
Chapter 4

Topology generated by fuzzy
normed linear spaces

4.1 Introduction

Fuzzy set theory has been systematically applied to generalize concepts in topology

and functional analysis. In this Chapter, applying the method of neighborhood we

study some properties of the topology induced by a fuzzy norm according to the

change of right norm. We develop Schauder basis with the help of summation of

infinite series in FNLSs. We also explore the space of convergent sequences in an

FNLS to obtain results as regards to its completeness.

4.2 Topology induced by a fuzzy norm

Let (X, ‖ . ‖, L,R) be an FNLS. Let α ∈ (0, 1] and ε > 0. For each x ∈ X, let us

define the (ε, α)-neighborhood of x as the set

Nx(ε, α) = {y ∈ X :‖ x− y ‖2α< ε}.

The (ε, α)-neighborhood base of x is the collection

Nx = {Nx(ε, α) : ε > 0, α ∈ (0, 1]}

Şencimen and Pehlivan [63] showed that the topology τ =
⋃
x∈X

Nx induced by the

fuzzy norm ‖ . ‖ is a Hausdorff and first countable topology for X.
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We prove the following result:

Theorem 4.2.1. The induced topology τ is a vector topology for the FNLS X with

lim
a→0+

R(a, a) = 0, i.e., the vector space operations are continuous in the topology τ .

Proof. As the family {Nx(ε, α) : ε, α are rational numbers} is a countable (ε, α)-

neighborhood base for each x ∈ X, therefore τ is a first countable Hausdorff topology

on X. Thus it is sufficient to show that the vector space operations are sequentially

continuous, i.e., fuzzy norm continuous in τ .

Consider two sequences {xn} and {yn} in X such that lim
n→∞

xn = x and lim
n→∞

yn = y

in (X, τ). This gives lim
n→∞

‖ xn−x ‖2α= 0 and lim
n→∞

‖ yn−y ‖2α= 0 for each α ∈ (0, 1].

As lim
a→0+

R(a, a) = 0, there is β ∈ (0, α] such that

‖ (xn + yn)− (x+ y) ‖2α≤‖ xn − x ‖2β + ‖ yn − y ‖2β

As n→∞, ‖ (xn + yn)− (x+ y) ‖2α→ 0. Thus, lim
n→∞

(xn + yn) = x+ y.

Further, let lim
n→∞

λn = λ in R or C, then

‖ λnxn − λx ‖2α =‖ λnxn − λxn + λxn − λx ‖2α

=‖ xn(λn − λ) + λ(xn − x) ‖2α

≤‖ xn(λn − λ)2β+ ‖ λ(xn − x) ‖2β

=‖ xn ‖2β| λn − λ | + | λ |‖ xn − x ‖2β

As n → ∞, ‖ λnxn − λx ‖2α→ 0. Therefore, lim
n→∞

λnxn = λx. This completes the

proof.

Remark 4.2.2. Clearly x + N(ε, α) = Nx(ε, α) for any α ∈ (0, 1] and ε > 0. For:

y ∈ x+N(ε, α)

⇔ y = x+ z◦, for some z◦ ∈ N(ε, α)

⇔ y − x = z◦ ∈ N(ε, α)

⇔‖ y − x ‖2α≤ ε
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⇔ y ∈ Nx(ε, α)

Therefore, Definition 1.3.24 of closure point and interior point can also be given

with the help of the set Nx(ε, α) in the following way:

Definition 4.2.3. Let (X, ‖ . ‖, L,R) be an FNLS. Consider a set A ⊆ X. A point

x◦ ∈ X is called a point of closure of A if Nx◦(α, α) ∩ A 6= φ for every α ∈ (0, 1].

The point x◦ is called an interior point of A if there exists ε◦ and α◦ such that

Nx◦(ε◦, α◦) ⊆ A.

Remark 4.2.4. If A ⊆ X is fuzzy open then Int A=A. Therefore each point x ∈ A

is an interior point. Thus, by Definition 4.2.3 for each x in A there exists an (ε, α)-

neighborhood Nx(ε, α) such that Nx(ε, α) ⊆ A. Therefore, A is fuzzy open if and

only if for each x ∈ A there exists Nx(ε, α) such that Nx(ε, α) ⊆ A.

Lemma 4.2.5. Let (X, ‖ . ‖, L,R) be an FNLS with lim
a→0+

R(a, a) = 0. Then for

ε > 0 and each α ∈ (0, 1], there exists β ∈ (0, α] such that Nx(
ε
2
, β) ⊆ Nx(ε, α).

Proof. As lim
a→0+

R(a, a) = 0, for α ∈ (0, 1], there exists β ∈ (0, α] such that

‖ x+ y ‖2α≤‖ x ‖2β + ‖ y ‖2β for x, y ∈ X

For ε > 0, let y ∈ Nx(
ε
2
, β). Therefore Nx(

ε
2
, β) ∩ Ny(

ε
2
, β) 6= φ. Thus there exists

z ∈ Nx(
ε
2
, β) ∩Ny(

ε
2
, β). This gives:

‖ x− y ‖2α≤‖ x− z ‖2β + ‖ z − y ‖2β≤
ε

2
+
ε

2
= ε

Hence, y ∈ Nx(ε, α) and thus Nx(
ε
2
, β) ⊆ Nx(ε, α).

Theorem 4.2.6. A subset A of an FNLS (X, ‖ . ‖, L,R) with lim
a→0+

R(a, a) = 0 is

rare (or, nowhere dense) if and only if every nonempty fuzzy open set in X contains

an open ball whose closure is disjoint from A
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Proof. Let A be a rare in X. Let B be a nonempty fuzzy open subset of X. Then

B ∩ A = φ. Let x ∈ B. Then, there exists ε > 0 and each α ∈ (0, 1] such that

Nx(ε, α) ⊂ U . By Lemma 4.2.5 there exists β ∈ (0, α] such that Nx(
ε
2
, β) ⊆ Nx(ε, α).

Thus Nx(
ε
2
, β) ⊆ B and Nx(

ε
2
, β) ∩ A = φ.

Conversely, suppose A is not rare. Therefore Int(A) 6= φ, so there exists a nonempty

fuzzy open set U such that U ⊂ A. For any x ∈ U and ε > 0 and each α ∈ (0, 1],

let Nx(ε, α) ⊂ U . Then Nx(ε, α) ∩ A 6= φ. This is a contradiction. Hence the proof

follows.

Theorem 4.2.7. Let (X, ‖ . ‖, L,R) be a separable FNLS with lim
a→0+

R(a, a) = 0.

Then every subspace of X is separable.

Proof. Let Y be a subspace of the FNLS X. Let A = {xn : n ∈ N} be a countable

dense subset of X, therefore, A = X. For x ∈ X and α ∈ (0, 1] we can find k ∈ N

such that ‖ xn−x ‖21
k

≤ 1
2k

. Consider the set B of all such xns and denote its elements

by xnk . Then B is countable. Now we show Y ⊂ B. Let y ∈ Y . Since A is dense in

X, there exists xm such that ‖ xm − y ‖21
k

≤ 1
2k

. By the definition of B, there exists

xmk ∈ A such that ‖ xmk − xm ‖21
k

≤ 1
2k

. Now

‖ xmk − y ‖2α ≤‖ xmk − y ‖21
k

≤‖ xmk − xm ‖21
k

+ ‖ xm − y ‖21
k

≤ 1

2k
+

1

2k
≤ 1

k
.

Thus, xmk ∈ Nx(
1
k
, α). Therefore y ∈ B and hence Y is separable.

Definition 4.2.8. Let (X, ‖ . ‖, L,R) be an FNLS with lim
a→0+

R(a, a) = 0 and {xn} ∈

X. A point x ∈ X is said to be cluster point of {xn} if every (ε, α)-neighborhood of

x contains infinitely many points of {xn}.

In other words, {xn} has a subsequence that converges to x.
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Lemma 4.2.9. Let (X, ‖ . ‖, L,R) be an FNLS with lim
a→0+

R(a, a) = 0. If a Cauchy

sequence {xn} has a cluster point x ∈ X then {xn} converges to x.

Proof. Let {xn} be a Cauchy sequence in X and x ∈ X be a cluster point of {xn} .

Then there exists a subsequence {xm} of {xn} such that lim
n→∞

xm = x. Thus

lim
m→∞

‖ xm − x ‖2α= 0, for any α ∈ (0, 1] (4.2.1)

Since {xn} is Cauchy, therefore,

lim
n,m→∞

‖ xn − xm ‖2α= 0 (4.2.2)

For each α ∈ (0, 1], we can find β ∈ (0, α] such that

‖ xn − x ‖2α≤‖ xn − xm ‖2β + ‖ xm − x ‖2β (4.2.3)

As n → ∞, ‖ xn − x ‖2α→ ∞ for any α ∈ (0, 1]. Hence, the Cauchy sequence {xn}

converges to x. This completes the proof.

4.3 Schauder basis in an FNLS

In this section, we shall introduce the notion of Schauder basis in FNLS.

4.3.1 Summable family in FNLSs

As mentioned in Chapter 1, Felbin introduced the convergence of a sequence and

Cauchy sequence in FNLSs. In the classical case, one of the important notions of

convergence is given in terms of a summable family. We introduce the same notion

in FNLSs.

Definition 4.3.1. Let (X, ‖ . ‖, L,R) be an FNLS with lim
a→0+

R(a, a) = 0. Let

{xn} ⊆ X. Associate the sequence {sn} with {xn} where

sn = x1 + x2 + x3 + ...+ xn
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{sn} is called the sequence of partial sums of {xn}. If the sequence {sn} is conver-

gent, say,

lim
n→∞

sn = s, that is, lim
n→∞

‖ sn − s ‖2α= 0

for any α ∈ (0, 1], then the infinite series
∞∑
n=1

xn = x1 + x2 + . . . is said to be fuzzy

convergent and s is called the sum of the series.

We write:

lim
n→∞

‖
n∑
k=1

xk − s ‖2α= 0, or,
∞∑
n=1

xn = s

Thus, for any ε > 0 and α ∈ (0, 1] there exists n◦ = n◦(ε, α) such that

‖
n∑
k=1

xk − s ‖2α< ε,∀n ≥ n◦

Definition 4.3.2. An infinite series
∞∑
n=1

xn is said to be absolutely fuzzy convergent

if the series
∞∑
n=1

‖ xn ‖2α=‖ x1 ‖2α + ‖ x2 ‖2α + ‖ x3 ‖2α +. . . is convergent for any

α ∈ (0, 1]. In fact, if
∞∑
n=1

xn is absolutely fuzzy convergent, then
∞∑
n=1

‖ xn ‖2α< ∞

for any α ∈ (0, 1]

Theorem 4.3.3. Let (X, ‖ . ‖, L,R) be an FNLS with R ≤ max. Then X is

complete if and only if every absolutely fuzzy convergent series is fuzzy convergent.

Proof. Let X be complete. Let
∞∑
n=1

xn be absolutely fuzzy convergent. Consider

the sequence {sn}, where sn =
n∑
k=1

xk, of partial sums of
∞∑
n=1

xn. Since
∞∑
n=1

xn is

absolutely fuzzy convergent, therefore
∞∑
n=1

‖ xn ‖2α< ∞. Thus there exists n◦ ∈ N

such that
n∑
k=1

‖ xn ‖2α< ε, ∀n ≥ n◦
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This gives ‖ sn − sm ‖2α=‖
n∑

k=m+1

‖ xk ‖2α for all n > m ≥ n◦. As R ≤ max, using

Lemma 1.3.19, we have:

‖ sn − sm ‖2α=‖
n∑

k=m+1

‖ xk ‖2α≤
n∑

k=m+1

‖ xk ‖2α< ε, n > m ≥ n◦

Hence {sn} is a Cauchy sequence. Since X is complete, therefore, {sn} converges

and hence
∞∑
n=1

xn is fuzzy convergent.

Conversely, let {xn} be a Cauchy sequence. For each k ∈ N, we can choose nk such

that for α ∈ (0, 1]

‖ xm − xn ‖2α≤
1

2k
, ∀m,n ≥ nk

In particular,

‖ xnk+1
− xnk ‖2α≤

1

2k
.

Write y1 = xn1 , y2 = xn2 − xn1 , . . ., yk+1 = xnk+1
− xnk . It gives

∞∑
n=1

‖ yn ‖2α= ‖ xn1 ‖2α +
∞∑
k=1

‖ xnk+1
− xnk ‖2α

≤‖ xn1 ‖2α +
∞∑
k=1

1

2k

=‖ xn1 ‖2α +1

Therefore
∞∑
n=1

yn is absolutely fuzzy convergent and thus
∞∑
n=1

yn is fuzzy convergent.

Therefore the subsequence {xnk} is convergent and by Lemma 4.2.9 the Cauchy

sequence {xn} is convergent. Hence X is complete.

4.3.2 Schauder basis

The concept of fuzzy convergence of a series can be used to define Schauder basis

of an FNLS. It is well known that Schauder bases are important in the structural

investigation of Banach spaces of infinite dimensions. Şencimen and Pehlivan [63]

defined convergence of a sequence in a different way which was referred to as “strong

convergence”.
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Definition 4.3.4. [63]Let (X, ‖ . ‖, L,R) be an FNLS. A sequence {xn} in X is said

to be convergent to x ∈ X with respect to the fuzzy norm on X, denoted by xn
FN−→ x,

provided lim
n→∞

‖ xn − x ‖= 0̄. That is, for every ε > 0 there exists N(ε) ∈ N such

that sup
α∈[0,1]

‖ xn − x ‖2α=‖ xn − x ‖20< ε.

In terms of (ε, α)-neighborhoods, xn
FN−→ x, provided that for any ε > 0 there is an

N(ε) ∈ N such that xn ∈ Nx(ε, 0) for all n ≥ N . Thus the convergence is uniform

in α.

Remark 4.3.5. The concept of strong convergence was first introduced by Fang [18]

in fuzzy metric space of Kaleva and Seikkala type. This definition is different from

Felbin’s notion of convergence (refer to Definition 1.3.21), where the convergence is

in the sense of α-level sets called levelwise convergence.

In correspondence to strong convergence strong Cauchy sequence, strong closure of

a set and strongly complete FNLS can be defined.

Clearly if a sequence {xn} is strongly convergent then {xn} is convergent to the

same point, but not conversely.

Example 4.3.6. Let X = R and consider the fuzzy norm

‖ x ‖ (t) =


|x|
t+|x| , t >| x |, x 6= 0,

1, t =| x |= 0;

0, otherwise

It can be verified that ‖ . ‖ is a fuzzy norm on R with R = max and L = min.

The α-level sets of ‖ . ‖ are given by [‖ x ‖]α = [| x |, 1−α
α
| x |]. We show that

the sequence {xn} = { 1
n
} is convergent, but not strongly convergent. In fact, we

have ‖ xn ‖2α= 1−α
α

1
n
. As n → ∞, xn → 0. However this convergence is not strong

convergence as for a given ε > 0,

‖ xn ‖2α=
1− α
α
| xn |< ε⇔ 1− α

αε
< n
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Since 1−α
αε
→∞ as α→ 0, therefore we cannot find the required N(ε) ∈ N.

Definition 4.3.7. Let {xn} be a sequence in an FNLS (X, ‖ . ‖, L,R) with

R ≤ max.

(i) {xn} is said to be a fuzzy Schauder basis, namely fuzzy basis of X if and only

if for every x ∈ X, there is a unique sequence {an} of scalars such that

n∑
k=1

akxk → x

This means, for each α ∈ (0, 1] and ε > 0 there exists n◦ = n◦(α, ε) such that

for n ≥ n◦, we have

‖ x−
n∑
k=1

akxk ‖2α< ε, i.e. lim
n→∞

n∑
k=1

akxk = x

In this case, we say that x has fuzzy expansion with respect to {xn} of the

form x =
∞∑
k=1

akxk.

(ii) {xn} is said to be a strong fuzzy Schauder basis, namely strong fuzzy basis of

X if and only if for every x ∈ X, there is a unique sequence {an} of scalars

such that
n∑
k=1

akxk
FN−→ x

This means, for any ε > 0 there exists n◦ = n◦(ε) such that

‖ x−
n∑
k=1

akxk ‖20< ε,∀n ≥ n◦ i.e. lim
n→∞

n∑
k=1

akxk = x

In this case, x is said to have a strong fuzzy expansion with respect to {xn}

of the form x =
∞∑
k=1

akxk.

It is clear that if {xn} is a strong fuzzy basis of X, then it is a fuzzy basis, but not

conversely.
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Example 4.3.8. Let X = c◦, the classical Banach space with the norm ‖ x ‖∞=

sup ‖ xn ‖ where x = {xn}.

Define a fuzzy norm ‖ . ‖ on c◦ as

‖ x ‖ (t) =


‖x‖∞
t+‖x‖∞ , t ≥‖ x ‖∞, x 6= 0,

1, t =‖ x ‖∞= 0;

0, otherwise (4.3.1)

The α-level sets are [‖ x ‖]α = [‖ x ‖∞, 1−αα ‖ x ‖∞].

Then the sequence e1 = (1, 0, 0, 0, . , . , . ), e2 = (0, 1, 0, 0, . , . , . ), . . . is a fuzzy

basis for the FNLS (c◦, ‖ . ‖, L,R) as for each α ∈ (0, 1],

lim
n→∞

‖ x−
n∑
k=1

akxk ‖2α=
1− α
α

lim
n→∞

‖ x−
n∑
k=1

akxk ‖∞= 0,

However since 1−α
αε
→ ∞ as α → 0, the convergence is not uniform in α. Thus no

sequence in (c◦, ‖ . ‖, L,R) can be a strong fuzzy basis.

But, if we consider the fuzzy norm ‖ . ‖∼ on c◦ as

‖ x ‖∼ (t) =

{
1, t =‖ x ‖∞;

0, otherwise

Then (c◦, ‖ . ‖∼) is an FNLS with L = min and R = max. Also, {en} as defined

above is a strong fuzzy basis as ‖ x ‖∼1α =‖ x ‖∼2α =‖ x ‖∞ for each α ∈ (0, 1].

Remark 4.3.9. In case of finite dimensional FNLS, the definition of fuzzy basis is

independent of the fuzzy norm and hence coincides with the classical definition of a

basis (i.e. Hamel basis) in a vector space.

A classical normed linear space having a Schauder basis is separable. Let us now

investigate the fuzzy analogue of this result.

Theorem 4.3.10. Let (X, ‖ . ‖, L,R) be an FNLS with R ≤ max. If X has a fuzzy

basis then X is separable.

Proof. Let {xn} be a fuzzy basis of the FNLS X. Let us define a set M ⊂ X as
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follows:

M = {
n∑
k=1

bkxk : bk is a (real or complex) rational number}

Clearly M is countable. We show M is dense in τ .

Let x ∈ X be an arbitrary element. Hence, there exists a unique sequence {an} of

scalars such that
∞∑
n=1

anxn = x. By definition, for any α ∈ (0, 1] and ε > 0, there

exists n◦ ∈ N such that

‖ x−
n∑
k=1

akxk ‖2α< ε,∀n ≥ n◦

That is, for all n ≥ n◦,
n∑
k=1

akxk ∈ Nx(ε, α)

On the other hand, for each scalar ak we can construct a sequence {bki}∞i=1 of ra-

tional scalars converging to ak. Hence, by the continuity of vector space operations

(Theorem 4.2.1), the sequence {
n∑
k=1

bkixk}∞i=1 converges to
n∑
k=1

akxk. Therefore, ev-

ery (ε, α)-neighborhood of x in τ contains an element
n∑
k=1

bkixk of the set M . Hence

M is dense in X.

4.4 Sequence spaces in FNLSs

In Example 4.3.8, it was mentioned that the classical Banach space c◦ can be made

an FNLS with the fuzzy norm defined as (4.3.1). We now proceed to construct the

space of convergent sequences in an FNLS.

In the sequel we consider right norm R ≤ max and left norm L ≥ min, unless and

otherwise specified. Following definitions are due to Felbin.

Definition 4.4.1. [20] Two FNLSs (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) are called

isometric if there exists a one to one mapping φ from X onto Y such that for every

x, y ∈ X,

‖ x− y ‖=‖ φ(x)− φ(y) ‖ .
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The mapping φ is called an isometry from X onto Y . If φ is an isometry of X onto

Y , φ−1 is an isometry of Y onto X.

Definition 4.4.2. [20] An isometry φ is called a linear isometry of X onto Y if φ

is a linear mapping of the linear space X onto the linear space Y .

Definition 4.4.3. [20] Two FNLSs (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) are called

congruent if there exists a linear isometry of (X, ‖ . ‖, L,R) onto (Y, ‖ . ‖, L,R)

Lemma 4.4.4. If two FNLSs X and Y are isometric then completeness of X implies

completeness of Y .

Proof. Let φ be a linear isometry of a complete FNLS X onto an FNLS Y . We show

that Y is also complete.

Let {yn} be a Cauchy sequence in Y . Since φ is onto, for each yn there exists xn ∈ X

such that φ(xn) = yn, ∀n ∈ N. Clearly {xn} is a Cauchy sequence in X. Since X is

complete, therefore, lim
n→∞

xn = x for x ∈ X. As φ is an isometry,

‖ φ(xn)− φ(x) ‖=‖ xn − x ‖, ∀n ∈ N

Also, φ(x) = y(say) ∈ Y . Therefore, for α ∈ (0, 1] and n ∈ N, we get: ‖ yn − y ‖2α

= ‖ xn − x ‖2α. As n → ∞, it gives ‖ yn − y ‖2α→ 0 and therefore, lim
n→∞

yn = y.

Hence Y is complete.

Let us now consider the set of convergent sequences in X by partitioning the set.

Let {xn} and {yn} be two convergent sequences in X. Let us call {xn} and {yn} to

be equivalent, denoted by {xn} ∼ {yn}, if and only if lim
n→∞

xn = lim
n→∞

yn, i.e., if and

only if lim
n→∞

‖ xn ‖2α= lim
n→∞

‖ yn ‖2α for each α ∈ (0, 1].

Let C denote the set of all convergent sequences in X. Then, clearly ∼ is an

equivalence relation on C. Let C be the collection of all equivalent classes of C

determined by ∼. We define addition and scalar multiplication on C as follows:

x∗ + y∗ = {{xn + yn} : {xn} ∈ x∗ and {yn} ∈ y∗}
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and

rx∗ = {{rxn} : r ∈ R and {xn} ∈ x∗}

for every x∗ and y∗ ∈ C.

Lemma 4.4.5. The set C is a linear space together with the operation of addition

and scalar multiplication.

Proof. Let x∗ and y∗ ∈ C. Suppose {xn}, {x′n} ∈ x∗ and {yn}, {y′n} ∈ y∗. Then,

lim
n→∞

xn = lim
n→∞

x′n and lim
n→∞

yn = lim
n→∞

y′n. For any α ∈ (0, 1], we have

|‖ xn + yn ‖2α − ‖ x′n + y′n ‖2α | ≤‖ xn + yn ‖2α + ‖ x′n + y′n ‖2α

≤‖ xn ‖2α + ‖ yn ‖2α + ‖ x′n ‖2α + ‖ y′n ‖2α

As n→∞, |‖ xn + yn ‖2α − ‖ x′n + y′n ‖2α |→ 0.

Then, lim
n→∞

‖ xn + yn ‖2α= lim
n→∞

‖ x′n + y′n ‖2α. Similarly, we get

lim
n→∞

‖ xn + yn ‖1α= lim
n→∞

‖ x′n + y′n ‖1α, for any α ∈ (0, 1]

Therefore, lim
n→∞

(xn + yn) = lim
n→∞

(x′n + y′n), so {xn + yn} ∼ {x′n + y′n}. As each of the

sequences {xn+yn} and {x′n+y′n} is convergent, therefore x∗+y∗ is the equivalence

class containing sequences of the form {xn + yn}, where {xn} ∈ x∗ and {yn} ∈ y∗.

Thus, x∗ + y∗ ∈ C for every x∗ and y∗ ∈ C.

Again, for r ∈ R and {xn}, {x′n} ∈ x∗,

lim
n→∞

‖ rxn ‖2α= lim
n→∞

| r |‖ xn ‖2α= lim
n→∞

| r |‖ x′n ‖2α= lim
n→∞

‖ rx′n ‖2α

Similarly, lim
n→∞

‖ rxn ‖1α= lim
n→∞

‖ rx′n ‖1α.

Thus, lim
n→∞

rxn = lim
n→∞

rx′n.

Therefore, the class rx∗ is well defined and it contains sequences of the form {rxn},

where {xn} ∈ x∗. Hence, rx∗ ∈ C for r ∈ R and x∗ ∈ C.

Therefore, the set C together with the operations of addition and scalar multiplica-

tion is a linear space.
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Define the zero element θ∗ of C as a equivalence class containing the sequence

{θ, θ, θ, ., ., .}. In other words, lim
n→∞

xn = θ for {xn} ∈ θ∗. Now we define a

fuzzy norm ‖ . ‖∗ on C.

Consider x∗ ∈ C and {xn} ∈ x∗. Since every sequence {xn} in the equivalent class

x∗ converges to the same limit, define ‖ x∗ ‖∗ as:

‖ x∗ ‖∗=‖ lim
n→∞

xn ‖

The norm so defined is independent of the choice of {xn}.

We can write: [‖ x∗ ‖∗]α = [‖ x ‖]α, where lim
n→∞

xn = x for x(6= θ) ∈ X and

α ∈ (0, 1]. To show ‖ x∗ ‖∗ is a fuzzy norm:

For x∗ = θ∗ ⇒ {xn} ∼ {θ} ⇒ lim
n→∞

‖ xn ‖2α= 0 = lim
n→∞

‖ xn ‖1α for any α ∈ (0, 1]. It

gives [‖ x∗ ‖∗]α = {0} ⇒‖ x∗ ‖∗= 0. Conversely, ‖ x∗ ‖∗= 0 ⇒ [‖ x∗ ‖]α = {0} for

all α ∈ (0, 1] ⇒ lim
n→∞

‖ xn ‖2α= 0 = lim
n→∞

‖ xn ‖1α⇒ {xn} ∼ {θ}, i.e., x∗ = θ∗. It can

be easily shown that ‖ rx∗ ‖∗=| r |‖ x∗ ‖∗.

Next for α ∈ (0, 1] and {xn} ∈ x∗ and {yn} ∈ y∗,

‖ xn + yn ‖2α≤‖ xn ‖2α + ‖ yn ‖2α and ‖ xn + yn ‖1α≤‖ xn ‖1α + ‖ yn ‖1α. Taking limit

as n→∞, we get

lim
n→∞

‖ xn + yn ‖2α≤ lim
n→∞

‖ xn ‖2α + lim
n→∞

‖ yn ‖2α

and

lim
n→∞

‖ xn + yn ‖1α≤ lim
n→∞

‖ xn ‖1α + lim
n→∞

‖ yn ‖1α

It gives ‖ x∗ + y∗ ‖∗�‖ x∗ ‖∗ ⊕ ‖ y∗ ‖∗. Thus ‖ . ‖∗ is a fuzzy norm on C and this

leads to the following result:

Theorem 4.4.6. The quadruple (C, ‖ . ‖∗,min,max) is an FNLS with the fuzzy

norm ‖ . ‖∗ defined by

‖ x∗ ‖∗=‖ x ‖

where {xn} ∈ x∗ and lim
n→∞

xn = x.
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Theorem 4.4.7. If (X, ‖ . ‖, L,R) is a complete FNLS, then (C, ‖ . ‖∗,min,max)

is also a complete FNLS.

Proof. Let us define a mapping φ : X → C by setting φ(x) as the equivalence class x∗

containing the sequence {x, x, ...}. It is easy to show that φ is a one-to-one mapping

from X onto C. Also,

‖ φ(x)− φ(y) ‖∗ =‖ x∗ − y∗ ‖∗

=‖ lim
n→∞

xn − lim
n→∞

yn ‖

=‖ x− y ‖

Thus, φ is an isometry of X onto C. Since (X, ‖ . ‖, L,R) is complete, by Lemma

4.4.4, (C, ‖ . ‖∗) is a complete FNLS.


	10_chapter 4

