Chapter 3

Discrete Sushila Distribution and Its
Application

3.1 Introduction

Shanker et al [47] introduced the following two parameter continuous Sushila

distribution with parameter a and 6.

. _ 92 X —gx.
£ H,a)—a(9+1)(1+;)e & x>060>0a>0. (3.1.1)

3.2. Discretization of Sushila Distribution

In this paper, our objective is to derive a new discrete distribution and to
study some of their properties, which may be called discrete Sushila (DS)
distribution based on the survival function of the continuous Sushila distribution. The

survival function may be obtained as

S(x) = fxoof(x; 0, a)dx

%
_ e @ {a(f+1)+0x}
- a(6+1) ’ (3.2.1)
hence,
e_g(x+){a(9+1)+9(x+1)}
Sx+1) = : (3.2.2)

a(6+1)
3.2.1 Probability Mass Function (pmf)

The probability mass function (pmf) of DS distribution may be obtained as

PX=x)=Sx)—-S(x+1)
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Figure 3: Probability graph for Discrete Sushila distribution a = 2,6
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Figure 4: Probability graph for Discrete Sushila distribution 8 = 1.5,a =
2 (series1)f = 1.5,a = 3 (series3)8 = 1.5,a = 4 (series4)f = 1.5,a =
2 (series4)0 = 1.5,a =5 (series5)8 = 1.5,a = 6(series6)
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3.2.2 Probability Generating Function

The pgf of DS distribution may be obtained as

G(t) = X5 ot P,

G C) G _e _e
a(9+1)<1—e a)—ee a](l—te a>+9te a(l—e a)

o~ 2
a(9+1)<1—te_3>

,0>0,a>0. (3.24)

3.2.3 Probability Recurrence Relation

Probability recurrence relation of DS distribution may be obtained as

0 0
g=e7Paﬂ—ewg4], for > 2 (3.2.5)
where,
) )
a(9+1)(1—e_5>—96_6]
Py = @D ,and (3.2.6)
) ) )
e a {a(9+1)+9}<1—e_5>—96_5]

a(6+1)
3.2.4 Cumulative Distribution Function

The cumulative distribution function F(x) of DS distribution may be obtain

as

6

_a@+D—-e a* D [a(0+1)+6(1+x)]
F(x) = T : (3.2.8)
3.2.5 Survival Function
Hence the survival function of DS distribution may be written as
—Q(x+1)
SD(X) _ez¢@ [a(6+1)+6(1+x)] . (329)

a(6+1)
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3.2.6 Failure Rate function

The corresponding failure or hazard rate r(x) of DS distribution will be

Pr(X=x)

rx)=RX<x|lX<x-1)= P

4 4
[{a(9+1)+9x}<1—e_5>—96_E]
- [a(6+1)+6x]

(3.2.10)

3.2.7 Reversed Hazard Rate Function

The corresponding reversed hazard rate of DS distribution will be

* _ Pp(X=x)
ri(x) = Pr(X<x)

0 0 0
e a* {a(9+1)+9x}(1—e_5>—99_5]
= 0 : (3.2.11)

a(@+1)—e @™V [g(@+1)+0(1+x)]

3.2.8 Second Rate of Failure function

The corresponding second rate of DS distribution will be

r* =log [k ]=log[ o) l (3.2.12)

S(X+1) e a[a(6+1)+0(2+x)]

3.2.9 Factorial Moment Generating Function

Factorial Moment Generating function may be obtained as

M(t) = Xy=ot* P

4 4 4 4 6 6
a(@+1)(1—e_E)—Be_EK1—e_5—te_5>+9(1+t)e_5<1—e_5>
7 . (3213)
a(9+1)<1—e_5—te_5>

3.2.10 Factorial Moment’s Recurrence Relation

Factorial moment’s recurrence relation of DS distribution may be obtained as
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M :(—[2( —¢ “)e Thip-g — € e = Ditgyz)|,
1-¢7)

(3.2.14)
where
_e _
e «a a(9+1)<1—e a>+9
‘Ll,[l] = o2 ) (3215)
a(9+1)<1—e_5>
_26 _o
2e « a(9+1)<1—e a>+29
Uz = —— (3.2.16)
a(9+1)<1—e_5)
The r' factorial moment generating function may be obtained as
_ré _6
rle a a(9+1)<1—e a>+r9
i = r=12,.. (3.2.17)

0 r+1
a(9+1)(1—e‘a>

The central moments u,, u; and u,of the distribution have been obtained as

H2=H2]+H[1 .“1]
M3 = Uiz + 3Hjz) + iy =3 K1~ 3K + 2105)
Ha = Hig) + 6tz F7Up) + Uiy — 4l{ayi[y) — 1200010 — 0[5 + OU[ulD + 61f3) — 3u1]

(3.2.18)

e a

a(9+1)<1 e )

6
a(9+1)(1 —e a)

denotes the mean of the distribution.

where u =

3.3 Zero Truncated Discrete Sushila (ZTDS) Distribution

The pmfof Zero-truncated discrete Sushila (ZTDS) P,(x)distribution has

been derived as

T1- Py’

where P, denotes the pmf of discrete Sushila distribution.
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] ’] ’]
e a* ™ [{a(9+1)+9x}<1—e_5>—9e_5}

Hence, P,(x) = x=1, 2, .. (3.3.2)

a(0+1)+6 !
3.3.1 Probability Generating Function of ZTDS Distribution

Probability generating function G,(t) of ZTDS distribution may be obtained

as

c (t) _ t[{a(9+1)(1—e_g>—Be_g}<1—te_%2>+9<1—e_g>]. (3l3l3)
: {a(9+1)+9}<1—te_g>

3.3.2 Probability Recurrence Relation of ZTDS Distribution

Probability recurrence relation for ZTDS Distribution

6 0
P=ea [zpr_1 - e_EPr_Z], for r>3 (3.3.4)

where

6 6
{a(9+1)+9}(1—e_5)—9e_5]

P = eI , (3.3.5)
6 [ [
e_E[{a(9+1)+29}<1—e_5>—93_5]

P = a(60+1)+6 ’ (3:3.6)

3.3.3 Cumulative Distribution of ZTDS Distribution

The cumulative distribution of ZTDS Lindley distribution is given by

%)
(a(0+1)+0)-[a(6+1)+0(1+x)]e a*

E(x) = O +0 (3.3.7)
3.3.4 Survival function of ZTDS Distribution
The survival function of ZTDS distribution is given by
[a(6+1)+6( ) K
__ |a(60+1)+0(1+x)]e «
5:(0) == Gin+e (3.3.8)

32



3.3.5 Failure Rate Function of ZTDS Distribution

The failure hazard ratefunction of ZTDS distribution is given by

P(X=x)

r,(x) = P(X2x-1)

‘] ]
{a(9+1)+9x}(1—e_5)—96_5

= a(6+1)+6x ) (3'3'9)
3.3.6 Reversed Failure Rate function of ZTDS Distribution
The reversed failure rate function of ZTDS distribution is given by
* _ P(X=x)
r; (x) = P(X<x)
e_g(x_l) {a(9+1)+9x}<1—e_g>—ee_g]
= . (3.3.10)

]
(@(0+1)+8)—[a(0+1)+0(1+x)]e a*

3.3.7 Second Rate of Failure function of ZTDS Distribution
The second rate failure rate function of ZTDS distributionis given by

70 = tog [ 22

= log | —6+1+60+0) l (3.3.11)
e a{a(0+1)+0(2+x)}

3.3.8 Proportions of Probabilities of ZTDS Distribution

The proportions of probabilities of ZTDS Distribution is given by
P(x+1) -8

_8
9(1—6 a)
e a|ll+

(3.3.12)
Pz(%) {a(9+1)+9x}<1_e—§>_ee—§
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3.3.9 Factorial Moment Recurrence Relation of ZTDS Distribution

Factorial Moment generating function of ZTDS distribution may be obtained

as
[ [ 4 4 [
(1+1) {a(9+1)<1—e‘5>—9e‘E}<1—e‘E—te‘E>+9<1—e‘E)]
M,(t) = —— (3.3.13)
{a(9+1)+9}<1—e_5—te_3>
Factorial moment recurrence relation of ZTDS distribution may be obtained
as
, e_g _2 _2 7 —ﬁ !
Uir) = ( o [2 (1 —e a) e arfp_—e ar(r— l)u[r_z]] , T=2
1—e_E>
(3.3.14)
where
4
(9+a2)(1—e_5>+a9
Hiy) = 2 (3.3.15)
(9+a2+a9)<1—e_5)
6 6
2¢ @ (9+a2)<1—e_5)+2a9]
Hiz) = —. (3.3.16)

4
(9+a2+a9)(1—e_5>
The general form of '™ ordered factorial moment may also be written as

_(r-1)6 _8
rle «a {a(9+1)—9}<1—e a>+r9

!

Hirl =

NG r=123,.. (3.3.17)
{a(9+1)+6}<1—e_5>

3.4 Size-Biased Discrete Sushila (SBDS) Distribution

In this section, the pmf of size-biased discrete Sushila (SBDS) distribution

with parametera and 6 has been derived as

] 0\? ] ]
xe_a(x_1)<1—e_a> {a(9+1)+9x}<1—e_a>—9e_a]
P} = 5 , x=1,2,3, ... (3.4.1)
a(9+1)<1—e_5>+9
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ed

a(9+1)<1 e )

— denotes the mean of DS distribution.

where u =
a(9+1)(1 e a)

3.4.1 Probability Generating Function of SBDS Distribution

Probability generating function G*(t) for SBDS may be obtained as

2

N o o o

3 . (34.2)
{a(6+1)<1—e_g>+9}<1—te_g>
3.4.2 Probability Recurrence Relation of SBDS Distribution
Probability recurrence relation of SBDS distribution
_e 26
P = ¢ a[gp; 3¢ aPS, + e aPS. 3] | for r>3 (3.4.3)
where,
(1—e_g> [(a(9+1)+9)<1—e_g>—93_g]
P = (3.4.4)

] 1
a(9+1)<1—e_5>+9

0 0\? 0 6

Ze_5<1—e_5> (a(6+1)+26)<1—e_5>—9e_5]

Ps = ' . (34.5)
a(6+1)<1—e_5>+9

0 0\2 0 0
3e_25<1—e_5> [{a(9+1)+39}(1—e_5>—63_5]
P; =
3 )

a(9+1)(1—e a>+6

(3.4.6)

3.4.3 Factorial Moment Generating Function of SBDS distribution

Factorial Moment Generating Function of SBDS distribution may be obtained

as

[ %) %) % %)
(1+t)A2[{a(9+1)A—6e_5}(1—e_E—te_5>+6A<1+e_E+te_5)}

M,(t) = - : (3.4.7)

%] %]
{a(9+1)A+9}<1—e_5—te_5>
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3.4.4 Factorial Moment Recurrence Relation of SBDS Distribution

Factorial moment recurrence relation of SBDS distribution

IR

e

[ [
Hir = =5 |3A%TH]r_qy — 3 @Ar(r — Dpp_pyt e %aAr(r —1)(r — Z)yfr_ﬂ] ,

(3.4.8)
_8
where, A=1—-¢ «.
3.5 Zero-Modified DS distribution
The Zero-modified of DS distribution is obtained as.
P X=0]=w+ (1 —-w)Py,
{a(9+1)}<1—e_g>—99_g]
=w+(1-w) 2D , (3.5.1)
where P, denotes probability of DS distribution at x = 0.
Hence the relationship will be
P X =x] =1 —-w)A*P(x), x=1,2,.., (3.5.2)
a>0 0<A<1, w>—20
1-P,

where P (x) denotes the probability of NDQL distribution.

3.6 Estimation of Parameters

Discrete Sushila distribution has two parameters to be estimated. The mean
and variance are used to get the initial guest values of the parameters a and 6.
Newton - Raphson iterative method has been used to get the sufficiently close

estimates 8 and & for fitting of the distribution.
3.6.1 Maximum Likelihood Estimates

The likelihood function, L of the two parameter Sushila distribution (3.2.3) is
given by
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L = HI;=1 Pxfx 1

(3.6.1)
e “at [ 6 fx
(a(9+1))” [T6-; [{a(6 + 1) + 6x} (1 —e a) — fe a] . (3.6.2)
The log likelihood function is obtained as
logL = —gnf —nloga —nlog(6 +1) +G. (3.6.3)
where
_8 _8
G=Yk_, flog [{a(@ + 1) + 0x} (1 —e a) — fe a]
The derivative of log likelihood functions with respect to 6 and a we have
[{a(9+1)+9x}(1—e_%>—96_%
dlogL 1 30
= —-nx +Yk . fi =0 (3.6.4)
96 * (9“) S [{a(@+1)+9x}<1—e_g>—6e_g]
al[{a(6+1)+6x}<1—e_g>—66_%]
dlogL _ 6 2 ”
T =@t ik = 0. (365)
[{a(6+1)+6x}<1—e_E>—6e_5]

The above two equations (3.6.4) and (3.6.5) cannot be solved directly

However the Fisher’s scoring method can be applied to solve these equations. The
following three equations may be obtained by

_8 _8
6[{a(9+1)+9x}(1—e a>—ee a
9%logL X 55
502~ re T ag 2x=1x AN (3.6.6)
[{a(6+1)+9x}<1—e a>—6e a]
_8 _8
6[{a(9+1)+9x}(1—e a>—9e a
0%logL 0wk 55
2000 ;nx + £2x=1f;c 0 o (3.6.7)
[{a(6+1)+9x}<1—e a)—@e a]
_8 _8
6[{a(9+1)+9x}<1—e Ol>—6e Ol]
9%logL 6 _ n Kk 5
a2 _zgnx+;+2x=1fx &

] o1

{a(6+1)+9x}<1—e‘5)_96—5] (3.6.8)

37



The following equations for 8 and & can be solved

0%logL.  9%logL ~ dlogL
202 960a 0—06o] _| a6 (3.6.9)
d%logl.  3*logL| a—ag dlogL| ! -
dad aa2 19=6o da |0=6o
a=ay a=a

where 8, and a,are the initial values of & and a respectively. These equations are

solved iteratively till sufficiently close estimates of 8 and & are obtained.
3.7 Goodness of Fit

Discrete Sushila distribution has been fitted to two sets of published data to
which earlier the Poisson Lindley distribution with parameter 6 presented by
Sankaran [40] and two parameter Poisson-Janardan distribution with parameters
0 and a presented by Shanker et al. [45] have been fitted. The fitting of the

distribution have been presented in the following tables.

38



Table 3.1 : Distribution of mistakes in copying groups of random digits.

No. of Observed Expected frequencies
errors frequencies Poisson- Poisson- DS distribution
per group Lindley (8) Lindley with parameter
(a,0) (a,0)
0 35 33.1 324 32.91
1 11 15.3 15.8 14.98
2 6.8 7.0 6.91
3 4 2.9 2.9 3.53
4 1.2 1.9 1.67
Total 60 60.0 60.0 60.0
d.f.=2 0=1.7434 @ =2.6120 @ =98.0
6 = 5.223371 6 =74.0
x2 =220 x2 =210 X2 =149
d.f.=2 d.f.=2 d.f.=2
p = 0.3499 p = 0.3947 p = 0.4747
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Table 3.2: Distribution of

Pyrausta nublilalis in 1937.

No. of Observed Expected frequencies
accidents | frequencies Poisson-Lindley Poisson- Lindley | DS distribution
@ (a, 0) with parameter
(o, 0)
0 33 315 31.9 31.89
1 12 14.2 13.8 13.95
2 6 6.1 5.9 6.21
3 3 2.5 2.5 2.88
4 1 1.0 11 1.05
=5 1 0.7 0.8 0.02
56 56.0 56.0 56
6=1.8081 & = 0.2573 @ =101.0
6 = 0.39249 6 = 82.0
d.f.=2 d.f.=2
x2=0.53 x?=0.50 x?2 =0.44
p = 0.8479 p = 0.8579 p = 0.86072

3.8 Discussion

In this investigation, a two parameter continuous Sushila distribution
proposed by Shanker et al. [47] has been discretized. The derived discrete
distribution may be called ‘discrete Sushila’ distribution. Several properties of the
distribution such as recurrence relations for probabilities moments have been
investigated. Size biased and Zero-truncated forms of the distribution have been
discussed. Finally, an application of the proposed distribution has been shown by
fitting the distribution. Two sets of published data have been considered. The first
set of data represents the mistakes in copying groups of random digits. The second
set of data is regarding the distribution of Pyraust anublilalis in 1937. This proposed
model seems to be simple and suitable for modelling different types of count data
and thus provides a better alternative to discrete Poisson Lindley distribution
proposed by Sankaran [40] and two parameter Poisson- Lindley distribution

proposed by Shanker et al. [45].
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