List of Tables

Chapter	Table	Title	Page no.
Chapter III			
-	3.1	Raman spectra analysis of WS_2 and WS_2/C_2 dot nanoscale system	58
Chapter IV			
	4.1	Comparison of photocatalytic activity of the systems under study	74
Chapter V			
	5.1	Physical parameters related to theromogravimetric weight loss for nanocomposite systems	91
	5.2	Physical parameters of nanocomposite films determined through UTM	92
	5.3 A	Wetting-dewetting phenomena: Contact angle (CA) parameter and CA hysteresis measured at the nanocomposite film surfaces	96
	5.3 B	Wetting-dewetting phenomena: Surface energy measured at the nanocomposite film surfaces	99
Chapter VI			
	6.1	Electronic and nuclear energy losses and	107
	6.2	projectile ranges of ions in target materials Structural parameters obtained through XRD analyses	109
	6.3 A	Physical parameters obtained from the optical absorption and PL spectra	115
	6.3 B	Raman active modes and mode-assignment	117

List of Figures

Chapter	Figure no.	Caption	Page no.
Chapter I			
	1.1	Schematic representation of the density of states vs energy of 3D, 2D, 1D and 0D nanomaterials	2
	1.2	Schematic representation of band gap of graphene and TMDC systems	3
	1.3	Periodic table showing different groups of TMDC materials	5
	1.4	Schematic representation of trigonal and octahedral coordination	6
	1.5	Schematic representation of the arrangements of atoms in WS_2	7
	1.6	Schematic diagram of (a) bulk WS_2 material exfoliated to nanosheets, (b) IF- type WS_2 nanoparticles	8
	1.7	Schematic representation of stress-strain curve, showing elastic and plastic regions	11
	1.8	Schematic representation of Stribeck curve	11
Chapter II	1.9	Schematic representation of different processes occur during ion matter interaction	13
	2.1	Schematic diagram of synthesis of IF-type WS ₂ nanoparticles	28
	2.2	X-ray diffractograms of the prepared samples, and (b) the W-H plot for sample S_2	30
	2.3	EDX spectra of the as-prepared nano-WS $_2$ samples	31
	2.4	SEM micrographs of the as-prepared nano- WS_2 system: (a) low magnification, (b) high magnification	32
	2.5	(a) TEM micrograph depicting distributed	32

view of IF-type WS_2 nanoparticles with a histogram on size distribution (inset), (b) SAED pattern, (c) a single IF nano- WS_2 structure and (d) enlarged view of a segment showing the bent lattice structure of the WS_2 nanosystem

	5	
2.6	Raman spectrum of the as-prepared IF-type WS_2 nanosystem (S_2)	33
2.7	FTIR spectrum of the as-prepared IF-type WS_2 nanosystem (S_2)	35
2.8	(a) UV-Vis optical absorption spectrum along with the Tauc's plot (inset)	36
	(b) PL spectrum of the IF nano-WS₂ system.(c) Schematic diagram showing indirect to direct band gap transition	
2.9	Representative steps as regards the synthesis of WS_2 nanosheets	38
2.10	XRD patterns of un-exfoliated WS ₂ (S_1) and exfoliated WS ₂ nanosheets (S_2)	39
2.11	SEM micrograph of (a) un-exfoliated WS_2 powder and (b) exfoliated WS_2 nanosheets; (c) The EDX micrograph of the un-exfoliated WS_2 powder	40
2.12	TEM micrograph of (a) WS ₂ nanosheets, (b) magnified view of the sheets, (c) lattice fringe pattern captured at the surface and (d) SAED pattern indicating diffused diffraction rings	40
2.13	UV–Vis optical absorption spectra of the un- exfoliated WS ₂ powder (S_1) and exfoliated WS ₂ nanosheets (S_2)	41
2.14	Raman spectra of the un-exfoliated WS_2 nanopowder (S_1) and exfoliated WS_2 nanosheets (S_2)	42
2.15	(a) The nitrogen gas adsorption–desorption curve and (b) The BJH pore size distribution curve of the unexfoliated WS_2 and WS_2 nanosheets	43

2.16 Schematic block diagram of the synthesis 46 steps for processing WS₂ nanopowder,

nanosheets and WS₂/C-dot hybrid nanosystems

- 2.17 (a) X-ray diffractogram and (b-d) scanning 47 electron micrographs of the synthesized nano-WS₂ system. Note the sheets with folds and kinks at higher magnifications. The EDX spectrum is shown as inset in (a)
- 2.18 TEM images of (a) nano-WS₂ with C-dots at low magnification, (b) WS₂/C-dot nanohybrid at a higher magnification, and (c) an enlarged view of the isolated C-dots. Information with regard to lattice fringe patterns of the WS₂ and C-dot systems can be noticed in (d) and (e); respectively. The SAED pattern highlighting diffused rings is shown in (f). Whereas, elemental mappings of the WS₂/C dot nanohybrid can be found in (g-i)
- 2.19 Schematic figure representing the growth 49 mechanism of the nanosheets and nano hybrid systems

Chapter III

3.1 Raman spectra of the WS₂ nanosheet and WS₂/C-dot nanohybrid systems. The magnified views of the E^{1}_{2g} and A_{1g} modes are highlighted in (b)

57

- 3.2 (A) (a) UV visible optical absorption and (b) PL 61 emission spectra ($\lambda_{ex} = 360$ nm) of the synthesized WS₂/C dot nanosystems. Digital photographs captured under visible and UV light exposure of the cuvette containing nanohybrid specimen, are shown in (c)
- 3.2 (B) A series of (a) excitation dependent PL 62 emission spectra and that of (b) PL excitation spectra of the WS₂/C-dot nanosystem. Since excitation at λ_{ex} = 560 nm gives a weak emission peak at λ_{em} = 714 nm, it is shown independently as figure inset of (a)
- 3.3 Schematic representation of the effects 62 responsible for excitation dependent PL spectra
- 3.4 The fluorescence micrographs under 63 different excitation source: for which (a)

white, (b) UV, (c) blue, and (d) green bandpass filters have been used

Chapter IV

- 4.1 Molecular structure of the harmful organic 68 dyes
- 4.2 Schematic of the photocatalytic mechanism 70 expected in the nano-WS₂ system
- 4.3 UV-Vis absorption spectra of MG and IF 72 nano-WS₂ catalyst-loaded dye with different irradiation times: (a) UV illumination, (b) visible light illumination. The respective percentage of degradation and pseudo-first-order plots under the aforesaid conditions are shown in (c) and (d) on a comparative basis
- 4.4 UV-Vis optical absorption spectra of MG and 74 WS₂ nanocatalyst (nanosheet)-loaded dye with different irradiation times, percentage of photodegradation and pseudo-first-order plots: (a-c) UV light illumination and (d-f) visible light illumination

76

85

- 4.5 (A) Optical absorption spectral features illustrating photodegradation of (a) MO and (b) MG dyes under visible light illumination and using WS₂ nanosheets as the desired nanocatalyst. The exact nature of degradation with exposure time can be found in col.2 and col.3. (B) Optical absorption spectral features illustrating photodegradation of (a) MO and (b) MG dyes under visible light illumination and using WS₂/C-dots as the desired nanocatalyst. The exact nature of degradation with exposure time can be found in col.2 and col.3
- 4.6 Schematic illustration of the photocatalytic 77 activity: (a) degradation mechanism and (b) relevant energy scheme

Chapter V

- 5.1
- XRD plots of (A) IF-type WS_2 nanopowder, (B) IF- WS_2 /PVA nanocomposite films with different loading: (a) 0%, (b) 3 %, (c) 6%, (d) 10%. The W-H plot relevant to diffractogram of the IF- WS_2 nanosystem is shown in (C)

- 5.2 (A) SEM images of IF-WS₂/PVA solid films with 87 different nanoparticle loading: (a) 3%, (b) 6% and (c) 10%. The magnified images are shown in (d), (e) and (f); respectively
- 5.2 (B) TEM micrographs of the IF-WS₂ 87 nanoparticles at (a) lower magnification, (b,c) higher magnification, and (d) enlarged IFtype WS₂ highlighting interplanar spacing and bending at the surface. SAED pattern is shown as inset of (a)
- 5.2 (C) EDX spectra of (a) IF-WS₂ only and (b) IF-WS₂/PVA composite film (6 wt% loading)
- 5.3 FT-IR spectra of (a) pure PVA, (b) pure IF-WS₂ and (c) IF-WS₂/PVA nanocomposites
- 5.4 TGA plots of (a) pure IF-type WS₂ and (b) 91 pure PVA and specimens with nano-WS₂ loading at different wt%
- 5.5 91 Schematic curve of (a) stress strain relationship (b) actual stress-strain plots measured for pure PVA and IF-WS₂ nanocomposites at different wt% of WS_2 loading
- 5.6 Stribeck curves for pure PVA and IF-WS₂/PVA nanocomposites for (a) pure PVA, and PVA with nano IF-WS₂ at (b) 3wt%, (c) 6wt% and (d) 10wt% loading
- 5.7 Schematic representation of the three friction 94 mechanisms of IF- particles rolling, sliding and exfoliation
- 5.8 Static water contact angle snap-shots for (a) 95 pure PVA, and PVA with nano IF-WS₂ at (b) 3wt%, (c) 6wt% and (d) 10wt% loading
- 5.9 Dynamic CA hysteresis obtained for different 97 films: (a) PVA only, and PVA with nano IF-WS₂ inclusions at (b) 3% wt%, (c) 6 wt% and (d) 10 wt% loading
- 5.10 Curve showing the variation of total surface 99 energy, polar component of surface energy and dispersive component of surface energy for different wt% loading of IF-WS₂ in PVA

Chapter VI

- 6.1 The schematic representation 106 of the preparation of samples for the irradiation experiment along with the digital photographs of the un-irradiated and post irradiated samples, shown at the extreme right
- 6.2 XRD patterns of the un-irradiated and 108 irradiated nano-WS₂ samples
- 6.3 TEM micrographs of (a) un-irradiated and 110 irradiated nano-WS₂ samples with a fluence variation of (b) 1×10^{15} , (c) 5×10^{15} , (d) 1×10^{16} , (e) 5×10^{16} ions/cm², while SAED patterns are shown as insets in the midcolumn figures. The splitting of nano-stacks into sheets and lattice fringes are evident at higher magnifications. The EDX spectra of the respective systems, with elemental energy spikes are depicted in the extreme right column
- Elemental mapping of the sample F4, which 111
 illustrates the distribution of W, S and Xe sites spread over an approximate area of 70 μm x50 μm
- 6.5 Schematic representation of the impact of 112 irradiation on the WS₂ sheets
- 6.6 (A) 2D and 3D AFM images of the (a) unirradiated (F0) and irradiated nano-WS₂ systems subjected to a fluence variation of (b) 1×10^{15} (F1), (c) 5×10^{15} (F2), (d) 1×10^{16} (F3), (e) 5×10^{16} (F4) ions/cm². The magnified 2D images of pristine (F0) and irradiated (F4) nano-WS₂ are also shown on the right hand side
- 6.6 (B) The variation in % S loss, % Xe content and 113 surface roughness with increasing ion fluence
- 6.7 PL spectra of (a) un-irradiated (F0), and 114 irradiated nano-WS₂ systems subjected to a fluence variation of 1×10^{15} (F1), 5×10^{15} (F2), 1×10^{16} (F3), 5×10^{16} (F4) ions/cm². The schematic of an asymmetric PL response with symmetry factors is shown in (b)

- 6.7 (c) Stokes shift shown for the un-irradiated 125 and irradiated nano-WS₂ samples (F0-F4).
- $\begin{array}{lll} \text{6.8} & \text{Raman spectra of (a) un-irradiated (F0), and} & 117 \\ & \text{irradiated nano-WS}_2 \text{ systems: (b) } 1 \times 10^{15} \text{ (F1),} \\ & (c) \ 5 \times \ 10^{15} \text{ (F2), (d) } 1 \times \ 10^{16} \text{ (F3), (e) } 5 \times \ 10^{16} \\ & (\text{F4) ions/cm}^2 \end{array}$
- 6.9 Static water contact angle (CA) values 118 measured at the surfaces of un-irradiated and irradiated nano-WS₂ systems. Note the progressive increase in CA with increasing ion fluence from F1 to F4: F1= 1×10^{15} , F2= 5×10^{15} , F3= 1×10^{16} , F4= 5×10^{16}
- 6.10 Variation of the CA and roughness with 119 increasing ion fluence, (b) variation of contact line and CA with surface roughness.

List of abbreviations

Abbreviations	Names
TMDC	Transition metal dichalcogenides
nm	Nanometer
eV	Electron volt
0D	Zero dimensional
1D	One dimensional
2D	Two dimensional
3D	Three dimensional
IF	Inorganic fullerene
JCPDS	Joint Committee on Powder Diffraction Standards
DI	Deionized
SEM	Scanning Electron Microscope
EDX	Energy dispersive X-ray spectroscopy
TEM	Transmission Electron Microscope
FTIR	Fourier transform infrared spectroscopy
FWHM	Full width at half maxima
HRTEM	High resolution transmission electron microscopy
AFM	Atomic force microscopy
KeV	Kilo electron volt
MeV	Mega electron volt
BET	Bruner-Emmett-Teller
BJH	Barrett-Joyner-Halenda

μm	Micrometer
SAED	Selected area electron diffraction
TGA	Thermogravimetric
UV	Ultra-violet
SRIM	Stopping and range of ions in matter
TRIM	Transport of ions in matter
XRD	X-ray diffraction
Å	Angstrom
NMP	1-methyl-2-pyrolidone
C-dot	Carbon dot
PVA	Polyvinyl alcohol
MG	Malachite green
МО	Methyl orange
COF	Coefficient of friction
СА	Contact angle

List of Symbols

Symbols	Meanings
β	Full width half maxima
3	Microstrain
$\mathrm{E}^{1}_{2\mathrm{g}}$	In-plane Raman vibrational mode
A_{1g}	Out-of-plane Raman vibrational mode
λ_{ex}	Excitation wavelength
λ_{em}	Emission wavelength
C_0	Initial concentration of the dye before irradiation
Ct	Concentration of the dye after irradiation
ka	Rate constant
θ_{adv}	Advancing angle
θ_{rec}	Receding angle
γs^d	Dispersive component of surface energy
$\gamma_s{}^p$	Polar component of surface energy
Se	Electronic energy loss
Sn	Nuclear energy loss
R _q	Root mean square roughness
σL	Left symmetry factor
σ _R	Right symmetry factor
Δ	Stoke's shift
Sp	Electron phonon coupling constant
ω_{LO}	Longitudinal optical phonon frequency
ħ	Planck's constant