

like KamLAND-Zen, GERDA, EXO-200 [30, 31, 32] directly measures and provides bounds

on the decay half-life which can be converted to the effective neutrino mass parameter,

mee with certain uncertainty which arises due to the theoretical uncertainty in the NME.

The current best limits on the effective mass < mee > are of the order of 100 meV. The

next-generation experiments target to increase the sensitivity in the 10 meV mass range.

Thus, future NDBD experiments can shed lights on several issues in the neutrino sector.

Observing this rare decay process with the current experiments would signify new physics

contributions beyond the Standard Model (BSM) other than the standard light neutrino

contribution.

There are several BSM frameworks, amongst which one of the most fascinating and modest

frameworks in which neutrino mass and other unsolved queries can be addressed is the left

right symmetric model (LRSM) [33, 34, 35]. It has become a topic of interest since long

back owing to its indomitable importance and has been studied in details by several groups

in different contexts [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. As far as NDBD is concerned,

LRSM can give rise to several new physics (non-standard) contributions coming from LH,
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RH, mixed, scalar triplet etc. Several analysis has been done already involving NDBD

in LRSM [39, 42, 40, 41, 42, 43, 44, 45] and their compatibility with LHC experiments

[47, 48, 49, 50, 40].

As cited by several authors [28, 27], the TM mixing can satisfy the current neutrino ex-

perimental data when combined with two zero textures. In this context, we have done a

phenomenological study on the neutrino mass matrix Mν favoring two zero texture in the

framework of LRSM where type I and type II seesaw naturally occurs. The type I SS mass

term is considered to be following a TM mixing pattern. The symmetry realizations of these

texture zero structures has been realized using the discrete cyclic abelian (Z8 × Z2) group

in LRSM. In order to obtain the desired two zero textures of the mass matrices, we have

added two more LH and RH scalar triplets each. In our analysis, we have studied for the

popular 6 texture zero classes being named as A1-A2 and B1-B4. We basically focused in

the implications of these texture zero mass matrices in low energy phenomenon like NDBD

and LFV in LRSM scenario. For NDBD, we have considered only the dominant new physics

contribution coming from the diagrams containing purely RH current mediated by the heavy

gauge boson, WR by the exchange of heavy right-handed (RH) neutrino, NR and another

from the charged Higgs scalars mediated by the heavy gauge boson WR ignoring the contri-

butions coming from the left-right gauge boson mixing and heavy light neutrino mixing as

in chapter 5. The mass of the extra gauge bosons and scalars has been considered to be of

the order of TeV accessible at the colliders.

This chapter has been organized as follows, in the next section we briefly review two texture

zero and TM mixing. In section 5.3 we present the symmetry realizations of these classes by

using a cyclic Z8 × Z2 group symmetry with possible particle contents in LRSM to obtain

the desired texture zero matrices. Then in section 5.4 we discuss NDBD and LFV in the

framework of LRSM which is followed by the numerical analysis and results with the collider

signatures in section 5.5. We give the conclusion in section 5.6.
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5.2 Two zero texture and tri-maximal mixing

Non-vanishing θ13 excluded µ− τ symmetry to be an exact symmetry of the neutrino mass

matrix which opts for a perturbation in µ − τ symmetric mass matrix or a different form

which gives rise to non-zero θ13. Going through literature, we have seen that another form

of symmetry known as magic symmetry can serve the purpose [51]. The corresponding

mass matrix known as the magic symmetric mass matrix can be made more predictive by

imposing certain constraints in it. Adding zeroes in certain elements of the matrix can

make it more anticipating. One zero and two zero textures of certain types in neutrino mass

matrix are consistent with the neutrino data. We here study two zero texture in neutrino

mass matrixMν which was first considered in [4, 5] and subsequently by several other groups

[52, 11, 10, 12, 53, 6, 7, 8, 13, 14]. Trimaximal mixing (TM) in two texture zero has been

extensively studied in literature [28, 27]. In TM, µ − τ symmetry is broken but the magic

symmetry is kept intact. It has been again named as TM1 or TM2 based upon whether

the second or the first column of the TBM mixing matrix remains intact respectively. We

have studied these allowed texture zeros in the magic neutrino mass matrix (satisfying TM2

mixing) which is the type I SS mass term in our case and studied its implications for low

energy processes like NDBD and LFV. Two zero textures ensure two independent vanishing

entries in the neutrino mass matrix. There are a total of 6C2 i.e., 15 texture zeros of Mν

which has been further classified into 6 subcategories and can be named as- A1, A2; B1, B2,

B3, B4; C1; D1, D2; E1, E2, E3; F1, F2, F3. Out of the above, E1-E3; F1-F3 were ruled

out, D1, D2 are marginally allowed and now has been experimentally ruled out at 3σ level.

We are only left with 7 allowed cases of 2 zero textures, viz., A1-A2; B1-B4 and C1, we are

concerned with six of the above classes which are of the form,

A1 =


0 0 X

0 X X

X X X

 , A2 =


0 X 0

X X X

0 X X

 , B1 =


X X 0

X 0 X

0 X X

 (5.1)

B2 =


X 0 X

0 X X

0 X 0

 , B3 =


X 0 X

0 0 X

X X X

 , B4 =


X X 0

X X X

0 X 0

 (5.2)

157



Chapter 5. Two texture zero neutrino mass in left-right symmetric model with Z8 × Z2

The neutrino mass matrix is said to be invariant under a magic symmetry and the cor-

responding mixing symmetry is known as trimaximal mixing (TM) with the TM2 mixing

matrix given by,

UTM 2 =


√

2
3cosθ

1√
3

√
2
3sinθ

− cosθ√
6 + e−iφsinθ√

2
1√
3 −

sinθ√
6 −

e−iφcosθ√
2

− cosθ√
6 −

e−iφsinθ√
2

1√
3 −

sinθ√
6 + e−iφcosθ√

2

 , (5.3)

where θ and φ being the free parameters. It diagonalizes the magic neutrino mass matrix,

which can be parameterized as,

Mmagic =


p q r

q r p+ r − s

r p+ r − s q − r + s

 (5.4)

The different allowed classes of two zero texture along with their respective constraint equa-

tions are as shown in table 5.1 Using these constraint equations, we can arrive at the different

Class Constraint equations

A1 Mee = 0,Meµ = 0

A2 Mee = 0,Meτ = 0

B1 Meτ = 0,Mµµ = 0

B2 Meµ = 0,Mττ = 0

B3 Meµ = 0,Mµµ = 0

B4 Mµµ = 0,Mττ = 0

Table 5.1: Constraint relations for two texture zero mass matrix.

classes of two zero textured neutrino mass matrix favouring TM2 mixing.

5.3 Symmetry realizations in LRSM

The light neutrino mass in LRSM generated within a type I+II seesaw is,

Mν = MLL −MDMRR
−1MD

T =
√

2vLfL −
v2

SM√
2vR

hDfR
−1hD

T , (5.5)
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MD = 1√
2

(k1h+ k2h̃),MLL =
√

2vLfL,MRR =
√

2vRfR, (5.6)

hD = (k1h + k2h̃)√
2vSM

. (5.7)

MD, MLL and MRR being the Dirac neutrino mass matrix, LH and RH Majorana mass

matrix respectively. The first and second terms in equation (5.5) correspond to type II seesaw

and type I seesaw contributions respectively. Several earlier works [52, 11, 10, 12, 53, 6, 7,

8, 13, 14] has explained two zero texture which has been explored BSM to address neutrino

masses and mixing. In this work, we have extended the minimal left-right symmetric model

by introducing two more LH and RH scalar triplets represented by ∆L
′
,∆L

′′ and ∆R
′
,∆R

′′

respectively for the classes B1-B4 and three more for the classes A1 and A2 (∆L
′
,∆L

′′
,∆L

′′′

and ∆R
′
,∆R

′′
,∆R

′′′) to realize the desired textures of Dirac and Majorana mass matrix,

MD and MRR while keeping in mind that the charged lepton mass matrix is diagonal. The

symmetry realizations of these texture zero structures has been worked out using the discrete

abelian (Z8 × Z2) group in the framework of LRSM which are explained below.

Class A1:

The symmetry realization for the class A1 is shown in tabular form as below,

lL Z8 × Z2 lR Z8 × Z2 ∆(LH) Z8 × Z2 ∆(RH) Z8 × Z2

lLe (ω4, 1) lRe (ω4, 1) ∆L (ω2,−1) ∆R (1, 1)

lLµ (ω3,−1) lRµ (ω5,−1) ∆L
′ (ω2, 1) ∆R

′ (ω7,−1)

lLτ (ω2,−1) lRτ (ω6,−1) ∆L
′′ (ω3, 1), ∆R

′′ (ω6,−1)

∆L
′′′ (ω4, 1), ∆R

′′′ (ω6, 1)

Table 5.2: Particle assignments for A1

In the classes A1 and A2, the bidoublets φ and φ̃ transforms as singlets (1 × 1) under the

cyclic group Z8 × Z2. The diagonal Dirac and the charged lepton mass term(which is same

for all the cases), in the matrix form can be written as,

MD =


1 ω3 ω3

ω5 1 −1

ω5 −1 1

+


1 ω3 ω3

ω5 1 −1

ω5 −1 1

 '

× 0 0

0 × 0

0 0 ×

 (5.8)
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The corresponding Dirac Yukawa Lagrangian for A1 and A2 can be written as,

LD = YeeLLeφLRe + ỸeeLLeφ̃LRe + YµµLLµφLRµ + ˜YµµLLµφ̃LRµ+

YττLLτφLRτ + ỸττLLτ φ̃LRτ

(5.9)

Under these symmetry realizations, we get the Majorana mass terms (LH and RH) and the

type I SS mass terms for the class A1, in the matrix form as,

MRR =


1 1 1

1 1 ω3

1 ω3 ω4

 ,MLL =


ω2 0 1

0 1 1

1 1 1

 ,M I =


0 0 ×

0 × ×

× × ×

 (5.10)

The Majorana Yukawa Lagrangian (LH and RH) for A1 is thus given as,

LMR = YReeLRe
T∆RLRe + YReµLRe

T∆′RLRµ + YRµeLRµ
T∆R

′
LRe+

YReτLRe
T∆R

′′
LRτ + YRτeLRτ

T∆R
′′
LRe + YRµµLRµ

T∆R
′′′
LRµ.

(5.11)

LML = YLeτLLe
T∆LLLτ + YLτeLLτ

T∆LLLe + YLµµLLµ
T∆L

′
LLµ+

YLµτLLµ
T∆L

′′
LLτ + YLτµLLτ

T∆L
′′
LLµ + YLττLLτ

T∆L
′′′
LLτ .

(5.12)

Class A2:

For the class A2, to get the desired texture zero structures for the mass matrices, the

following symmetry realization has been adopted.

lL Z8 × Z2 lR Z8 × Z2 ∆(LH) Z8 × Z2 ∆(RH) Z8 × Z2

lLe (ω4, 1) lRe (ω4, 1) ∆L (ω,−1) ∆R (1, 1)

lLµ (ω3,−1) lRµ (ω5,−1) ∆L
′ (ω2, 1) ∆R

′ (ω7,−1)

lLτ (ω2,−1) lRτ (ω6,−1) ∆L
′′ (ω3, 1), ∆R

′′ (ω6,−1)

∆L
′′′ (ω4, 1), ∆R

′′′ (ω4, 1)

Table 5.3: Particle assignments for A2

The Majorana mass terms (LH and RH) and the type I SS mass terms, in the matrix form
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has been obtained as,

MRR =


1 1 1

1 ω2 ω3

1 ω3 1

 ,MLL =


ω 1 ω7

1 1 1

ω7 1 1

 ,M I =


0 × 0

× × ×

0 × ×

 . (5.13)

The corresponding Majorana Yukawa Lagrangian (LH and RH) for A2 is,

LMR = YReµLRe
T∆RLRµ + YRµeLRµ

T∆RLRe + YRµµLRµ
T∆R

′
LRµ+

YRµτLRµ
T∆R

′′
LRτ + YRτµLRτ

T∆R
′′
LRµ + YRττLRτ

T∆R
′
LRτ

(5.14)

LML = YLeµLLe
T∆LLLµ + YLµeLLµ

T∆LLLe + YLµµLLµ
T∆L

′
LLµ+

YLµτLLµ
T∆L

′′
LLτ + YLτµLLτ

T∆L
′′
LLµ + YLττLLτ

T∆L
′′′
LLτ

(5.15)

Class B1: The symmetry realizations of the particles under Z8 × Z2 for the class B1 are

as shown in the table 5.4. In the classes B1 to B4, the bidoublets φ and φ̃ transforms as

lL Z8 × Z2 lR Z8 × Z2 ∆(LH) Z8 × Z2 ∆(RH) Z8 × Z2

lLe (ω2, 1) lRe (ω6, 1) ∆L (ω4, 1) ∆R (ω4, 1)

lLµ (ω3,−1) lRµ (ω5,−1) ∆L
′ (ω3,−1) ∆R

′ (ω5,−1)

lLτ (ω3,−1) lRτ (ω5,−1) ∆L
′′ (ω2, 1) ∆R

′′ (ω6, 1)

Table 5.4: Particle assignments for B1

φ → (1, 1)φ , φ′ → (1,−1)φ′ under the cyclic group Z8 × Z2. The diagonal Dirac and the

charged lepton mass term for B1 to B4 are given by,

MD =


1 ω7 ω7

ω 1 −1

ω −1 1

+


1 ω7 ω7

ω 1 −1

ω −1 1

 '

× 0 0

0 × 0

0 0 ×

 (5.16)

The corresponding Dirac Yukawa Lagrangian for B1 to B4 can be written as,

LD = YeeLLeφLRe + ỸeeLLeφ̃LRe + YµµLLµφLRµ + ˜YµµLLµφ̃LRµ+

YττLLτφLRτ + ỸττLLτ φ̃LRτ

(5.17)
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These transformations leads to the Majorana mass matrices (LH and RH) as,

MRR =


1 1 1

1 1 1

1 1 1

 ,MLL =


1 1 ω4

1 ω 1

ω4 1 1

 ,M I =


× × 0

× 0 ×

0 × ×

 (5.18)

The corresponding Z8 × Z2 invariant Majorana Yukawa Lagrangian (LH and RH) for B1

is,

LMR = YReeLRe
T∆RLRe + YReµLRe

T∆R
′
LRµ + YRµeLRµ

T∆R
′
LRe+

YReτLRe
T∆RLRτ + YRτeLRτ

T∆RLRe + YRµµLRµ
T∆R

′′
LRµ

+YRµτLRµT∆R
′′
LRτ + YRτµLRτ

T∆R
′′
LRµYRττLRτ

T∆R
′′
LRτ .

(5.19)

LML = YLeeLLe
T∆LLLe + YLeµLLe

T∆LLRµ + YLµeLLµ
T∆L

′
LLe+

YLµτLLµ
T∆L

′
LLτ + YLτµLLτ

T∆L
′′
LLµ + YLττLLτ

T∆L
′′
LLτ .

(5.20)

Class B2: The symmetry realizations to obtain the desired textures of the class B1 are as

shown in the table 5.5,

lL Z8 × Z2 lR Z8 × Z2 ∆(LH) Z8 × Z2 ∆(RH) Z8 × Z2

lLe (ω2, 1) lRe (ω6, 1) ∆L (ω4, 1) ∆R (ω4, 1)

lLµ (ω3,−1) lRµ (ω5,−1) ∆L
′ (ω3,−1) ∆R

′ (ω5,−1)

lLτ (ω3,−1) lRτ (ω5,−1) ∆L
′′ (ω2, 1) ∆R

′′ (ω6, 1)

Table 5.5: Particle assignments for B2

The Majorana mass matrices (LH and RH) and the type I SS mass matrix under these

transformation has been obtained as,

MRR =


1 1 1

1 1 1

1 1 1

 ,MLL =


1 ω 1

ω 1 1

1 1 ω2

 ,M I =


× 0 ×

0 × ×

× × 0

 (5.21)

The corresponding Majorana Yukawa Lagrangian (LH and RH) for the class B2 is,

LMR = YReeLRe
T∆RLRe + YReµLRe

T∆′RLRµ + YRµeLRµ
T∆R

′
LRe+

YReτLRe
T∆′RLRτ + YRτeLRτ

T∆R
′
LRe + YRµµLRµ

T∆R
′′
LRµ

+YRµτLRµT∆R
′′
LRτ + YRτµLRτ

T∆R
′′
LRµ + YRττLRτ

T∆R
′′
LRτ

(5.22)
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LML = YLeeLLe
T∆LLLe + YLeτLLe

T∆′LLLτ + YLτeLLτ
T∆L

′
LLe+

YLµµLLµ
T∆L

′′
LLµ + YLµτLLµ

T∆L
′′
LLτ + YLτµLLτ

T∆L
′′
LLµ

(5.23)

Class B3: The symmetry realizations of the particles to obtain the desired mass terms of

class B3 is shown in table 5.6.

lL Z8 × Z2 lR Z8 × Z2 ∆(LH) Z8 × Z2 ∆(RH) Z8 × Z2

lLe (ω2, 1) lRe (ω6, 1) ∆L (ω4, 1) ∆R (ω4, 1)

lLµ (ω3,−1) lRµ (ω5,−1) ∆L
′ (ω3,−1) ∆R

′ (ω5,−1)

lLτ (ω3,−1) lRτ (ω5,−1) ∆L
′′ (ω2, 1) ∆R

′′ (ω6, 1)

Table 5.6: Particle assignments for B3

The Majorana mass terms (LH and RH) and the type I SS mass terms, in the matrix form

can be written as,

MRR =


1 1 ω7

1 1 1

ω7 1 ω6

 ,MLL =


1 ω 1

ω ω2 1

1 1 1

 ,M I =


× 0 ×

0 0 ×

× × ×

 (5.24)

The corresponding Majorana Yukawa Lagrangian (LH and RH) for B3 is,

LMR = YReeLRe
T∆RLRe + YReµLRe

T∆′RLRµ + YRµeLRµ
T∆′RLRe+

YRµµLRµ
T∆R

′′
LRµ + YRµτLRµ

T∆R
′′
LRτ + YRτµLRτ

T∆R
′′
LRµ

(5.25)

LML = YLeeLLe
T∆LLLe + YLeτLLe

T∆L
′
LLτ + YLτeLLτ

T∆L
′
LLe+

YLµτLLµ
T∆L

′′
LLτ + YLτµLLτ

T∆L
′′
LLµ + YLττLLτ

T∆L
′′
LLτ

(5.26)

Class B4:

Similarly, we give the transformations for the class B4 as shown in table 5.7 to obtain the

desired texture zero mass matrices.
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lL Z8 × Z2 lR Z8 × Z2 ∆(LH) Z8 × Z2 ∆(RH) Z8 × Z2

lLe (ω2, 1) lRe (ω6, 1) ∆L (ω4, 1) ∆R (ω4, 1)

lLµ (ω3,−1) lRµ (ω5,−1) ∆L
′ (ω3,−1) ∆R

′ (ω5,−1)

lLτ (ω3,−1) lRτ (ω5,−1) ∆L
′′ (ω2, 1) ∆R

′′ (ω6, 1)

Table 5.7: Particle assignments for B4

Under these symmetry realizations, we obtain the Majorana mass terms (LH and RH) and

the type I SS mass terms as,

MRR =


1 ω7 1

ω7 ω6 1

1 1 1

 ,MLL =


1 1 ω

1 1 1

ω 1 ω4

 ,M I =


× × 0

× × ×

0 × 0

 (5.27)

The Majorana Yukawa Lagrangian (LH and RH) for B4 thus becomes,

LMR = YReeLRe
T∆RLRe + YReτLRe

T∆R
′′
LRτ + YRτeLRτ

T∆R
′′
LRe+

YRµτLRµ
T∆R

′′
LRτ + YRτµLRτ

T∆R
′
LRµ + YRττLRτ

T∆R
′′
LRτ

(5.28)

LML = YLeeLLe
T∆LLLe + YLeµLLe

T∆L
′
LLµ + YLµeLLµ

T∆L
′
LLe+

YLµµLLµ
T∆L

′′
LLµ + YLµτLLµ

T∆L
′′
LLτ + YLτµLLτ

T∆L
′′
LLµ

(5.29)

LRSM being a combination of type I and type II SS mass terms would give us the final mass

matrix that would obey the structure of two zero texture mass matrix. It has been shown

in tabular form in the numerical analysis.

5.4 Neutrinoless double beta decay and lepton flavor

violation in LRSM.

The very facts of LRSM and the presence of several new heavy particles leads to many new

contributions to NDBD apart from the standard light neutrino contribution. This has been

extensively studied in several earlier works [39, 42, 40, 41, 42, 43, 44, 45]. Amongst the

non-standard contribution, notable are heavy RH neutrino contribution to NDBD in which
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the mediator particles are the WL
− and WR

− boson individually, light neutrino contribution

to NDBD in which the intermediate particles are WR
− bosons, light neutrino contribution

mediated by both WL
− and WR

−, heavy neutrino contribution mediated by both WL
− and

WR
−, triplet Higgs ∆L contribution mediated by WL

− bosons and RH triplet Higgs ∆R

contribution to NDBD in which the mediator particles are WR
− bosons. The amplitude of

these processes are dependent on the mixing between light and heavy neutrinos, the mass

of the heavy neutrino, Ni, the mass of the gauge bosons, WL
− and WR

−, the elements

of the RH leptonic mixing matrix, LH and RH triplet Higgs, ∆L and ∆R as well as their

coupling to leptons, fL and fR. Again, the observation of neutrino oscillation also bestows

fascinating evidence for charged lepton flavor violation (CLFV) [54, 55, 56]. Since LFV

which is generated at high energy scales are beyond the reach of the colliders, searching

them in low energy scales amongst the charged leptons is widely accepted as an alternate

procedure to probe LFV at high scales. Many previous works [39, 45, 57, 58]have focussed

on the lepton flavor violating decay modes of muon, ( µ → 3e , µ → eγ, µ → e conversion

in the nuclei). Considerable CLFV occurs in LRSM owing to the contributions that arise

from the heavy RH neutrino and Higgs scalars. The relevant branching ratios (BR) has

been derived and studied in [54]. The LFV processes µ → 3e, µ → eγ provides the most

relevant constraints on the masses of the RH neutrinos and the doubly charged scalars. In

this work we would consider the process µ→ eγ, the BR of which is given by the equation

(5.30) as defined in chapter 2 (equation (2.17)),

BR (µ→ eγ) = 1.5× 10−7|glfv|2
(

1TeV
MWR

)4

, (5.30)

where, glfv is defined as in equation (2.18). The current experimental constraints for the BRs

of these processes has been obtained as < 1.0×10−12 for µ→ 3e at 90% CL was obtained by

the SINDRUM experiment. While it is < 4.2×10−13 [59] for the process µ→ eγ, established

by the MEG collaboration.
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5.5 Numerical analysis and results

• In LRSM, we can write the light neutrino mass matrix as a combination of type I and

type II mass terms as,

Mν = Mν
I + Mν

II (5.31)

Here, we consider Mν
I to be favoring the TM mixing with magic symmetry, so as to

obtain the desired two zero texture. The different magic neutrino mass matrix with

two zeroes can be obtained from the most general magic mass matrix which can be

parameterized as [27, 28],

Mmagic =


p q r

q r p+ r − s

r p+ r − s q − r + s

 (5.32)

which can be diagonalized by the TM matrix as,

Mdiag = UTM2
TMmagicUTM2 where, UTM2 is the diagonalizing matrix for the magic

mass matrix and is given in equation (5.3)

• Using the constraint relations for various classes with two zero textures, we can arrive

at the mass matrices as,

Mν
I(A1) =


0 0 r

0 s r − s

r r − s −r + s

 ,Mν
I(A2) =


0 q 0

q s −s

0 −s q + s

 (5.33)

Mν
I(B1) =


p q 0

q 0 p

0 p q

 ,Mν
I(B2) =


p 0 r

0 r p

r p 0

 (5.34)

Mν
I(B3) =


p 0 r

0 0 p+ r

r p+ r −r

 ,Mν
I(B4) =


p q 0

q −q p+ q

0 p+ q 0

 (5.35)
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Again , Mν
I = UTM2UMajMν

diagUMaj
TUTM

T
2 where,UMaj consists of the Majorana

phases α and β, Mν
diag =diag(m1,m2,m3) which can be written as,

– diag (m1,
√
m2

1 + ∆m2
sol,

√
m2

1 + ∆m2
sol + ∆m2

atm) (In NH),

– diag (
√
m2

3 + ∆m2
atm,

√
m2

3 + ∆m2
sol + ∆m2

atm,m3) (In IH),

in terms of the lightest neutrino mass. Thus, by comparingMν
I withMν

I for different

classes we can solve for the unknown parameters (p, q, r, s) in the corresponding

matrices and obtain Mν
I for different classes.

• Since now we have Mν
I, we can evaluate Mν

II using equation (5.31). Again, we have

in LRSM, MRR = 1
γ
(MWR

MWL
)2Mν

II, where γ is a dimensionless parameter which follows

directly from the minimization of the Higgs potential, here we consider its value to be

10−10. Thus we can find out MRR for our further analysis.

• Using the constraint relations for the respective classes, we have compared the neutrino

mass matrix, Mν = UPMNSMν
diagUPMNS

T with the neutrino mass matrices (Mν
I+Mν

II)

containing two zeros. UPMNS being the diagonalizing matrix of the light neutrino mass

matrix, Mν as defined in equation (1.28). Varying the neutrino parameters, θ12, θ13, δ

in its 3σ range [1] and writing the mass eigenvalues in terms of lightest neutrino mass

m1/m3 for (NH/IH) and varying from 0.0001 to 0.1, we have solved for the parameters

α, β and θ23. We have chosen these parameters as the Majorana phases are unknown

yet and the precise measurement of θ23 and octant degeneracy is yet to be determined

although experiments like NOvA, T2K have reported some values.

• The different structures of the neutrino mass matrix in the LRSM using two texture

zero are shown in table 5.8. The symmetry realizations of the texture zeros using the

cyclic groups Z8× Z2 are as shown in the previous section .

• Owing to the presence of new scalars and gauge bosons in the LRSM, various addi-

tional sources would give rise to contributions to NDBD process, which involves RH

neutrinos, RH gauge bosons, scalar Higgs triplets as well as the mixed LH-RH con-

tributions. We will study LNV (NDBD) for the non-standard contributions for the

effective mass in the framework of LRSM. For a simplified analysis, we would ignore

the left-right gauge boson mixing (WL −WR) which is very less and heavy light neu-
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Class MD MRR Mν
I Mν

II Mν

A1

[
x 0 0

0 y 0

0 0 z

] [
A B C

B D 0

C 0 0

] [
0 0 a

0 b c

a c d

] [
0 0 W

0 X Y

W Y Z

] [
0 0 W + a

0 X + b Y + c

W + a Y + c Z + d

]

A2

[
x 0 0

0 y 0

0 0 z

] [
A B C

B 0 0

C 0 D

] [
0 a 0

a b c

0 c d

] [
0 W 0

W X Y

0 Y Z

] [
0 W + a 0

W + a X + b Y + c

0 Y + c Z + d

]

B1

[
x 0 0

0 y 0

0 0 z

] [
A B C

B D E

C E F

] [
a b 0

b 0 c

0 c d

] [
W X 0

X 0 Y

0 Y Z

] [
W + a X + b 0

X + b 0 Y + c

0 Y + c Z + d

]

B2

[
x 0 0

0 y 0

0 0 z

] [
A B C

B D E

C E F

] [
a 0 b

0 c d

b d 0

] [
W 0 X

0 Y Z

X Z 0

] [
W + a 0 X + b

0 Y + c Z + d

X + b Z + d 0

]

B3

[
x 0 0

0 y 0

0 0 z

] [
A B 0

B C D

0 D 0

] [
a 0 b

0 0 c

b c d

] [
W 0 X

0 0 Y

X Y Z

] [
W + a 0 X + b

0 0 Y + c

X + b Y + c Z + d

]

B4

[
x 0 0

0 y 0

0 0 z

] [
A 0 B

0 0 C

B C D

] [
a b 0

b c d

0 d 0

] [
W X 0

X Y Z

0 Z 0

] [
W + a X + b 0

X + b Y + c Z + d

0 Z + d 0

]

Table 5.8: The structures of MD, MRR, Mν
I and Mν

II and Mν for different classes of two

zero textures.

trino mixing which is dependent upon MD
MR

is ζ ≈ 10−6. Furthermore, contributions

from the LH contributions to 0νββ can be neglected. The total effective mass is thus

given by the formula (5.36) as used in earlier works like [42] for classes A1 and A2.

mN+∆
eff = p2 MWL

4

MWR
4

URei
∗2

Mi
+ p2 MWL

4

MWR
4 URei

2Mi

 1
M∆R

2 + 1
M∆R

′ 2
+ 1

M∆R
′′ 2

+ 1
M∆R

′′′ 2

 .
(5.36)

and it is,

mN+∆
eff = p2 MWL

4

MWR
4

URei
∗2

Mi
+ p2 MWL

4

MWR
4 URei

2Mi

 1
M∆R

2 + 1
M∆R

′ 2
+ 1

M∆R
′′ 2

 . (5.37)

for the classes B1 to B4. Here, ∆ in LHS represents the RH scalar triplets, < p2 >=

memp
MN
Mν

is the typical momentum exchange of the process, where mp and me are the

mass of the proton and electron respectively and MN is the NME corresponding to the

RH neutrino exchange. URei in equations (5.36) and (5.37) denotes the elements of

the first row of the unitary matrix diagonalizing the RH neutrino mass matrix MRR

with mass eigenvalues Mi. Since we have MRR, we can evaluate URei by diagonalizing

it as, MRR = URMRR
diagUR

T. The MRR we obtain would consist of the mixing angles

in the TM mass matrix, θ and φ along with the other parameters of our concern. As

shown in paper [27, 26], θ and φ are related to the oscillation parameters θ23 and θ12

as,
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Sinθ12
2 = 1

3− 2Sin2θ
, Sinθ23

2 = 1
2(1 +

√
3Sin2θCosφ
3− 2Sin2θ

) (5.38)

We thus obtained the parameter space for θ and φ by varying the parameters θ12 and

θ23 in its 3 σ range which is shown in figure 5.1. We have seen that the trimaximal

mixing angle θ lies within the range (0.05 to 0.5) radian for the 3σ range of the solar

mixing angle θ12 although it doesn’t show significant dependence. The other mixing

angle φ shows some dependence on the atmospheric mixing angle θ23 for both normal

and inverted ordering of neutrino mass. It’s values lies within (1.56-1.66) radian for

the 3σ range of θ23. The plot shows an exponential decrease and then increase in φ

with the increase in θ23 with a fall at around the best fit value.

The effective mass governing NDBD from the new physics contribution coming from

RH neutrino and scalar triplet can be obtained from equations (5.36) and (5.37).

We have shown the two-parameter contour plots with effective Majorana mass as the

contour as in figures 5.2 to 5.19. In figures 5.2 to 5.7, we have shown the two-parameter

space for mlightest Vs φ, θ Vs β and α Vs β for both the mass hierarchies for different

classes of allowed two texture zero neutrino mass. The KamLAND-Zen upper limit

for the effective mass is shown in the contour.

• In figure 5.2 and 5.3, it is seen that the value of lightest neutrino mass ranging from

(0.01 to 0.1) eV satisfies the KamLAND-Zen limit of effective mass in all the classes

irrespective of the mass hierarchies. Whereas, the TM mixing angle φ for all the classes

shows different results. In NH, for the classes A1, B1 and B4, the range of φ satisfying

the experimental bound of effective mass lies from around (1.57-1.60) radian and for

the classes A2, B2 and B3, it is around (1.62-1.66) radian. For IH again the classes

A1, B1, B2 and B4 has φ around (1.57-1.6) radian whereas A2 and B3 has the range

(1.62-1.66) for φ satisfying KamlAND-Zen limit.

• In figure 5.4 and 5.5, i.e., β Vs θ plot, it is seen that for NH, the classes A1, A2, B1,

B2, B3 has θ ranging from (0.05-0.35) radian whereas B4 has θ from (0.45-0.55) radian

which satisfies the experimental bounds of effective neutrino mass. For IH, A1, A2, B1,

B2 and B3 has θ from (0.05-0.3) radian whereas B4 has the range (0.45-0.55) radian.

Similarly, the value of the Majorana phase β is also constrained as seen from these
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plots. It is around (1-3) radian for classes A1, A2, B1, B2 and B3 for NH and (0.8-3)

radian for the class B4 which satisfies the KamLAND-Zen bound. For IH again, A1,

A2, B1, B2 and B3 have range around (1-3.2) radian, whereas it is around (0.6-3.2)

radian for B4.

• In figure 5.6 and 5.7, again we see that the value of the Majorana phase α is also

constrained for the experimentally allowed range of effective mass. It is different for

the different classes of allowed two zero texture neutrino mass. We have summarized

the range of the parameters satisfying the experimental bound of effective neutrino

mass governing NDBD in table 5.9 and 5.10

• Figures 5.8 to 5.19 shows the two-parameter contour plots with the new physics con-

tribution to effective mass as the contour, where (0.061-0.1) eV is the KamLAND-Zen

upper limit for effective neutrino mass governing NDBD. The parameters shown being

the model parameters that appear in the type II SS mass matrix as shown in table

5.8. Since there are four parameters, W, X, Y, Z in the type II SS mass matrix,

there would be 4C2, i.e., 6 combinations of two parameters for all the classes which we

have shown in these plots. The figures correspond to normal and inverted hierarchies

which we have shown using different contours to distinguish them. The values of these

parameters which gives effective mass within experimental bounds are summarized in

table 5.11. Although all the classes (A1, A2, B1, B2, B3, B4) gives the allowed values

of effective mass, in some cases the values are so much constrained like A2 (IH), B1

(IH), B2 (NH).

• For lepton flavor violation, we have evaluated the BR for the process µ → eγ using

equation (5.30), where V is the mixing matrix of the RH neutrinos with the electrons

and muons. Mn(n = 1, 2, 3) are the RH neutrino masses. It is evident from the

equation for the BR that it is dependent upon [MRMR
∗]µe. We evaluated the BR and

have shown the variation with the Majorana phase β and atmospheric mixing angle

θ23. Figure (5.20) and (5.21) shows the contour plot with BR for the decay process

(µ→ eγ) as the contour where 4.2× 10−13 is the upper limit of BR as given by MEG

experiment. It is interestingly seen that most of the classes are unable to explain the

LFV as far as experimental bounds are concerned. Thus only the class B3 is satisfying
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the experimental bound of BR for both the hierarchies. On careful observation of

the figure, we see that for the 3σ range of θ23, the value of the Majorana phase, β is

constrained to 1 to 3 radian.

Figure 5.1: Variation of the TM mixing angle φ and θ with the atmospheric and solar mixing

angle, θ23 and θ12.
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Figure 5.2: New physics contribution to effective mass governing NDBD for different classes

of 2-0 textures for NH shown as a function of two parameter mlightest and φ. The contour

represents the eff. mass where 0.061 eV is the KamLAND-Zen upper limit.

Figure 5.3: New physics contribution to effective mass governing NDBD for different classes

of 2-0 textures for IH shown as a function of two parameter mlightest and φ. The contour

represents the eff. mass where 0.061 eV is the KamLAND-Zen upper limit.

172



5.5. Numerical analysis and results

Figure 5.4: New physics contribution to effective mass governing NDBD for different classes

of 2-0 textures for IH shown as a function of two parameter θ and β. The contour represents

the eff. mass where 0.061 eV is the KamLAND-Zen upper limit.

Figure 5.5: New physics contribution to effective mass governing NDBD for different classes

of 2-0 textures for IH shown as a function of two parameter θ and β. The contour represents

the eff. mass where 0.061 eV is the KamLAND-Zen upper limit.

173



Chapter 5. Two texture zero neutrino mass in left-right symmetric model with Z8 × Z2

Figure 5.6: New physics contribution to effective mass governing NDBD for different classes

of 2-0 textures for IH shown as a function of two parameter α and β. The contour represents

the eff. mass where 0.061 eV is the KamLAND-Zen upper limit.

Figure 5.7: New physics contribution to effective mass governing NDBD for different classes

of 2-0 textures for IH shown as a function of two parameter α and β. The contour represents

the eff. mass where 0.061 eV is the KamLAND-Zen upper limit.
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Figure 5.8: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for A1 (NH).

Figure 5.9: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for A1 (IH).
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Figure 5.10: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for A2 (NH).

Figure 5.11: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for A2 (IH).
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Figure 5.12: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for B1 (NH).

Figure 5.13: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for B1 (IH).
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Figure 5.14: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for B2 (NH).

Figure 5.15: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for B2 (IH).
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Figure 5.16: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for B3 (NH).

Figure 5.17: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for B3 (IH).
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Figure 5.18: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for B4 (NH).

Figure 5.19: The various combinations of type II SS model parameters (in eV) with the

effective mass as the contour for B4 (IH).
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Figure 5.20: Atmospheric mixing angle, θ23 Vs Majorana phase α (for NH) with BR for

µ→ eγ as the contour where 4.2×10−13 is the upperlimit for BR given by MEG experiment.
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Figure 5.21: Atmospheric mixing angle, θ23 Vs Majorana phase α (for IH) with BR for

µ→ eγ as the contour where 4.2×10−13 is the upper limit for BR given by MEG experiment.

5.5.1 Collider signatures

Physics at the TeV scale has obtained great importance owing to the fact that it can be

probed at the colliders. Characteristic signatures of the LRSM (which is the framework of
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our concern) at the hadron collider experiments like LHC emerges from the production and

decay of triply and doubly charged scalars of the scalar quadruplet. In TeV scale LRSM,

the presence of RH gauge interactions as well as the mixing between the heavy and light

neutrinos lead via the production of the RH gauge boson, WR to significant signal strength

for the l±l±jj channel. In the colliders, WR could be produced through Drell-Yan, which

decays to RH neutrino and a charged lepton. The RH neutrino (which are Majorana par-

ticles) can further decay to charged leptons/antileptons and jets. With negligible mixing

between heavy and light neutrinos as well as left and right W bosons, both WR and NR

couple through RH currents. Several constraints have been put forwarded on the mass of

the RH gauge boson, WR, the breaking scale of LRSM based on low energy processes like

leptogenesis, supersymmetry, neutrinoless double beta decay etc. Most stringent experi-

mental constraints on the masses of WR, MN in MLRSM as explained in [60] are provided

by l±l±jj searches in ATLAS, dijet searches by ATLAS (CMS), neutral hadron transitions

and search for NDBD. When the breaking scale of LRSM is low enough, LNV can be seen

and hence the Majorana nature of the neutrino mass can be probed in the colliders and

in future experiments in a wider range of parameter space. Since we are considering the

low energy phenomena like NDBD and LFV, we are considering the experimental bounds

on these mass provided by the search for these phenomenon. The NDBD experiments are

mainly focused on determining the effective Majorana neutrino mass < mββ > which is

related to the observed NDBD lifetime as,

1
T 1

2

0ν = G0ν(Q,Z)
∣∣∣M0ν

∣∣∣2 |mββ|2

me
2 , (5.39)

where the terms G0ν , Mν and me represents the phase space factor, the nuclear matrix

element (NME) and the electron mass respectively. Γ represents the decay width for 0νββ

decay process. The best lower limits on the NDBD half-life has been obtained for the isotopes

Ge-76, Te-130, Xe-136 in notable experiments like GERDA-II, CUORE, KamLAND-Zen

respectively. The non-observation of NDBD constraints the masses of WR and NR as,∑
i

Yei
2

MiMWR
4 ≤ (0.082-0.076) TeV −5 using 90% CL from the limit propounded by KamLAND-

Zen T0ν
1/2 > 1.07 × 1026 which corresponds to an effective mass of | < meff > | < (0.061 −

0.065)eV [61] where the range corresponds to the uncertainities in the NMEs of the relevant

process. For MWR
of 3 (5 TeV), the mass of the RH ν ≥ 150-162 GeV (19.5-21)GeV. Again,

Tello et al. [62] found the lower bound on mass of ∆R
++ to be,
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M++
∆R
≥ 500

(
3.5TeV
MWR

)2

×
√

MN

3TeV . (5.40)

Considering these experimental bounds in mind, we have considered the mass of WR as 3.5

TeV in accordance with the collider probes and the other heavy particles of the order of

TeV.

Class α(rad) (NH/IH) β(rad)(NH/IH) mlightest(eV )(NH/IH)

A1 1.8-3.8/1.0-3.2 1.0-3.0/1.0-3.2 0.01-0.1/0.01-0.1

A2 1.8-3.8/1.0-3.2 1.0-3.0/1.0-3.2 0.01-0.1/0.01-0.1

B1 1.8-3.8/1.8-3.6 1.0-3.0/1.2-3.2 0.01-0.1/0.01-0.1

B2 2.0-3.6/1.5-3.2 1.2-3.0/1.0-2.8 0.01-0.1/0.01-0.1

B3 1.8-3.6/1.0-3.2 1.2-3.0/1.0-3.0 0.01-0.1/0.01-0.1

B4 1.6-3.6/0.9-3.2 0.8-3.0/0.6-3.2 0.01-0.1/0.01-0.1

Table 5.9: The range of parameters (α, β and mlightest) that satisfies the KamLAND-Zen

limit of effective Majorana neutrino mass.

Class θ(rad) (NH/IH) φ(rad)(NH/IH)

A1 0.05-0.35/0.05-0.3 1.57-1.60/1.57-1.60

A2 0.05-0.35/0.05-0.3 1.62-1.66/1.64-1.66

B1 0.05-0.35/0.45-0.55 1.57-1.60/1.57-1.60

B2 0.05-0.3/0.45-0.55 1.625-1.66/1.57-1.60

B3 0.05-0.35/0.45-0.55 1.62-1.66/1.64-1.66

B4 0.45-0.55/0.05-0.25 1.57-1.60/1.57-1.60

Table 5.10: The range of TM mixing parameters (θ and φ) that satisfies the KamLAND-Zen

limit of effective Majorana neutrino mass.
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Class W(NH/IH) X(NH/IH) Y(NH/IH) Z(NH/IH)

A1 0.03-0.1/ 0.02-0.1/ 0.01-0.05/ 0.005-0.1/

0.03-0.1 0.02-0.1 0.03-0.05 0.01-0.09

A2 0.02-0.1/ 0.02-0.1/ 0.01-0.08/ 0.02-0.1/

0.02-0.04 0.005-0.08 0.005-0.08 0.005-0.04

B1 0.005-0.06/ 0.005-0.1/ 0.005-0.1/ 0.02-0.1/

0.02-0.05 0.005-0.04 0.01-0.08 0.01-0.08

B2 0.07-0.1/ 0.01-0.05/ 0.01-0.09/ 0.07-0.1/

0.02-0.08 0.005-0.08 0.005-0.09 0.01-0.1

B3 0.01-0.08/ 0.005-0.1/ 0.005-0.08/ 0.03-0.08/

0.01-0.06 0.01-0.1 0.01-0.08 0.01-0.08

B4 0.01-0.07/ 0.005-0.1/ 0.02-0.1/ 0.02-0.1/

0.02-0.08 0.02-0.1 0.01-0.1 0.02-0.1

Table 5.11: The range of type II model parameters (in eV) that satisfies the KamLAND-Zen

limit of effective Majorana neutrino mass.

5.6 Conclusion

The importance of texture zero neutrino mass and its phenomenological consequence has

gained utmost significance in present-day research. In this context, two zero texture neu-

trino mass matrices are more relevant as they provide the minimal free parameters for

precise study. We have performed a study of the Majorana neutrino mass matrix which

has two independent zeros. As has been pointed out in several earlier works that seven

out of fifteen patterns namely (A1, A2, B1-B4, C1) can survive the current experimental

data at 3σ level. We tried to study the constraints of the allowed patterns of texture zero

neutrino mass matrices in the framework of LRSM from low energy phenomena like NDBD

and LFV. We have shown that one can obtain the desired two zero texture mass matrices

by implementing an abelian discrete symmetric group Z8×Z2 in the framework of left-right

symmetric model. The two zero textured neutrino mass matrix in our case is able to explain

NDBD with the effective Majorana mass within the experimental limit propounded by ex-
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periment (KamLAND-Zen). However, all the different allowed classes of two zero textures

show different results for different neutrino mass hierarchies. Based on our results, having

done a careful comparison of the plots obtained for different classes of two zero textures, it

is seen that none of the cases totally disallows NDBD as far as the KamLAND-Zen limit is

concerned irrespective of the mass hierarchies. However, the allowed range of the parameter

space is constrained for the allowed experimental bounds of effective Majorana neutrino

mass. We have considered six different allowed classes of two texture zero neutrino mass

matrices satisfying TM mixing in our case. Again we have done an analysis of the model

parameters (W, X, Y, Z) in our case which are heavily constrained for a very limited pa-

rameter space for some classes, specifically for the classes A2 (IH), B1(IH), B2 (NH) for

some contributions of the model parameters which has been explained in numerical analy-

sis. Thus we can say that the contributions from the type II SS in NDBD are relatively less

for this class. Interestingly the present results ruled out B1, B4 classes (for both NH/IH)

and A1 (NH), A2 (IH), B2 (IH) classes of two texture zero neutrino mass in explaining the

experimentally allowed regions of charged lepton flavor violation whereas only the class B3

(NH/IH) is giving results within bounds for both the mass hierarchies. Again, the Majorana

phases α and β are also constrained from both NDBD and LFV point of view. However,

the sensitivity of NDBD experiments to the effective mass governing NDBD will probably

reach around 0.05 eV in future experiments which might exclude or marginally allow some

of the two zero texture patterns in the nearby future. However, here we have considered

some random structures of the Dirac and Majorana mass matrix that leads to the two zero

texture neutrino mass matrix. It would be interesting to study an in depth analysis for

all the texture structures the Dirac and Majorana mass matrix that might lead to the zero

textures in the neutrino mass matrix. We have left this study of the texture zero classes

considering all the model parameters and its implications for all contributions of NDBD

and LFV in the framework of LRSM for the next chapter that could lead to a more strong

conclusion.
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