
Chapter 5

L -fuzzy metric spaces

5.1 Introduction

The application of the fuzzy metric spaces is widespread. Various authors general-

ized the classical concepts of topology and functional analysis to fuzzy metric spaces.

The L -FMSs provided more general framework in this context for generalizing the

classical concepts to fuzzy setting. In this chapter we study important topological

concepts such as metrizability, precompactness, separability in L -FMSs. We also

prove a generalized form of the Lebesgue’s covering lemma. It may be noted that the

choice of triangular norm T is significant while discussing the results. The results

of Section 5.2 and 5.3 are inspired in [30].

5.2 Metrizability of L -fuzzy metric

Definition 5.2.1. A topological space (X, τ) is said to admit a compatible L -fuzzy

metric if there exists an L -fuzzy metric M such that τ = τL . In such a case it is

called L -fuzzy metrizable.

Remark 5.2.2. Let (X, d) be a metric space and (X,Md, T ) be the induced L -

FMS. Consider an open set A in (X, d). Then for each x ∈ A, there exists an open

3The contents of this chapter have appeared in the form of an article in Annals of Fuzzy
Mathematics and Informatics (2014).
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ball B(x, r) such that B(x, r) ⊂ A, for some r ∈ R− {0}.

Then,

d(x, y) ≤ r, for some y ∈ A

⇔ t+ d(x, y) ≤ t+ r, for t > 0

⇔ t

t+ d(x, y)
≥ t

t+ r

⇔ M(x, y, t◦) ≥ 1− r = N (r), where t◦ = 1− r

Therefore, A is open in the L -FMS (X,Md, T ). Hence the topology generated by

d coincides with the topology τMd
generated by the induced L -fuzzy metric Md.

The following result allows us to connect an L -fuzzy metric to a topological space.

Theorem 5.2.3. Every metrizable topological space admits a compatible L -fuzzy

metric.

Proof. Suppose (X, τ) is a metrizable topological space. Let d be the metric on X

compatible with τ . Since the topologies induced by the L -fuzzy metric Md and d

are the same (Remark 5.2.2), Md is compatible with τ .

A classical result in the theory of metrizable topological spaces is the Kelley metriza-

tion lemma, which is stated as follows.

Lemma 5.2.4. [40] A T1 topological space (X, τ) is metrizable if and only if it

admits a uniformity with a countable base.

Theorem 5.2.5. Let (X,M, T ) be an L -FMS. Then (X, τM) is a metrizable topo-

logical space.

Proof. For each n ∈ N, we define Un = {(x, y) ∈ X × X : M(x, y, 1
n
) >L N ( 1

n
))}.

We shall prove that {Un : n ∈ N} is a base for a uniformity U on X whose induced

topology coincides with τM. For each n ∈ N, we have:

{(x, x) : x ∈ X} ⊆ Un, Un+1 ⊆ Un and Un = U−1n
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By the continuity of T for each n ∈ N, ∃ an m ∈ N such that for m > 2n. Let

(x, y) and (y, z) ∈ Um. Since M(x, y, .) is nondecreasing, we get M(x, z, 1
n
) >L

M(x, z, 2
m

). Thus,

M(x, z,
1

n
) >LM(x, z,

2

m
)

>L T (M(x, y,
1

m
),M(y, z,

1

m
))

>L T (N (
1

m
),N (

1

m
)) >L N (

1

n
)

Therefore (x, z) ∈ Un. Further,

T (N (
1

m
),N (

1

m
)) >L N (

1

n
)

Hence, Um ◦ Um ⊆ Un. therefore, {Un : n ∈ N} is a countable base for a uniformity

U on X. Since for each x ∈ X and each n ∈ N,

Un(x) = {y :M(x, y,
1

n
) >L N (

1

n
)} = B(x,

1

n
,

1

n
)

Therefore the topology induced by U coincides with τM. Hence, by Lemma 5.2.4

(X, τM) is a metrizable topological space.

Corollary 5.2.6. A topological space is metrizable if and only if it admits a com-

patible L -fuzzy metric.

Proof. The proof follows from Theorems 5.2.3 and 5.2.5.

If X is a separable L -FMS, then (X, τM) is a separable metrizable space. Therefore

X is second countable [15]. This is in accordance with the following result stated

by Efe.

Theorem 5.2.7. [14] Every separable L -FMS is second countable.

Efe [15] called a metrizable topological space (X, τ) to be completely metrizable if

it admits a complete metric. We prove the following result.
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Theorem 5.2.8. Let (X,M, T ) be a complete L -FMS. Then (X, τM) is completely

metrizable.

Proof. For every n ∈ N, let us define Un = {(x, y) : M(x, y, 1
n
) >L N ( 1

n
)}. From

Theorem 5.2.5, it follows that {Un : n ∈ N} is a base for the uniformity U in

X compatible with τM. Then, there exists a metric d with its induced uniformity

coinciding with U . We shall show that d is complete.

Let us consider a Cauchy sequence {xn} in (X, d). We show {xn)} is a Cauchy

sequence in (X,M, T ). Fix r, t, with r ∈ L\{0L , 1L } and t > 0. We can find k ∈ N

such that 1
k
< t and 1

k
<L r. Then there exists n◦ ∈ N such that (xn, xm) ∈ Uk, for

every n,m ≥ n◦. Consequently, for every n,m ≥ n◦,

M(xn, xm, t) ≥LM(xn, xm,
1

k
) >L N (

1

k
) >L N (r)

Thus, {xn)} is a Cauchy sequence in the complete L -FMS (X,M, T ). Therefore

{xn)} is convergent with respect to τM. Hence d is a complete metric on X. Thus,

(X, τM) is completely metrizable.

5.3 Compactness of L -fuzzy metric

In this section we study compactness of an L -fuzzy metric.

Since metrizability is a hereditary property, in an L -FNS (X,M, T ) we can state

the following results:

Theorem 5.3.1. Let (X,M, T ) be an L -FMS and A ⊆ X. Then the following

assertions are equivalent:

(1) A is compact.

(2) A is countably compact.

(3) A is sequentially compact.
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Proof. Since the L -FMS X is metrizable, therefore, the result follows straightfor-

ward (Engelking [15], Theorems 4.1.13, 4.1.17 and 5.1.3).

5.3.1 Precompact L -FMS

Let us prove an equivalent result for precompactness of an L -fuzzy metric using

the notion of sequences.

Lemma 5.3.2. An L -FMS is precompact if and only if every sequence has a Cauchy

subsequence.

Proof. Let (X,M, T ) be a precompact L -FMS and let {xn} be a sequence in X.

Since X is precompact, for each m ∈ N there is a finite set Am of X such that

X =
⋃
a∈Am

B(a,
1

m
,

1

m
)

Particularly, for m = 1, there exists an a1 ∈ A1 and a subsequence {xn1} of {xn} such

that xn1 ∈ B(a1, 1, 1). Similarly, there exists an a2 ∈ A2 and a subsequence {xn2} of

{xn1} such that xn2 ∈ B(a2,
1
2
, 1
2
). Proceeding inductively, for m ∈ N, m > 1, there

is an am ∈ Am and a subsequence {xnm} of {xnm−1} such that xnm ∈ B(am,
1
m
, 1
m

).

Now consider the subsequence {xnn} of {xn}. For r ∈ L\{0L , 1L } and t > 0, there

exists an n◦ ∈ N such that

T (N (
1

n◦
),N (

1

n◦
)) >L N (r) and

2

n◦
< t

Then, for every k,m ≥ n◦, we have:

M(xk(k), xm(m), t) ≥LM(xk(k), xm(m),
2

n◦
)

≥L T (M(xk(k),an◦ , 1
n◦

),M(xm(m), an◦ ,
1

n◦
))

>L T (N (
1

n◦
),N (

1

n◦
)) >L N (r)
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Hence, {xnn} is a Cauchy subsequence of {xn} in X.

Conversely, assume (X,M, T ) is not a precompact L -FMS. Then, there exists an

r ∈ L\{0L , 1L } and t > 0 such that for each finite subset A of X,

X 6=
⋃
a∈A

B(a, r, t)

Fix x1 ∈ X. Then there exists x2 ∈ X\B(x1, r, t). Proceeding similarly, we find

x3 ∈ X\
2⋃

k=1

B(xk, r, t). Proceeding inductively we have a sequence {xnn} of distinct

points in X such that

xn+1 /∈
n⋃
k=1

B(xk, r, t), for n ∈ N

Therefore, {xnn} has no Cauchy subsequence.

Theorem 5.3.3. An L -FMS (X,M, T ) is separable if and only if (X, τM) admits

a precompact L -fuzzy metric.

Proof. Suppose (X,M, T ) is a separable L -FMS. Then (X, τM) is a separable

metrizable space. Therefore, τM admits a compatible precompact metric d (Theo-

rem 4.3 in [15]). We show that the induced L -fuzzy metric Md is precompact.

Let {xn} be a sequence in X. By the precompactness of d, {xn} has a Cauchy sub-

sequence {xnk} in (X, d). Fix r ∈ L\{0L , 1L } and t > 0. Let us choose ε such that

t
t+ε

>L N (r). Then, there exists n◦ ∈ N such that d(xk(n), xk(m)) < ε, for n,m ≥ n◦.

Therefore,

Md(xk(n), xk(m), t) >L
t

t+ ε
>L N (r), for all n,m ≥ n◦

So, {xn} is a Cauchy sequence in the L -FMS (X,Md, T ). By Lemma 5.3.2,

(X,Md, T ) is precompact.

Conversely, suppose (X, τM) admits a compatible precompact L -fuzzy metric M′.

For each n ∈ N, thus, there exists a finite subsetAn ofX such thatX =
⋃
a∈An

B(a,
1

n
,

1

n
).
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Put A =
∞⋃
n=1

An. Then, A is countable. For each x ∈ X, consider a basic neigh-

borhood B(x, 1
m
, 1
m

) of x. Then, there exists a in Am such that x ∈ B(a, 1
m
, 1
m

)

and hence, A is dense in X. Therefore, (X,M′, T ) is separable, i.e., (X, τM) is

separable.

Corollary 5.3.4. Every precompact L -FMS is second countable.

Proof. Proof follows from Theorems 5.2.7 and 5.3.3.

Definition 5.3.5. Let (X,M, T ) be a L -FMS and {xn} ⊆ X. A point x ∈ X

is said to be a cluster point of {xn} if every neighbourhood of x contains infinitely

many points of {xn}.

In other words, we can say that {xn} has a subsequence converging to x in τM.

Lemma 5.3.6. Let (X,M, T ) be an L -FMS. If a Cauchy sequence clusters to a

point x ∈ X, then the sequence converges to x.

Proof. Let {xn} be a Cauchy sequence in (X,M, T ) having a cluster point x ∈ X.

Then there exists a subsequence {xnk} of {xn} such that lim
nk→∞

xnk = x with respect

to τM. This implies, given r ∈ L\{0L , 1L } and t > 0, ∃n◦ ∈ N such that:

M(x, xnk),
t

2
) >L N (s), for each n ≥ n◦ (5.3.1)

where s ∈ L\{0L } satisfies T (N (s),N (s)) >L N (r). Also, ∃n1 ≥ k(n◦) such that:

M(xn, xm,
t

2
) >L N (s), for each n ≥ n1 (5.3.2)

Therefore, from (5.3.1) and (5.3.2) we have for n ≥ max{n◦, n1},

M(xn, x, t) ≥L T (M(xn, xnk ,
t

2
),M(xnk , x,

t

2
))

≥L T (N (s),N (s)) >L N (r), for any r ∈ L\{0L , 1L } and t > 0.

Hence, the Cauchy sequence {xn} converges to x. This completes the proof.
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Theorem 5.3.7. An L -FMS (X,M, T ) is compact if and only if it is precompact

and complete.

Proof. Suppose (X,M, T ) is a compact L -FMS. Then for each r ∈ L\{0L , 1L }

and t > 0, the open cover {B(x, r, t) : x ∈ X} of X has a finite subcover. Hence, X

is precompact. Also, using Theorem 5.3.1, each Cauchy sequence {xn} in X has a

cluster point x ∈ X. By Lemma 5.3.6 {xn} converges to x. Therefore, (X,M, T ) is

complete.

Conversely, let X be precompact and complete. Consider a sequence {xn} in X.

By Lemma 5.3.2, {xn} has a Cauchy subsequence, say {xnk}. As X is complete,

the Cauchy subsequence {xnk} is convergent and thus, {xn} has a cluster point.

Therefore, X is sequentially compact. Since (X, τM) is metrizable (Theorem 5.2.5)

and every sequentially compact metrizable space is compact (using Theorem 5.3.1),

therefore, (X,M, T ) is compact.

Remark 5.3.8. Theorems 5.3.3 and 5.3.7 show that every compact L -FMS is

separable. Also, Theorem 5.3.1 gives that every sequentially compact L -FMS is

precompact.

5.3.2 L F - strongly bounded set

Definition 5.3.9. [36] Let (X,M, T ) be an L -FMS and A ⊆ X. The L -fuzzy

diameter of a set A is defined by:

δA = sup
t>0

inf
x,y∈A

sup
ε<t
M(x, y, ε)

If δA = 1L then A is said to be L F -strongly bounded.

Lemma 5.3.10. [36] The set A ⊆ X is L F -strongly bounded if an only if for

arbitrary negation N (r) and each r ∈ L\{0L , 1L } there exists t > 0 such that

M(x, y, t) >L N (r), for all x, y ∈ A.
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Theorem 5.3.11. [14] Every compact subset A of an L -FNS X is L F -strongly

bounded.

Clearly every compact set A ⊆ X is closed and L F -strongly bounded.

We then prove the following result:

Theorem 5.3.12. Every precompact subset A of an L -FMS (X,M, T ) is L F -

strongly bounded.

Proof. Let A be a precompact subset of X. Fix t > 0 and r ∈ L\{0L , 1L }. As A is

precompact, there exists a finite subset S ⊆ X such that

A ⊆
⋃
a∈S

B(a, r, t)

Let x, y ∈ A. Then x ∈ B(xi, r, t) and y ∈ B(xj, r, t), for some i, j. It gives:

M(x, xi, t) >L N (r) and M(y, xj, t) >L N (r) (5.3.3)

Let α = minM(xi, xj, t) : 1 ≤ i, j ≤ n. Clearly α ∈ L\{0L , 1L }. Also ∃s ∈

L\{0L , 1L } (Remark 1.3.37) such that:

T 2(N (r),N (r), α) >L N (s) (5.3.4)

Thus, (5.3.3), (5.3.4) and (5.3.5) give:

M(x, y, 3t) ≥L T 2(M(x, xi, t),M(xi, xj, t),M(xj, y, t))

≥L T 2(N (r),N (r), α) >L N (s)

for any x, y ∈ A. Hence A is L F -strongly bounded.

Remark 5.3.13. Theorems 5.3.1-5.3.12 establish some relationships among the

topological concepts of compactness, completeness, boundedness, pecompactness,

separability. These properties are fundamental and provide a basic tool to study

the theory of space structure of L -FMS.



81

5.4 Covering factor of an L -fuzzy metric

In this part, we introduce a new concept called “covering factor” in an L -FMS.

Definition 5.4.1. An element ε ∈ L\{0L } is called a covering factor for an open

cover G = {Gi}i∈∧ of a L -FMS (X,M, T ) if for every set A in X with fuzzy

diameter δA >L N (ε) is contained in any Gi in G .

Lemma 5.4.2. Let B(x, r, t) be an open ball of an L -FMS (X,M, T ) with r ∈

L\{0L , 1L } and t > 0. Let A be a subset of X such that δA >L N (s) where

s ∈ L\{0L , 1L } satisfying T (N (s),N (s)) >L N (r). If A intersects B(x, s, t
2
), then

A ⊆ B(x, r, t).

Lemma 5.4.3. Let (X,M, T ) be an L -FMS. If t > 0 and r, s ∈ L\{0L , 1L } such

that T (N (s),N (s)) >L N (r), then B(x, s, t
2
) ⊂ B(x, r, t).

The above two results are straight forward, so we omit the proofs here. The following

result is a generalized form of the Lebesgue’s covering lemma.

Theorem 5.4.4. In a sequentially compact L -FMS with involutive negation, every

open cover has a covering factor.

Proof. Let (X,M, T ) be a sequentially compact L -FMS with a involutive negation

N . Also, let G = {Gα : α ∈
∧
} be an open cover of X. Assume that there exist

sets in X which are not contained in any Gα. Otherwise any ε ∈ L\{0L , 1L } will

work as an covering factor and the result is established.

Let us refer to these sets as “big sets”. Consider such a set A ⊆ X. Let δ′ =

inf{N (δA) : δA is fuzzy diameter of the big set A }. Then, the following cases arise:

Case I: Let δ′ = 1L . It gives: for A ⊂ X with N (δA) <L 1L i.e. δA >L 0L is a

subset of Gα for some α ∈
∧

. Hence each δ ∈ L\{0L } is a covering factor.

Case II: Let δ′ = 0L . By definition of δ′, for a given n ∈ N there exists a big set
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Bn such that N (δBn) <L
1
n
. It gives:

δBn >L N (
1

n
)

As the big set Bn is not contained in any Gα, Bn must contain atleast two elements.

Therefore, 1L >L δBn >L N ( 1
n
).

Construct a sequence {xn} where xn ∈ Bn, for n ∈ N. Since X is sequentially

compact, {xn} has a convergent subsequence converging to some x ∈ X. As X =⋃
α∈

∧Gα, we have:

x ∈ Gβ, for β ∈
∧

(5.4.1)

As Gβ is open in X, there exists r ∈ L\{0L , 1L } and t > 0 such that

B(x, r, t) ⊆ Gβ, r ∈ L\{0L , 1L } and t > 0 (5.4.2)

Choose s ∈ L\{0L , 1L } such that T (N (s),N (s)) >L N (r). By Lemma 5.4.3, we

get B(x, s, t
2
) ⊂ B(x, r, t). Since {xn} has a subsequence converging to x,

xn ∈ B(x, s, t
2
) for infinitely many n. Thus, ∃N such that xN ∈ B(x, s, t

2
). There-

fore,

1

N
<L s⇒ N (

1

N
) >L N (s) (5.4.3)

However, xN ∈ BN and δBN >L N ( 1
N

). This gives δBN >L N (s). By (5.4.2), (5.4.3)

and Lemma 5.4.2, BN ⊆ B(x, r, t) ⊆ Gβ, a contradiction to the assumption. Thus

δ′ 6= 0L .

Therefore, 0L <L δ
′ <L 1L and the element δ = N (δ′) will be the required covering

factor. This completes the proof.

Thus, in view of Theorems 5.3.1, 5.3.7, 5.3.12 and 5.4.4 and Remark 5.3.8, various

compactness criteria of an L -FMS can be interpreted with the help of a covering

factor.
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