Chapter 5 # \mathscr{L} -fuzzy metric spaces ### 5.1 Introduction The application of the fuzzy metric spaces is widespread. Various authors generalized the classical concepts of topology and functional analysis to fuzzy metric spaces. The \mathcal{L} -FMSs provided more general framework in this context for generalizing the classical concepts to fuzzy setting. In this chapter we study important topological concepts such as metrizability, precompactness, separability in \mathcal{L} -FMSs. We also prove a generalized form of the Lebesgue's covering lemma. It may be noted that the choice of triangular norm \mathcal{T} is significant while discussing the results. The results of Section 5.2 and 5.3 are inspired in [30]. ## 5.2 Metrizability of \mathcal{L} -fuzzy metric **Definition 5.2.1.** A topological space (X, τ) is said to admit a compatible \mathcal{L} -fuzzy metric if there exists an \mathcal{L} -fuzzy metric \mathcal{M} such that $\tau = \tau_{\mathcal{L}}$. In such a case it is called \mathcal{L} -fuzzy metrizable. **Remark 5.2.2.** Let (X, d) be a metric space and $(X, \mathcal{M}_d, \mathcal{T})$ be the induced \mathcal{L} -FMS. Consider an open set A in (X, d). Then for each $x \in A$, there exists an open $^{^3}$ The contents of this chapter have appeared in the form of an article in *Annals of Fuzzy Mathematics and Informatics* (2014). ball B(x,r) such that $B(x,r) \subset A$, for some $r \in \mathbb{R} - \{0\}$. Then, $$d(x,y) \le r, \text{ for some } y \in A$$ $$\Leftrightarrow \qquad t + d(x,y) \le t + r, \text{ for } t > 0$$ $$\Leftrightarrow \qquad \frac{t}{t + d(x,y)} \ge \frac{t}{t + r}$$ $$\Leftrightarrow \qquad \mathcal{M}(x,y,t_{\circ}) \ge 1 - r = \mathcal{N}(r), \text{ where } t_{\circ} = 1 - r$$ Therefore, A is open in the \mathscr{L} -FMS $(X, \mathcal{M}_d, \mathcal{T})$. Hence the topology generated by d coincides with the topology $\tau_{\mathcal{M}_d}$ generated by the induced \mathscr{L} -fuzzy metric \mathcal{M}_d . The following result allows us to connect an \mathcal{L} -fuzzy metric to a topological space. **Theorem 5.2.3.** Every metrizable topological space admits a compatible \mathcal{L} -fuzzy metric. *Proof.* Suppose (X, τ) is a metrizable topological space. Let d be the metric on X compatible with τ . Since the topologies induced by the \mathscr{L} -fuzzy metric \mathcal{M}_d and d are the same (Remark 5.2.2), \mathcal{M}_d is compatible with τ . A classical result in the theory of metrizable topological spaces is the Kelley metrization lemma, which is stated as follows. **Lemma 5.2.4.** [40] A T_1 topological space (X, τ) is metrizable if and only if it admits a uniformity with a countable base. **Theorem 5.2.5.** Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -FMS. Then $(X, \tau_{\mathcal{M}})$ is a metrizable topological space. Proof. For each $n \in \mathbb{N}$, we define $U_n = \{(x,y) \in X \times X : \mathcal{M}(x,y,\frac{1}{n}) >_L \mathcal{N}(\frac{1}{n})\}$. We shall prove that $\{U_n : n \in \mathbb{N}\}$ is a base for a uniformity \mathscr{U} on X whose induced topology coincides with $\tau_{\mathcal{M}}$. For each $n \in \mathbb{N}$, we have: $$\{(x,x):x\in X\}\subseteq U_n, U_{n+1}\subseteq U_n \text{ and } U_n=U_n^{-1}$$ By the continuity of \mathcal{T} for each $n \in \mathbb{N}$, \exists an $m \in \mathbb{N}$ such that for m > 2n. Let (x,y) and $(y,z) \in U_m$. Since $\mathcal{M}(x,y,.)$ is nondecreasing, we get $\mathcal{M}(x,z,\frac{1}{n}) >_L$ $\mathcal{M}(x,z,\frac{2}{m})$. Thus, $$\mathcal{M}(x, z, \frac{1}{n}) >_{L} \mathcal{M}(x, z, \frac{2}{m})$$ $$>_{L} \mathcal{T}(\mathcal{M}(x, y, \frac{1}{m}), \mathcal{M}(y, z, \frac{1}{m}))$$ $$>_{L} \mathcal{T}(\mathcal{N}(\frac{1}{m}), \mathcal{N}(\frac{1}{m})) >_{L} \mathcal{N}(\frac{1}{n})$$ Therefore $(x, z) \in U_n$. Further, $$\mathcal{T}(\mathcal{N}(\frac{1}{m}), \mathcal{N}(\frac{1}{m})) >_L \mathcal{N}(\frac{1}{n})$$ Hence, $U_m \circ U_m \subseteq U_n$. therefore, $\{U_n : n \in \mathbb{N}\}$ is a countable base for a uniformity U on X. Since for each $x \in X$ and each $n \in \mathbb{N}$, $$U_n(x) = \{y : \mathcal{M}(x, y, \frac{1}{n}) >_L \mathcal{N}(\frac{1}{n})\} = B(x, \frac{1}{n}, \frac{1}{n})$$ Therefore the topology induced by \mathscr{U} coincides with $\tau_{\mathcal{M}}$. Hence, by Lemma 5.2.4 $(X, \tau_{\mathcal{M}})$ is a metrizable topological space. Corollary 5.2.6. A topological space is metrizable if and only if it admits a compatible \mathcal{L} -fuzzy metric. *Proof.* The proof follows from Theorems 5.2.3 and 5.2.5. If X is a separable \mathscr{L} -FMS, then $(X, \tau_{\mathcal{M}})$ is a separable metrizable space. Therefore X is second countable [15]. This is in accordance with the following result stated by Efe. **Theorem 5.2.7.** [14] Every separable \mathcal{L} -FMS is second countable. Efe [15] called a metrizable topological space (X, τ) to be completely metrizable if it admits a complete metric. We prove the following result. **Theorem 5.2.8.** Let $(X, \mathcal{M}, \mathcal{T})$ be a complete \mathscr{L} -FMS. Then $(X, \tau_{\mathcal{M}})$ is completely metrizable. Proof. For every $n \in \mathbb{N}$, let us define $U_n = \{(x,y) : \mathcal{M}(x,y,\frac{1}{n}) >_L \mathcal{N}(\frac{1}{n})\}$. From Theorem 5.2.5, it follows that $\{U_n : n \in \mathbb{N}\}$ is a base for the uniformity \mathscr{U} in X compatible with $\tau_{\mathcal{M}}$. Then, there exists a metric d with its induced uniformity coinciding with \mathscr{U} . We shall show that d is complete. Let us consider a Cauchy sequence $\{x_n\}$ in (X, d). We show $\{x_n\}$ is a Cauchy sequence in $(X, \mathcal{M}, \mathcal{T})$. Fix r, t, with $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ and t > 0. We can find $k \in \mathbb{N}$ such that $\frac{1}{k} < t$ and $\frac{1}{k} <_L r$. Then there exists $n_{\circ} \in \mathbb{N}$ such that $(x_n, x_m) \in U_k$, for every $n, m \geq n_{\circ}$. Consequently, for every $n, m \geq n_{\circ}$, $$\mathcal{M}(x_n, x_m, t) \ge_L \mathcal{M}(x_n, x_m, \frac{1}{k}) >_L \mathcal{N}(\frac{1}{k}) >_L \mathcal{N}(r)$$ Thus, $\{x_n\}$ is a Cauchy sequence in the complete \mathscr{L} -FMS $(X, \mathcal{M}, \mathcal{T})$. Therefore $\{x_n\}$ is convergent with respect to $\tau_{\mathcal{M}}$. Hence d is a complete metric on X. Thus, $(X, \tau_{\mathcal{M}})$ is completely metrizable. # 5.3 Compactness of \mathcal{L} -fuzzy metric In this section we study compactness of an \mathscr{L} -fuzzy metric. Since metrizability is a hereditary property, in an \mathscr{L} -FNS $(X, \mathcal{M}, \mathcal{T})$ we can state the following results: **Theorem 5.3.1.** Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -FMS and $A \subseteq X$. Then the following assertions are equivalent: - (1) A is compact. - (2) A is countably compact. - (3) A is sequentially compact. *Proof.* Since the \mathscr{L} -FMS X is metrizable, therefore, the result follows straightforward (Engelking [15], Theorems 4.1.13, 4.1.17 and 5.1.3). #### 5.3.1 Precompact \mathscr{L} -FMS Let us prove an equivalent result for precompactness of an \mathcal{L} -fuzzy metric using the notion of sequences. **Lemma 5.3.2.** An \mathcal{L} -FMS is precompact if and only if every sequence has a Cauchy subsequence. *Proof.* Let $(X, \mathcal{M}, \mathcal{T})$ be a precompact \mathcal{L} -FMS and let $\{x_n\}$ be a sequence in X. Since X is precompact, for each $m \in \mathbb{N}$ there is a finite set A_m of X such that $$X = \bigcup_{a \in A_m} B(a, \frac{1}{m}, \frac{1}{m})$$ Particularly, for m=1, there exists an $a_1 \in A_1$ and a subsequence $\{x_{n_1}\}$ of $\{x_n\}$ such that $x_{n_1} \in B(a_1, 1, 1)$. Similarly, there exists an $a_2 \in A_2$ and a subsequence $\{x_{n_2}\}$ of $\{x_{n_1}\}$ such that $x_{n_2} \in B(a_2, \frac{1}{2}, \frac{1}{2})$. Proceeding inductively, for $m \in \mathbb{N}$, m > 1, there is an $a_m \in A_m$ and a subsequence $\{x_{n_m}\}$ of $\{x_{n_{m-1}}\}$ such that $x_{n_m} \in B(a_m, \frac{1}{m}, \frac{1}{m})$. Now consider the subsequence $\{x_{n_n}\}$ of $\{x_n\}$. For $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ and t > 0, there exists an $n_0 \in \mathbb{N}$ such that $$\mathcal{T}(\mathcal{N}(\frac{1}{n_{\circ}}), \mathcal{N}(\frac{1}{n_{\circ}})) >_{L} \mathcal{N}(r) \text{ and } \frac{2}{n_{\circ}} < t$$ Then, for every $k, m \ge n_{\circ}$, we have: $$\mathcal{M}(x_{k(k)}, x_{m(m)}, t) \geq_{L} \mathcal{M}(x_{k(k)}, x_{m(m)}, \frac{2}{n_{\circ}})$$ $$\geq_{L} \mathcal{T}(\mathcal{M}(x_{k(k), a_{n_{\circ}}, \frac{1}{n_{\circ}}}), \mathcal{M}(x_{m(m)}, a_{n_{\circ}}, \frac{1}{n_{\circ}}))$$ $$>_{L} \mathcal{T}(\mathcal{N}(\frac{1}{n_{\circ}}), \mathcal{N}(\frac{1}{n_{\circ}})) >_{L} \mathcal{N}(r)$$ Hence, $\{x_{n_n}\}$ is a Cauchy subsequence of $\{x_n\}$ in X. Conversely, assume $(X, \mathcal{M}, \mathcal{T})$ is not a precompact \mathscr{L} -FMS. Then, there exists an $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ and t > 0 such that for each finite subset A of X, $$X \neq \bigcup_{a \in A} B(a, r, t)$$ Fix $x_1 \in X$. Then there exists $x_2 \in X \setminus B(x_1, r, t)$. Proceeding similarly, we find $x_3 \in X \setminus \bigcup_{k=1}^{2} B(x_k, r, t)$. Proceeding inductively we have a sequence $\{x_{n_n}\}$ of distinct points in X such that $$x_{n+1} \notin \bigcup_{k=1}^{n} B(x_k, r, t), \text{ for } n \in \mathbb{N}$$ Therefore, $\{x_{n_n}\}$ has no Cauchy subsequence. **Theorem 5.3.3.** An \mathcal{L} -FMS $(X, \mathcal{M}, \mathcal{T})$ is separable if and only if $(X, \tau_{\mathcal{M}})$ admits a precompact \mathcal{L} -fuzzy metric. Proof. Suppose $(X, \mathcal{M}, \mathcal{T})$ is a separable \mathscr{L} -FMS. Then $(X, \tau_{\mathcal{M}})$ is a separable metrizable space. Therefore, $\tau_{\mathcal{M}}$ admits a compatible precompact metric d (Theorem 4.3 in [15]). We show that the induced \mathscr{L} -fuzzy metric \mathcal{M}_d is precompact. Let $\{x_n\}$ be a sequence in X. By the precompactness of d, $\{x_n\}$ has a Cauchy subsequence $\{x_{n_k}\}$ in (X, d). Fix $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ and t > 0. Let us choose ε such that $\frac{t}{t+\varepsilon} >_L \mathcal{N}(r)$. Then, there exists $n_o \in \mathbb{N}$ such that $d(x_{k(n)}, x_{k(m)}) < \varepsilon$, for $n, m \geq n_o$. Therefore, $$\mathcal{M}_d(x_{k(n)}, x_{k(m)}, t) >_L \frac{t}{t+\varepsilon} >_L \mathcal{N}(r), \text{ for all } n, m \ge n_\circ$$ So, $\{x_n\}$ is a Cauchy sequence in the \mathscr{L} -FMS $(X, \mathcal{M}_d, \mathcal{T})$. By Lemma 5.3.2, $(X, \mathcal{M}_d, \mathcal{T})$ is precompact. Conversely, suppose $(X, \tau_{\mathcal{M}})$ admits a compatible precompact \mathscr{L} -fuzzy metric \mathscr{M}' . For each $n \in \mathbb{N}$, thus, there exists a finite subset A_n of X such that $X = \bigcup_{a \in A_n} B(a, \frac{1}{n}, \frac{1}{n})$. Put $A = \bigcup_{n=1}^{\infty} A_n$. Then, A is countable. For each $x \in X$, consider a basic neighborhood $B(x, \frac{1}{m}, \frac{1}{m})$ of x. Then, there exists a in A_m such that $x \in B(a, \frac{1}{m}, \frac{1}{m})$ and hence, A is dense in X. Therefore, $(X, \mathcal{M}', \mathcal{T})$ is separable, i.e., $(X, \tau_{\mathcal{M}})$ is separable. Corollary 5.3.4. Every precompact \mathcal{L} -FMS is second countable. *Proof.* Proof follows from Theorems 5.2.7 and 5.3.3. **Definition 5.3.5.** Let $(X, \mathcal{M}, \mathcal{T})$ be a \mathcal{L} -FMS and $\{x_n\} \subseteq X$. A point $x \in X$ is said to be a cluster point of $\{x_n\}$ if every neighbourhood of x contains infinitely many points of $\{x_n\}$. In other words, we can say that $\{x_n\}$ has a subsequence converging to x in $\tau_{\mathcal{M}}$. **Lemma 5.3.6.** Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -FMS. If a Cauchy sequence clusters to a point $x \in X$, then the sequence converges to x. *Proof.* Let $\{x_n\}$ be a Cauchy sequence in $(X, \mathcal{M}, \mathcal{T})$ having a cluster point $x \in X$. Then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\lim_{n_k \to \infty} x_{n_k} = x$ with respect to $\tau_{\mathcal{M}}$. This implies, given $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ and t > 0, $\exists n_o \in \mathbb{N}$ such that: $$\mathcal{M}(x, x_{n_k}), \frac{t}{2}) >_L \mathcal{N}(s), \text{ for each } n \ge n_o$$ (5.3.1) where $s \in L \setminus \{0_{\mathscr{L}}\}$ satisfies $\mathcal{T}(\mathcal{N}(s), \mathcal{N}(s)) >_L \mathcal{N}(r)$. Also, $\exists n_1 \geq k(n_\circ)$ such that: $$\mathcal{M}(x_n, x_m, \frac{t}{2}) >_L \mathcal{N}(s)$$, for each $n \ge n_1$ (5.3.2) Therefore, from (5.3.1) and (5.3.2) we have for $n \ge \max\{n_0, n_1\}$, $$\mathcal{M}(x_n, x, t) \geq_L \mathcal{T}(\mathcal{M}(x_n, x_{n_k}, \frac{t}{2}), \mathcal{M}(x_{n_k}, x, \frac{t}{2}))$$ $$\geq_L \mathcal{T}(\mathcal{N}(s), \mathcal{N}(s)) >_L \mathcal{N}(r), \text{ for any } r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\} \text{ and } t > 0.$$ Hence, the Cauchy sequence $\{x_n\}$ converges to x. This completes the proof. \square **Theorem 5.3.7.** An \mathcal{L} -FMS $(X, \mathcal{M}, \mathcal{T})$ is compact if and only if it is precompact and complete. Proof. Suppose $(X, \mathcal{M}, \mathcal{T})$ is a compact \mathcal{L} -FMS. Then for each $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and t > 0, the open cover $\{B(x, r, t) : x \in X\}$ of X has a finite subcover. Hence, X is precompact. Also, using Theorem 5.3.1, each Cauchy sequence $\{x_n\}$ in X has a cluster point $x \in X$. By Lemma 5.3.6 $\{x_n\}$ converges to x. Therefore, $(X, \mathcal{M}, \mathcal{T})$ is complete. Conversely, let X be precompact and complete. Consider a sequence $\{x_n\}$ in X. By Lemma 5.3.2, $\{x_n\}$ has a Cauchy subsequence, say $\{x_{n_k}\}$. As X is complete, the Cauchy subsequence $\{x_{n_k}\}$ is convergent and thus, $\{x_n\}$ has a cluster point. Therefore, X is sequentially compact. Since $(X, \tau_{\mathcal{M}})$ is metrizable (Theorem 5.2.5) and every sequentially compact metrizable space is compact (using Theorem 5.3.1), therefore, $(X, \mathcal{M}, \mathcal{T})$ is compact. **Remark 5.3.8.** Theorems 5.3.3 and 5.3.7 show that every compact \mathscr{L} -FMS is separable. Also, Theorem 5.3.1 gives that every sequentially compact \mathscr{L} -FMS is precompact. ### 5.3.2 $\mathscr{L}F$ - strongly bounded set **Definition 5.3.9.** [36] Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -FMS and $A \subseteq X$. The \mathcal{L} -fuzzy diameter of a set A is defined by: $$\delta_A = \sup_{t>0} \inf_{x,y\in A} \sup_{\varepsilon< t} \mathcal{M}(x,y,\varepsilon)$$ If $\delta_A = 1_{\mathscr{L}}$ then A is said to be $\mathscr{L}F$ -strongly bounded. **Lemma 5.3.10.** [36] The set $A \subseteq X$ is $\mathscr{L}F$ -strongly bounded if an only if for arbitrary negation $\mathcal{N}(r)$ and each $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ there exists t > 0 such that $\mathcal{M}(x, y, t) >_L \mathcal{N}(r)$, for all $x, y \in A$. **Theorem 5.3.11.** [14] Every compact subset A of an \mathcal{L} -FNS X is \mathcal{L} F-strongly bounded. Clearly every compact set $A \subseteq X$ is closed and $\mathscr{L}F$ -strongly bounded. We then prove the following result: **Theorem 5.3.12.** Every precompact subset A of an \mathscr{L} -FMS $(X, \mathcal{M}, \mathcal{T})$ is $\mathscr{L}F$ -strongly bounded. *Proof.* Let A be a precompact subset of X. Fix t > 0 and $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$. As A is precompact, there exists a finite subset $S \subseteq X$ such that $$A \subseteq \bigcup_{a \in S} B(a, r, t)$$ Let $x, y \in A$. Then $x \in B(x_i, r, t)$ and $y \in B(x_j, r, t)$, for some i, j. It gives: $$\mathcal{M}(x, x_i, t) >_L \mathcal{N}(r) \text{ and } \mathcal{M}(y, x_i, t) >_L \mathcal{N}(r)$$ (5.3.3) Let $\alpha = \min \mathcal{M}(x_i, x_j, t) : 1 \leq i, j \leq n$. Clearly $\alpha \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$. Also $\exists s \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ (Remark 1.3.37) such that: $$\mathcal{T}^2(\mathcal{N}(r), \mathcal{N}(r), \alpha) >_L \mathcal{N}(s)$$ (5.3.4) Thus, (5.3.3), (5.3.4) and (5.3.5) give: $$\mathcal{M}(x, y, 3t) \ge_L \mathcal{T}^2(\mathcal{M}(x, x_i, t), \mathcal{M}(x_i, x_j, t), \mathcal{M}(x_j, y, t))$$ $\ge_L \mathcal{T}^2(\mathcal{N}(r), \mathcal{N}(r), \alpha) >_L \mathcal{N}(s)$ for any $x, y \in A$. Hence A is $\mathscr{L}F$ -strongly bounded. **Remark 5.3.13.** Theorems 5.3.1-5.3.12 establish some relationships among the topological concepts of compactness, completeness, boundedness, pecompactness, separability. These properties are fundamental and provide a basic tool to study the theory of space structure of \mathcal{L} -FMS. ## 5.4 Covering factor of an \mathscr{L} -fuzzy metric In this part, we introduce a new concept called "covering factor" in an \mathscr{L} -FMS. **Definition 5.4.1.** An element $\varepsilon \in L \setminus \{0_{\mathscr{L}}\}$ is called a covering factor for an open cover $\mathscr{G} = \{G_i\}_{i \in \Lambda}$ of a \mathscr{L} -FMS $(X, \mathcal{M}, \mathcal{T})$ if for every set A in X with fuzzy diameter $\delta_A >_L \mathcal{N}(\varepsilon)$ is contained in any G_i in \mathscr{G} . **Lemma 5.4.2.** Let B(x,r,t) be an open ball of an \mathscr{L} -FMS $(X,\mathcal{M},\mathcal{T})$ with $r \in L\setminus\{0_{\mathscr{L}},1_{\mathscr{L}}\}$ and t>0. Let A be a subset of X such that $\delta_A>_L \mathcal{N}(s)$ where $s\in L\setminus\{0_{\mathscr{L}},1_{\mathscr{L}}\}$ satisfying $\mathcal{T}(\mathcal{N}(s),\mathcal{N}(s))>_L \mathcal{N}(r)$. If A intersects $B(x,s,\frac{t}{2})$, then $A\subseteq B(x,r,t)$. **Lemma 5.4.3.** Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -FMS. If t > 0 and $r, s \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $\mathcal{T}(\mathcal{N}(s), \mathcal{N}(s)) >_L \mathcal{N}(r)$, then $B(x, s, \frac{t}{2}) \subset B(x, r, t)$. The above two results are straight forward, so we omit the proofs here. The following result is a generalized form of the Lebesgue's covering lemma. **Theorem 5.4.4.** In a sequentially compact \mathcal{L} -FMS with involutive negation, every open cover has a covering factor. Proof. Let $(X, \mathcal{M}, \mathcal{T})$ be a sequentially compact \mathscr{L} -FMS with a involutive negation \mathcal{N} . Also, let $\mathscr{G} = \{G_{\alpha} : \alpha \in \Lambda\}$ be an open cover of X. Assume that there exist sets in X which are not contained in any G_{α} . Otherwise any $\varepsilon \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ will work as an covering factor and the result is established. Let us refer to these sets as "big sets". Consider such a set $A \subseteq X$. Let $\delta' = \inf\{\mathcal{N}(\delta_A) : \delta_A \text{ is fuzzy diameter of the big set } A \}$. Then, the following cases arise: Case I: Let $\delta' = 1_{\mathscr{L}}$. It gives: for $A \subset X$ with $\mathcal{N}(\delta_A) <_L 1_{\mathscr{L}}$ i.e. $\delta_A >_L 0_{\mathscr{L}}$ is a subset of G_{α} for some $\alpha \in \Lambda$. Hence each $\delta \in L \setminus \{0_{\mathscr{L}}\}$ is a covering factor. Case II: Let $\delta' = 0_{\mathscr{L}}$. By definition of δ' , for a given $n \in \mathbb{N}$ there exists a big set B_n such that $\mathcal{N}(\delta_{B_n}) <_L \frac{1}{n}$. It gives: $$\delta_{B_n} >_L \mathcal{N}(\frac{1}{n})$$ As the big set B_n is not contained in any G_{α} , B_n must contain at least two elements. Therefore, $1_{\mathscr{L}} >_L \delta_{B_n} >_L \mathcal{N}(\frac{1}{n})$. Construct a sequence $\{x_n\}$ where $x_n \in B_n$, for $n \in \mathbb{N}$. Since X is sequentially compact, $\{x_n\}$ has a convergent subsequence converging to some $x \in X$. As $X = \bigcup_{\alpha \in \Lambda} G_{\alpha}$, we have: $$x \in G_{\beta}, \text{ for } \beta \in \bigwedge$$ (5.4.1) As G_{β} is open in X, there exists $r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ and t > 0 such that $$B(x, r, t) \subseteq G_{\beta}, r \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\} \text{ and } t > 0$$ (5.4.2) Choose $s \in L \setminus \{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$ such that $\mathcal{T}(\mathcal{N}(s), \mathcal{N}(s)) >_L \mathcal{N}(r)$. By Lemma 5.4.3, we get $B(x, s, \frac{t}{2}) \subset B(x, r, t)$. Since $\{x_n\}$ has a subsequence converging to x, $x_n \in B(x, s, \frac{t}{2})$ for infinitely many n. Thus, $\exists N$ such that $x_N \in B(x, s, \frac{t}{2})$. Therefore, $$\frac{1}{N} <_L s \Rightarrow \mathcal{N}(\frac{1}{N}) >_L \mathcal{N}(s) \tag{5.4.3}$$ However, $x_N \in B_N$ and $\delta_{B_N} >_L \mathcal{N}(\frac{1}{N})$. This gives $\delta_{B_N} >_L \mathcal{N}(s)$. By (5.4.2), (5.4.3) and Lemma 5.4.2, $B_N \subseteq B(x,r,t) \subseteq G_\beta$, a contradiction to the assumption. Thus $\delta' \neq 0_{\mathscr{L}}$. Therefore, $0_{\mathscr{L}} <_L \delta' <_L 1_{\mathscr{L}}$ and the element $\delta = \mathcal{N}(\delta')$ will be the required covering factor. This completes the proof. Thus, in view of Theorems 5.3.1, 5.3.7, 5.3.12 and 5.4.4 and Remark 5.3.8, various compactness criteria of an \mathcal{L} -FMS can be interpreted with the help of a covering factor.