Chapter 5

A New Discrete Quasi-Lindley Distribution

5.1 Introduction

Two parameter continuous New Quasi Lindley (NQL) distribution
introduced by Shanker and Amannuel [42] with parameter 8 and « is defined by its
probability density function (pdf)

02(0+ax)e~9*
62+a

flx; 6,a) = x=>0,0>0,, a>0 (5.1.1)

5.2. Discretization of a New Quasi Lindley Distribution

In this paper, our objective is to derive a new discrete distribution and to
study some of their properties, which may be called New discrete Quasi—Lindley
(NDQL) distribution based on the survival function of the continuous NQL

distribution. The survival function may be obtained as

S(x) = [ f(x; 6,a)dx

_ [62+a@x+D)] oy
- 6%2+a )

(5.2.1)

Hence,

2
S(x+1) = WOZrarad® D] ,_gexsn) (5.2.2)

0%2+a
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5.2.1 Probability Mass Function (pmf)

The probability mass function (pmf) of NDQL distribution may be obtained

as

PX=x)=Sx)—S(x+1)

_ (6*+a+adx)(1-e -6 aef o—0x
0%+a

, x=01273.. (523)

Where a and 8 denote its parameter.
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Figure 7: Probability graph for New discrete quasi Lindley distribution
a =0.3,0 =0.1(seriesl)a = 0.3,0 = 0.2 (series2) a =0.3,0 =
0.3 (series3).a = 0.3,60 = 0.4(series4)
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Figure 8: Probability graph for New discrete quasi Lindley distribution
a=2,0=0.1(seriesl) a =2,0 =0.2 (series2) a = 2,0 =
0.3 (series3).a = 2,6 = 0.4(series4)
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5.2.2 Probability Generating Function (pgf)

The probability generating function (pgf) of NDQL distribution may be given

as

O2+a)(1-e 9)-abe 9 |(1- e7Ot)+ab e Ot (1- e79)
(62+a)(1—-e~9t)2 )

G(t) =1

(5.2.4)

5.2.3 Cumulative Distribution Function

The cumulative distribution of NDQL distribution may be writen as

02 +a—[0%+a+0a(x+1)]e 0>+

FO) = (6%+a)

(5.2.5)

5.2.4 Survival Function

The survival function of NDQL distribution has been obtained as

62 +a+0a(x+1)]e 0>+
(6%+a)

S(x) =1

(5.2.6)

5.2.5 Failure Rate Function

The failure hazard rate function of NDQL distribution has been obtained as

P(X=x)
P(X2x-1)

r(x) =

_ (62+a+ abx)(1-e~0)-0 ae=®
- 02+a+0ax ’

(5.2.7)

5.2.6 Reversed Failure Rate Function

The reversed failure rate function of NDQL distribution has been obtained as

P(X=x)
P(X<x)

r(x) =

_[(62+a+ abx)(1—e79)-6 ae=%]|pe 0%
T 92+a—[02+a+Ba(x+1)]e-0(x+1)

(5.2.8)
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5.2.7 Second Rate of Failure

The second rate of failure rate function of NDQL distribution has been

obtained as

r*(x) = log[ (%) ]

s(x+1)

. [62+a+8a(x+1)]
= log [[92+a+9a(x+2)]e‘9] '

(5.2.9)

5.2.8 Proportions of Probabilities

The second rate of failure rate function of NDQL distribution has been
obtained as
P(x+1) _ _g af(1-e~9)

P(x) 1+ (62+a+ abx)(1—-e=9)-0 ae~?

(5.2.10)

5.2.9 Probability Recurrence Relation

Probability recurrence relation of NDQL distribution may be obtained as

Py=¢e%2P.,,— e PP), r >2. (5.2.11)
where,
py = el 0ee g (5.2.12)
p, = reredlleeyoae o (5.2.13)
5.2.10 Factorial Moment Generating Function Relation
Factorial moment generating function (fmgf) may be obtained as
M(t) =G(1+1t)
_[6*+a)(a-e ) -abe P |(1-e~P-eOt)+ad e (1 +t) (1~ 3‘9). (5.2.14)

(02+a)(1—e~P—e~0¢)2
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The first four factorial moments may be obtained as

e Y% +a)(1-e %) +ab]

1 = 7 625 ay(1-e-9)2 ’
y_ 2e29[(0%+a)(1—e~P)+2a6)]
M1 = (02+a)(1-e~9)3 >
r o 6e739[(02+a)(1—e9)+3ab)]
Hsp = (02+a)(1—e—0)* >
;127 *9[(0%+a)(1-e"9)+4a0]

Hiap = (02+a)(1-e—0)5

The mean u and the variance o2 of the distribution may be obtained as

_ e 0% +a)(1-e %) +ad]
H= (62 +a)(1-e—9)2

e‘e[(92+a)2(1—e‘e)z+(92+a)(1—e‘9)(1+e‘9)a6—3'9620(2]
(02+a)2(1-e~9)* '

o? =

The ' factorial moment may be obtained as

y_ re [0 +a)(1—e~0)+abr]
K = (02+a)(1—e~0)T+1 >

which may be verified by putting r = 1,2,3, ... etc.
5.3 Zero Truncated of NDQL Distribution

The pmf of  Zero-truncated new  discrete  Quasi
(ZTNDQL) P,(x)distribution has been derived as

Px
1-Py’

Pz(x) =

where P, denotes the pmf of discrete Quasi-Lindley distribution.

0%+a+ abx)(1-e %) -0ae=® g0\
H p(x) = ¢ (x=1) =1, 2,..
ence, P,(x) 2eatad e N 4 y 2,

(5.2.15)

(5.2.16)

(5.2.17)

(5.2.18)

(5.2.19)

(5.2.20)

(5.2.21)

Lindley

(5.3.1)

(5.3.2)

5.3.1 Probability Generating Function of ZTNDQL Distribution

Probability generating function G,(t) of ZTNDQL distribution may be

obtained as
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G,(t) = Xy=q1 t*P(x)

_ tl{(e2+a)(1-e=9)—abe 0} (1- e Ot)+ab (1- e79)]
- (62+a+ab)(1-e—91)2

. (5.3.3)

5.3.2 Probability Recurrence Relation of ZTNDQL Distribution

Probability recurrence relation ZTNDQL distribution distribution may

obtained as

P=e%2P,_y—e %P, ,], r>2. (5.3.4)
Where
_ (0%+a+ab)(1-e 90 ae=®
P, = FE v : (53.5)
2 —_e— 9 _ -0
p, = (6%+a+2a8)(1-e~%)-0 ae et (5.3.6)

62+a+abd

5.3.3 Cumulative Distribution of ZTNDQL Distribution

The cumulative distribution of ZTNDQL Lindley distribution is given by

_ (0%+a+ab)—[02+a+ab(1+x)]e~%*
FZ(x) - (62+a+ab)

(5.3.7)

5.3.4 Survival Function of ZTNDQL Distribution

The survival function of Zero truncated of ZTNDQL distribution is given by

02 +a+ab(1+x)]e 0%
(62+a+ab)

S,(x) = [ (5.3.8)

5.3.5 Failure Rate Function of ZTNDQL Distribution

The failure hazard rate function of Zero truncated of a new discrete Quasi
Lindley Distribution is given by

P(X=x)

() = P(X2x-1)

_ (0?+a+ abx)(1-e=0)-6 ae?
a 02+a+abx

(5.3.9)
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5.3.6 Reversed Failure Rate of ZTNDQL Distribution

The reversed failure rate function of Zero truncated of a new discrete Quasi
Lindley Distribution is given by

__ P(X=x)
T P(X<x)

17 (%)

_ (6% +a+ abx)(1-e=9)-0 ae0]e-0*—1)
T (02+a+af)—[02+a+af(1+x)]e—0%

(5.3.10)

5.3.7 Second Rate of Failure of ZTNDQL Distribution

The second rate failure rate function of Zero truncated of a new discrete
Quasi Lindleyis given by

s(x) ]
s(x+1)

r, " (x) = log [

— [ 0% +a+af(1+x)
=tog e~ 9(02+a+ad(2+x))I

(5.3.11)

5.3.8 Proportions of Probabilities of ZTNDQL Distribution

The proportions of probabilities of Zero truncated of a new discrete Quasi

Lindley Distribution is given by

P,(x+1) _ g afd(1-e~9)
Py(x) ¢ [1 + (62+a+ abx)(1—e=9)-0 ae~8] (5.3.12)

5.3.9 Factorial Moment Generating Function ZTNDQL Distribution

Factorial moment generating function M,(t) of ZTNDQL distribution may

be obtained as

A+t)[{(e2+a)(1-e~?)-ave 0} (1- e P—e~0t)+ab (1-e~?)]
(02+a+ab)(1—e~f—e—0t)2

Mz(t) =

. (5.3.13)

Factorial moment recurrence relation of zero-truncated of ZTNDQL distribution may

be obtained as

’ e _ _g a0
#[r] - (1—e—‘9)2 [2(1 € 9)7- —¢€ g‘u[r—l] - T'(T‘ - 1)8 9:“[1‘—2]]; r=>2.

(5.3.14)
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where

r 02+ (1-e %) +ab]

[1] - (92+a+a6)(1—e‘9)2 4 (5315)
r_ 2e 9% +a)(1-e ) +2a0)]

K21 = (02+a+ad)(1-e~0)3 (5.3.16)
;6 29[(02+a)(1—e~9)+3ab)]

”[3] - (92+a+a9)(1—e‘9)4 (5317)

The mean u and the variance o2 of the distribution may be obtained as

2 _p—0
u = [(6%+a)(1—e~ ) +ab] (5.3.18)

(02+a+af)(1—e~9)2"

0% = iy Hujy— 1 (5.3.19)

The rth factorial moment is obtained from moment as

' dT™M(t)
'u [ dat” t=0
r e 90-V[(0%2+a)(1-e~9)+abr]
(02 +a+af)(1—e-0)r+1

r=1,23.. (5.3.20)

5.4. Size-Biased New Discrete Quasi-Lindley (SBNDQL)

Distribution

In this section, the pmf of SBNDQL distribution with parameter a and 6 has

been derived as

_ x(1-e79)?[(62+a+ abx)(1-e~0)-0 ae?]
- (62+a)(1-e~0)+ab

Ps e 9D x=1,2,3,.. (54.1)
e O[(B%+a)(1-e %) +ab]

where u = (o0

denotes the mean of NDQL distribution.

5.4.1 Probability Generating Function of SBNDQL Distribution

The probability generating function for SBNDQL distribution may be
obtained as

t(l—e‘9)2[{(92+a)(1—e‘e)—eae‘e}(l—te‘e)+6a(1—e'9)(1+te'9)]

{(192+0¢)(1—(2‘9)+a€}(1—te‘9)3

GS(t) =

(5.4.2)
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5.4.2 Recurrence Relation of SBNDQL Distribution

Probability recurrence relation for SBNDQL distribution may be obtained as
S=e O3PS, —3e7PS , + e 29P5 5|, for r>2. (5.4.3)

where

ps = (1-e~9)2[(62+a+ ad)(1-e~9)-0 ae‘e]' (5.4.4)

(02+a)(1—-e~9)+ab

_ 2(1-e=9?[(62+a+ 2a0)(1-e~9)-0 ae ] o—?

S
P 62+a)(1-e~9)+ab

(5.4.5)

5.4.3 Factorial Moment Generating Function of SBNDQL

Distribution

Factorial moment generating function for SBNDQL distribution is obtained
as

t(1+)(1—e‘9)2[{(62+a)(1—e‘9)—6ae‘9}(1—e‘9—te‘9)+6a(1—e‘9)(1+e‘9+te‘9)]
((02+a)(1-e~0)+ab)(1-e~0—te—0)® '

M3(t) =

(5.4.6)

5.4.4. Factorial Moment Recurrence Relation of SBNDQL

Distribution

Factorial moment recurrence relation for SBNDQL distribution is obtained as

-0
Uiy = S [34ruf,_yy — 3e 0 Ar(r — Dptfy_p+ e 2P Ar(r — D) (r —
2)uir-31] (5.4.7)

where,r >3, A= (1-¢7%).

The r'™ moment can be derived from Moment Generating Function as

;7! e 0-D[(02+a)(1-e?)+abr] _
Hin = ((B2+a)(1—e~9)+aBf)(1-e—0)r+3’ r=123,.. (5.4.8)
Where,

v [@*+e)a-e%)+ab]
H1) = (00 (1—e-0)tat)(1-e-0)* ’ (5.4.9)
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y_ 2e7 902 +a)(1—e~9)+2a0)]

K21 = (2 va)(1—e—0)+ad)(1-e—0)5 ° (5.4.10)
,_ 6e29[(0%2+a)(1—e~9)+3a0)]
Hi31 = (o2ra)(1—e-9)rab)(1-e-0)6" (5.4.11)

5.5 Zero-Modified of NDQL Distribution

The Zero-modified of new discrete quasi—Lindley (ZMNDQL) distribution

is obtained as.

P?[X = 0] = w + (1 — w)P,

(6%2+a)(1-e79)-0 ae?

=w+(1-w) [ pra , (5.5.1)
where P, denotes probability of NDQL distribution at x = 0.
Hence the relationship will be
PAX=x]=(1—-w)A*P(x),x=1,2,..., (5.5.2)
x>0 0<A<1, w>—0
1-P,
where P(x) denotes the pdf of NDQL distribution.
5.6 Estimation of Parameters of NDQL Distribution
5.6.1. Estimation of Parameters in terms of mean and variance
The mean pof NDQL distribution may be written as
e 902+ (1-e 0)+ad]
H= (62+a)(1—e~9)2 (56.1)
The value of a8
af = e®u(0? + a)(1—e )’ — (2 + a)(1 — ) (5.6.2)

e_e[(92+a)2(1—e‘9)2+(62+a)(1—e‘9)(1+e_9)019—6_992012]
(02+a)2(1-e~9)4

putting in o2 = , the variance

of NDQL distribution may be obtained from the quadratic equation in 1 = e~ .

N2A—-2AB+C=0. (5.6.3)
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There are two values of A had solving equation (5.6.3). We choose that the value 4
had which minimizes the value of y? static in table 5.1- 5.3, column 5.

j = BEvBi-ac VZ—AC , (5.6.4)

where A=0%+pu?>+3u+2, B=c?+pu?>+u and C=0?+pu>—pu.
Putting the value 8 in mean u we can have a as following

__02a-e (e f-ua-e9)
o p(1—e=0)2—e=0(1-e=9)-ge=0 *

(5.6.5)

5.6.2 Maximum Likelihood Estimates

The likelihood function, L of the two parameter new discrete Quasi-Lindley

distribution (5.2.3) is given by

L=TT5=1 P> (5.6.6)
= %]‘[’;ﬂ[(éﬂ +a+ adx)(1—e %) -0 ae‘e]fx. (5.6.7)

And so the likelihood function is obtained as
logL = —6nx — nlog(6* + a) +G. (5.6.8)

where,

G =Yk flog[(6%+a+ abx)(1—e %) — 0 ae?|
The two log likelihood equations are thus obtained as

6[(92+a+ aex)(l—e_e)—e ae_e]

dlogl __  2nf k 96 _
o0 (6%2+a) + 21 fx [(62+a+ abx)(1-e=9)-6 ae=0] 0. (56.9)

6[(92+a+ adx)(1-e~9)-6 ae_e]

dlogL — n + 2§=1fx [ oa = 0. (5610)

da (02+a) (62+a+ abx)(1—e=9)-0 ae~f]

The two equations (5.6.9) and (5.6.10) do not seem to be solved directly. However

the Fisher’s scoring method can be applied to solve these equations. We have

6[(92+a+ abx)(1-e~8)-6 ae_e]

Tim1fe 20 . (5.6.11)

(62+a+ abx)(1-e~9)-0 ae~?]

9%logL _ n(@?-a) +i
PYE 0%+a)? ' 96
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6[(92 +a+ afx)(1-e~9)-0 ae_g]

d%logL _  2n -5

260a <92+a)2 7 TA- 1 Tomrar aon)(1-e -0 -6 ae 0" (5.6.12)
5 6[(92+a+ adx)(1-e~%-6 ae_e]

d0%logL _ T

da? (92+a)2 Zx 1fx [(62+a+ abx)(1—e=)—60 ae=f]’ (5.6.13)

The following equations for 8 and & can be solved

0%logL 0%logL dlogL
202 060a 6 — 90] [ a6 (5.6.14)
d%logL  d*logL| a—a dlogL| o
9000 aa2z 10=6o da 16=6o
=« a=ag

Where 8, and a,are the initial values of & and a respectively. These equations are

solved iteratively till sufficiently close estimates of & and @ are obtained.
5.7 Goodness of Fit

The fittings of the two-parameter NDQL distribution based on three data-sets
have been presented in the following tables. The expected frequencies according to
the one parameter Poisson- Lindley with parameter 8 in Table 5.1 presented by
Sankaran [40], two parameter Poisson- Lindley distributions with parameter 6 and «
in Table 5.2 presented by Shanker et ai. [45 have also been given for ready
comparison with NDQL distribution. The estimates of the parameters have been
obtained by the method of moments.

66



Table 5.1 Observed and expected frequencies for mistakes in copying groups of

random digits.

No.of Observed Expected frequencies
errors frequencies | Poisson- Poisson- NDQL (a, 1)
per Lindley (8) Lindley (8, a)
group
0 35 33.1 32.4 31.45
1 11 15.3 15.8 17.66
2 8 6.8 7.0 7.31
3 4 2.9 2.9 2.69
4 2 1.2 1.9 .89
60 60 60 60
6 =1.743 & =2.61204 a@=2.610
6 =522337 | 6=13189
d.f.=3 d.f.=3 d.f.=
x2 =220 ¥2 =211 x? =4.613
p =0.138 p = 0.3482 p = 0.2024
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Table 5.2 Observed and expected frequencies for distribution of Pyrausta nublilalis

in 1937.
No. of | Observed Expected frequencies
accidents | frequencies Poisson-Lindley | Poisson- NDQL (a, 1)
) Lindley (6, a)

0 33 31.49 31.9 30.97

1 12 14.16 13.8 15.73

2 6 6.09 5.9 6.14

3 3 2.54 2.5 2.14

4 1 1.04 1.1 0.70

=5 1 0.42 0.8 0.32

Total 56 56 56 56

6 = 1.808 @ = 0.257 & = 1.9542
6 = 0.392 1 =1.3350

d.f.=3 d.f.=3 d.f.=
X2 =4.82 x2 =036 x2 =2.092
p = 0.1855 p = 0.8353 p = 0.5535

5.8 Conclusion

Two-parameter NDQL distribution has been introduced. Several properties of
the two-parameter NDQL distribution have been discussed. Estimation of parameters
by the method of maximum likelihood and the method of moments have been
discussed. The properties of size-biased and Zero- truncated version of NDQL
distribution have also been investigated. Finally, the proposed distribution has been
fitted to a number of data sets. It is observed that two-parameter NDQL provides
better fits

68



	11_chapter 5

