
Chapter 1

Introduction

The thesis comprises of five chapters including the introductory chapter. In this

chapter, we have provided a general introduction of the field of study followed by

a brief background of the development of the subject. An overview of the basic

concepts, notions and notations, definitions and results that are relevant to the

work in this thesis is also provided here. A chapter-wise organization for the rest of

the thesis is provided at the end of the chapter.

1.1 General introduction

1.1.1 Sets to Fuzzy sets

The notion of a set is one of the most important one, used frequently in every day

life, as well as in mathematics. In 1666, Leibnitz defined a notion of a set as “any

number of things whatever may be taken simultaneously and yet treated as whole”.

Continued attempts were made to improve the theory of sets.

In crisp set theory, the membership of elements in a set is assessed in binary terms

according to a bivalent conditions: an element either belongs (members) or does not

belong (non-members) to the set. A sharp unambiguous distinction exists between

the members and non-members of the set. However, in many real life problems one

comes across sets that do not exhibit this characteristic. The world surrounding us

is full of uncertainty, the information we obtain from the environment, the notions
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we use and the data resulting from our observation or measurement are, in general,

vague or imprecise. So every formal description of the real world or some of its

aspects is only an approximation and an idealization of the actual state.

In order to deal with the same, a new theory, was introduced by Professor Lotfi A.

Zadeh in 1965 whose objects are called fuzzy sets: sets with boundaries that are not

precise.

As its name implies, the theory of fuzzy sets is basically a theory of graded concepts.

The elements of a fuzzy set have the membership grade which is not a matter of

affirmation or denial but rather a matter of degree to which that individual is similar

or compatible with the concept represented by the fuzzy set.

1.1.2 Fuzzy sets to fuzzy mathematics

Zadeh introduced the theory of fuzzy sets with a view to reconcile mathematical

modeling and human knowledge in various application sciences. A great amount of

literature has appeared around the concept of fuzzy sets in a very wide spectrum of

areas ranging from mathematics and logic to advanced engineering methodologies.

Many applications can be found in various contexts, from medicine to finance, from

human behavior analysis to consumer products, from machine control to computa-

tional linguistics. At the same time, fuzzy sets gained significance in the contempo-

rary studies concerning the logical and set-theoretical foundations of mathematics.

There has been extensive research to develop fuzzy analogues of the theories of cat-

egory theory, topology, functional analysis, algebra, analysis, graph theory, theory

of generalized measure and integrals etc.

General topology was one of the earliest branches of mathematics which applied

fuzzy set theory systematically. The combination and synthesis of ideas, notions

and methods of fuzzy set theory with general topology has resulted in “fuzzy topol-

ogy” as a new branch of mathematics. It was in 1968 that C.L. Chang [6] grafted

the notion of a fuzzy set into general topology and attempted to develop the basic

topological notions for such spaces.
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However due to the presence of stratum structure, it is often difficult to establish a

theory in fuzzy topology or similar branches of fuzzy mathematics. One single no-

tion or concept in classical setting usually leads to several counterparts in the fuzzy

setting. One of such important problems in fuzzy topology which eluded mathe-

maticians for some time is to obtain an appropriate concept of fuzzy metric and

fuzzy norm.

1.1.3 Fuzzy metric and fuzzy norm

The theory of metric spaces and of normed linear spaces is of fundamental impor-

tance in mathematics, physics, computer science, statistics etc. Many problems can

be solved by finding an appropriate metric or norm for making some measurements.

But it is also a well-known fact that, in practice, assigning a fixed number to the

distance between two points is not a precise idea. In many situations the average of

several measurements or an interval is assigned to model the inexactness. To deal

with uncertainties arising in such physical situations, the concept of fuzzy metric

or fuzzy norm may be more suitable than the crisp concepts. It may be noted that

even before the inception of fuzzy set theory, in 1942, M. Menger introduced the

concept of a generalized metric space applying probability distribution function to

the distance between two points. Following him, this space is called a probabilis-

tic (generalized) Menger space. Later, it was proved that Menger spaces are some

special cases of fuzzy normed linear spaces or fuzzy metric spaces. During the last

few decades, the study of fuzzy metric spaces and of fuzzy normed linear spaces

received a significant attention. The objective of these investigations is to study

fuzzy analogues of fundamental concepts and properties of topology and functional

analysis. At the same time one may recall the fascinating applications of the notions

of fuzzy metric and fuzzy norm in quantum particle physics especially in respect of

both string and e∞ theory and also in color image processing techniques [51, 52, 59].

This variety of the fields of application indicates the importance and usefulness of

fuzzy norm and fuzzy metric theory.
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1.2 Background

1.2.1 Fuzzy normed linear spaces

It boggled the minds of researchers as how to define fuzzy norm on a linear space.

In 1984, A. K. Katsaras [39] first introduced the notion of fuzzy seminorm and fuzzy

norm on a vector space. In 1992, C. Felbin [20] offered an alternative definition of

a fuzzy norm on a linear space by assigning a fuzzy real number to each element of

the linear space, using the treatment of fuzzy metric by O. Kaleva and S. Seikkala

[38]. Later, in 2002, J. Xiao and X. Zhu [65] modified this definition by restricting

the definition of fuzzy real numbers to gave a concise as well as general definition

of a fuzzy normed linear space. With this notion of fuzzy norm, fuzzy analogues of

several important concepts of normed linear spaces have been established. Another

development along this line of inquiry took place when in 1994, where S. C. Cheng

and J. N. Mordeson [7] considered a fuzzy norm on a linear space whose associated

metric is of O. Kramosil and J. Michalek type [41]. Following Cheng and Mordeson,

in 2003, T. Bag and S. K. Samanta [3] introduced another notion of fuzzy norm

using the min triangular norm. The novelty of this definition is the validity of a

decomposition theorem for this type of fuzzy norm into a family of crisp norms and

using this decomposition theorem it has been possible to establish many important

results of fuzzy functional analysis. This fuzzy norm was further generalized by I.

Golet [26] in 2007 considering a general t-norm replacing the particular choice of

“min” t-norm. Another generalization has also been made by following the definition

of L -fuzzy set by J. Goguen [25] to give the notion of L -fuzzy normed linear space.

This generalized notion is given by G. Deschrijver et. al [12].

Many authors studied the notions and results of classical functional analysis in fuzzy

normed linear spaces. During the four decades of existence of fuzzy normed linear

spaces, some of the extensive study has been made in the following areas:
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◦ various topological properties determined by a fuzzy norm. For instance, com-

pletion of fuzzy normed linear spaces, completeness of a fuzzy norm, separabil-

ity, completion, convergence of sequences, bases neighborhood, approximation

properties, topological degree theory [2, 18, 20, 21, 44, 46, 59, 63–65, 67, 68, 72].

◦ fixed point theory in fuzzy normed linear spaces along with their applications

[8, 27, 49].

◦ Hyers-Ulam-Rassias stability of functional equations in fuzzy normed linear

spaces [28, 45, 58, 61].

◦ linear operators in fuzzy normed linear spaces; boundedness, continuity with

different measures. fundamental theorems of functional analysis: open map-

ping theorem, closed graph theorem, Hahn-Banach theorem, bounded inverse

theorems etc. in fuzzy normed linear spaces [4, 7, 34, 35, 37, 60, 62, 68–70].

◦ nonlinear operators in fuzzy normed linear spaces [17, 71].

◦ fuzzy topology induced by fuzzy normed linear spaces [9, 48, 70].

1.2.2 Fuzzy metric spaces

The notion of fuzzy metric spaces appeared in the literature even before the notion

of fuzzy normed linear spaces. In 1975, O. Kramosil and J. Michalek [41] introduced

the notion of fuzzy metric by extending the concept of the probabilistic metric space

to the fuzzy situation. Later, in 1994, A. George and P. Veeramani [23] modified

this definition by imposing some stronger conditions on the fuzzy metric to gave a

consistent definition of a fuzzy metric. They were able to obtain a Hausdorff topology

on these spaces and studied various important topological properties of the fuzzy

metric spaces. In 1984, O. Kaleva and S. Seikkala [38] generalized the notion of the

metric space by setting the distance between two points to be a non-negative fuzzy

real number. Using ordering and addition in the set of fuzzy numbers they have

obtained a triangle inequality which is analogous to the ordinary triangle inequality.
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Kaleva and Seikkala also proved that each Menger probabilistic metric space could

be considered as a fuzzy metric space. Some other definitions of fuzzy metric were

given by M. A. Erceg [16], Z. K. Deng [10], M. Grabiek [29]. In 2007, R. Saadati,

A. Razani and H. Adibi [53] gave a generalized notion of a fuzzy metric spaces due

to George and Veeramani using L -fuzzy sets. In L -fuzzy metric spaces, perhaps

the most important generalization is the consideration of an order structure beyond

the unit interval [0, 1]. This way, an L -fuzzy metric space offers a more general

framework to generalize the topological concepts in fuzzy setting than the fuzzy

metric spaces.

The theory of L -fuzzy metric space is of relatively recent origin than the theory of

fuzzy metric spaces. It is observed that most of the work on L -fuzzy metric spaces

hovered around the study of fixed point theorem and its applications [1, 33, 36, 53,

54, 57, 58]. Few attempts have also been made to study topological properties of

L -fuzzy metric spaces [14, 18, 53, 56].

1.3 Preliminaries

In this section we provide the definitions of the fuzzy normed linear spaces and L -

fuzzy metric spaces. For brevity, we shall use FNLS to denote a fuzzy normed linear

space and L -FMS to denote an L -fuzzy metric space.

In the following subsections, we have stated the definitions and results used in the

thesis.

Throughout the thesis, we denote the set of all real numbers by R and set of all

positive real numbers by R+.

1.3.1 Fuzzy normed linear spaces

The fuzzy norms given by Felbin [20] and Xiao and Zhu [65] are based on non-

negative fuzzy real numbers. While there are several versions of fuzzy real numbers,

we consider those in the sense of Xiao and Zhu, which are as follows:
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Definition 1.3.1. [65] A mapping η : R→ [0, 1] is called a fuzzy real number (fuzzy

interval), whose α-level set is denoted by [η]α = {t : η(t) ≥ α}, if it satisfies the

following:

(N1) There exists t◦ ∈ R such that η(t◦) = 1.

(N2) for each α ∈ (0, 1]; [η]α = [η1α, η
2
α], where −∞ < η1α ≤ η2α < +∞.

Remark 1.3.2. This definition differs from the notion of fuzzy real number used

by Felbin [20], which permits the cases η1α = −∞ and η2α = +∞.

The set of all fuzzy real numbers is denoted by F . To each r ∈ R, we can consider

r̄ ∈ F defined by r̄(t) = 1 if t = r and r̄(t) = 0 if t 6= r. Thus the set of reals R can

be embedded in F .

Further, η is called convex if η(t) ≥ min(η(s), η(r)) where s ≤ t ≤ r.

If there exists a t◦ ∈ R such that η(t◦) = 1, then η is called normal.

Lemma 1.3.3. [65] η ∈ F if and only if η : R→ [0, 1] satisfies the following:

(1) η is normal, convex and upper semi-continuous.

(2) lim
t→−∞

η(t) = lim
t→+∞

η(t) = 0.

As α-level sets of a convex fuzzy real number is an interval, Dubois and Prade [13]

argued to call this as a fuzzy interval.

A partial ordering “ � ” in F is defined by η � δ if and only if a1α ≤ a2α and b1α ≤ b2α

for all α ∈ (0, 1] where [η]α = [a1α, b
1
α] and [δ]α = [a2α, b

2
α] [20]. The strict inequality

in F is defined by η ≺ δ if and only if a1α < a2α and b1α < b2α for each α ∈ (0, 1].

Definition 1.3.4. [65] Let η ∈ F . Then η is called a positive fuzzy real number if

for all t < 0, η(t) = 0 . The set of all positive fuzzy real numbers is denoted by F+.

Remark 1.3.5. [65] As η ∈ F+ is upper semi-continuous, it follows that η(t) = 0,

∀t ≤ 0.
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Lemma 1.3.6. [65] Let η ∈ F . Then η ∈ F+ if and only if η1α ≥ 0 for each

α ∈ (0, 1].

Remark 1.3.7. As η2α ≥ η1α, thus Lemma 1.3.6 gives that η2α ≥ 0, for each α ∈ (0, 1].

The arithmetic operations ⊕, 	 and � in F are defined as by Mizumoto and Tanaka

[50]. For η, δ ∈ F :

(η ⊕ δ)(t) = sup
s∈R

min{η(s), δ(t− s)}, t ∈ R.

(η 	 δ)(t) = sup
s∈R

min{η(s), δ(s− t)}, t ∈ R.

(η � δ)(t) = sup
s∈R,s 6=0

min{η(s), δ(
t

s
)}, t ∈ R.

For η ∈ F and δ(> 0̄) ∈ F+, Bag and Samanta [4] also defined an operation � as:

(η � δ)(t) = sup
s∈R

min{η(st), δ(s)}, t ∈ R.

Felbin proved the following result:

Proposition 1.3.8. [20] Let η, δ ∈ F and [η]α = [a1α, b
1
α], [δ]α = [a2α, b

2
α], α ∈ (0, 1].

Then:

(a) [η ⊕ δ]α = [a1α + a2α, b
1
α + b2α],

(b) [η 	 δ]α = [a1α − b2α, b1α − a2α],

(c) [η � δ]α = [a1αa
2
α, b

1
αb

2
α],

(d) [1̄� δ]α = [ 1
b2α
, 1
a2α

], a2α > 0,∀α ∈ (0, 1].

Kaleva and Seikkala proved the following result which allows us to generate a fuzzy

real number from a family of closed intervals.

Lemma 1.3.9. [38] Let [aα, bα], 0 < α ≤ 1, be a given family of nonempty intervals.

If:
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(i) [aα1 , bα1 ] ⊃ [aα2 , bα2 ], for all 0 < α1 ≤ α2,

(ii) [ lim
k→∞

aαk , lim
k→∞

bαk ] = [aα, bα], whenever αk is an increasing sequence in (0, 1]

converging to α,

then the family [aα, bα] represents α-level sets of a fuzzy number. Conversely, if

[aα, bα], 0 < α ≤ 1, are the α-level sets of a fuzzy real number then the conditions

(i) and (ii) are satisfied.

Bag and Samanta proved the following result on fuzzy real numbers.

Proposition 1.3.10. [4] Let {[aα, bα];α ∈ (0, 1]} be a family of nested bounded

closed intervals. Let the function η : R → [0, 1] be defined by η(t) =
∨
{α ∈ (0, 1] :

t ∈ [aα, bα]}. Then η is a fuzzy real number. The α- level sets of η are denoted by

[η]α = [η−α , η
+
α ], α ∈ (0, 1].

Here η is the fuzzy real number generated by the family of nested bounded closed

intervals {[aα, bα];α ∈ (0, 1]}.

Following is the definition of a fuzzy norm on a linear space as given by Xiao and

Zhu :

Definition 1.3.11. [65] Let X be a vector space over R and the mappings L,R

(respectively, left norm and right norm): [0, 1] × [0, 1] −→ [0, 1] be symmetric, non

decreasing in both arguments and satisfying L(0, 0) = 0 and R(1, 1) = 1. Let ‖ . ‖

be a mapping from X into F+.

Write: [‖ x ‖]α = [‖ x ‖1α, ‖ x ‖2α], for x ∈ X, 0 < α ≤ 1. Then the quadruple

(X, ‖ . ‖, L,R) is called a fuzzy normed linear space (briefly, FNLS) and ‖ . ‖ is a

fuzzy norm, if the following axioms are satisfied:

(F1) ‖ x ‖= 0̄ if and only if x = θ, θ is the zero element of X,

(F2) ‖ rx ‖=| r |‖ x ‖, x ∈ X, r ∈ R,
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(F3) for all x, y ∈ X

(F3L) ‖ x+ y ‖ (s+ t) ≥ L(‖ x ‖ (s), ‖ y ‖ (t))

whenever s ≤‖ x ‖11, t ≤‖ x ‖11 and s+ t ≤‖ x+ y ‖11,

(F3R) ‖ x+ y ‖ (s+ t) ≤ R(‖ x ‖ (s), ‖ y ‖ (t))

whenever s ≥‖ x ‖11, t ≥‖ x ‖11 and s+ t ≥‖ x+ y ‖11.

Example 1.3.12. Let (X, ‖ . ‖C) be an ordinary normed linear space. Then a fuzzy

norm ‖ . ‖ on X can be defined as

‖ x ‖ (t) =


0, 0 ≤ t ≤ a ‖ x ‖C or t ≥ b ‖ x ‖C,

t
(1−a)‖x‖C

− a
1−a , a ‖ x ‖C≤ t ≤‖ x ‖C,

−t
(b−1)‖x‖C

+ b
b−1 , ‖ x ‖C≤ t ≤ b ‖ x ‖C

where ‖ x ‖C is the norm of x( 6= θ), 0 < a < 1 and 1 < b < ∞. For x = θ,

define ‖ x ‖= 0̄. Hence (X, ‖ . ‖, L,R) is an FNLS with R = max and L = min.

Remark 1.3.13. Using Lemma 1.3.6 and F1 (refer to Definition 1.3.11), in an

FNLS (X, ‖ . ‖, L,R), we have for each α ∈ (0, 1], inf
x∈X
x 6=θ

‖ x ‖1α> 0.

Felbin [20] proved that if L = min and R = max, then the triangular inequality

(F3) in Definition 1.3.11 is equivalent to

‖ x+ y ‖�‖ x ‖ ⊕ ‖ y ‖ .

In this case, the FNLS X is called standard FNLS. Definition 1.3.11 can, therefore,

be restated as follows:

Definition 1.3.14. [4] Let X be a linear space over R. Let ‖ . ‖: X → F+ be a

mapping satisfying:

(i) ‖ x ‖= 0̄ if and only if x = θ

(ii) ‖ rx ‖=| r |‖ x ‖, x ∈ X, r ∈ R

(iii) for all x, y ∈ X, ‖ x+ y ‖�‖ x ‖ ⊕ ‖ y ‖
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Remark 1.3.15. Clearly ‖ . ‖iα; i = 1, 2 are crisp norms on X for each α ∈ (0, 1].

Thus every normed linear space can be considered as a particular case of an FNLS

with R = max and L = min.

Also, each classical norm ‖ . ‖ on a linear space X induces a fuzzy norm ‖ . ‖N

with right norm and left norm as R = max and L = min respectively, as follows:

‖ x ‖N (t) =

 1, t =‖ x ‖,

0, t 6=‖ x ‖;
The α-level sets of ‖ . ‖N are given by [‖ x ‖N ] = [‖ x ‖, ‖ x ‖], x ∈ X.

Lemma 1.3.16. [65] Let (X, ‖ . ‖, L,R) be an FNLS. Then R ≤ max⇒ lim
a→0+

R(a, b) ≤

b, for all b ∈ (0, 1]⇒ lim
a→0+

R(a, a) = 0.

Lemma 1.3.17. [67] Let (X, ‖ . ‖, L,R) be an FNLS such that R satisfies (R): for

each α ∈ (0, 1], there exists β ∈ (0, α] such that R(β, γ) < α, ∀γ ∈ (0, α), then ‖ . ‖2α

is continuous at each x ∈ X.

Lemma 1.3.18. [67] Let (X, ‖ . ‖, L,R) be an FNLS. Then (R)⇔ lim
a→0+

R(a, b) ≤ b.

Proof. Suppose (R) holds. Then for each b ∈ (0, 1] there exists β = b ∈ (0, b] such

that R(β, y) ≤ b for y = β/2, i.e., R(b, b/2) ≤ b. Thus 0 < R(a, b) ≤ R(b, b/2) ≤ b

for all a ∈ (0, b/2]. Hence lim
a→0+

R(a, b) ≤ b and thus, (R)⇒ lim
a→0+

R(a, b) ≤ b.

Conversely it is clear that lim
a→0+

R(a, b) ≤ b⇒ (R).

Using Lemma 1.3.17 and Lemma 1.3.18, we have the following: if right norm R

satisfies lim
a→0+

R(a, b) ≤ b, then ‖ . ‖2α is continuous at each x ∈ X.

Lemma 1.3.19. [65] Let (X, ‖ . ‖, L,R) be an FNLS.

(1) If L ≥ min, then (F3R) ⇒ ‖ x + y ‖1α≥‖ x ‖1α + ‖ y ‖1α for α ∈ (0, 1] and

x, y ∈ X.

(2) If R ≤ max, then (F3R) ⇒ ‖ x + y ‖2α≤‖ x ‖2α + ‖ y ‖2α for α ∈ (0, 1] and

x, y ∈ X.
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Lemma 1.3.20. [65] Let (X, ‖ . ‖, L,R) be an FNLS, lim
a→0+

R(a, a) = 0. Then (F3R)

⇒ for each α ∈ (0, 1] there is α◦ ∈ (0, α] such that ‖ x+ y ‖2α≤‖ x ‖2α◦ + ‖ y ‖2α◦ for

each x, y ∈ X.

In our work, we have used the definitions and results of Felbin [20], Bag and Samanta

[4] and Xiao and Zhu [65] while maintaining their respective notations as far as

possible.

Definition 1.3.21. [20] Let (X, ‖ . ‖, L,R) be an FNLS. Let {xn} be a sequence in

X. The sequence {xn} is said to be convergent to x ∈ X, denoted by lim
n→∞

xn = x, if

lim
n→∞

‖ xn − x ‖1α= lim
n→∞

‖ xn − x ‖2α= 0 for each α ∈ (0, 1].

The sequence {xn} is called a Cauchy sequence if lim
m,n→∞

‖ xm − xn ‖1α= lim
m,n→∞

‖

xm−xn ‖2α= 0 for every α ∈ (0, 1]. X is said to be complete if every Cauchy sequence

in X is convergent.

Theorem 1.3.22. [20] In an FNLS (X, ‖ . ‖, L,R), every convergent sequence is a

Cauchy sequence.

Theorem 1.3.23. [65] An FNLS (X, ‖ . ‖, L,R) with lim
a→0+

R(a, a) = 0 is a Haus-

dorff topological vector space whose neighborhood base of origin θ is {N(ε, α) : ε >

0, α ∈ (0, 1]}. For each ε > 0, α ∈ (0, 1], the set N(ε, α) = {x :‖ x ‖2α< ε}.

Xiao and Zhu gave the following definitions considering a right norm R satisfying

lim
a→0+

R(a, a) = 0.

Definition 1.3.24. [65] Let (X, ‖ . ‖, L,R) be an FNLS. Consider a set A ⊆ X and

x◦ ∈ X.

The point x◦ is called a point of closure of A if {x◦ + N(α, α)} ∩ A 6= φ for every

α ∈ (0, 1]. Let Ā be the set of all points of closure of A; A is called fuzzy closed if

Ā = A. Clearly, Ā is fuzzy closed.

The set A is called a fuzzy bounded if for each α ∈ (0, 1] there exists M = M(α) > 0
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such that A ⊆ N(M,α).

The point x◦ is called an interior point of A if there exists N(ε◦, α◦) such that

x◦ + N(ε◦, α◦) ⊆ A. Int A denotes the set of all interior points of A; A is called

fuzzy open if Int A=A.

Lemma 1.3.25. [68] Let (X, ‖ . ‖, L,R) be an FNLS and A ⊆ X. Then A is a

fuzzy bounded set in X iff sup
x∈A
‖ x ‖2α< +∞, for each α ∈ (0, 1].

Lemma 1.3.26. [65] Let (X, ‖ . ‖, L,R) be an FNLS with lim
a→0+

R(a, a) = 0. Then

for A ⊆ X, x ∈ Ā if and only if there exists {xn} ⊆ A such that lim
n→∞

xn = x.

Fang and Song [17] proved that a subset A of X is fuzzy bounded if and only if

∃M > 0, such that for each α ∈ (0, 1], sup
x∈A
‖ x ‖2α< M .

Xiao and Zhu proved the following equivalent condition:

Theorem 1.3.27. [65] Let (X, ‖ . ‖, L,R) be an FNLS with lim
a→0+

R(a, a) = 0. Then

A ⊆ X is perfectly normal and paracompact, and the following assertions are equiv-

alent:

(1) A is compact (i.e., every fuzzy open cover of A has a finite subcover).

(2) A is countably compact (i.e., every countable fuzzy open cover of A has a finite

subcover).

(3) A is sequentially compact (i.e., every sequence of points of A has subsequence

converging to a point of A).

Theorem 1.3.28. [65] Let (X, ‖ . ‖, L,R) be an FNLS with lim
a→0+

R(a, a) = 0,

A ⊆ X. Then (1)⇒ (2)⇒ (3), where

(1) A is sequentially compact.

(2) A is precompact.
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(3) A is fuzzy bounded.

Theorem 1.3.29. [65] Let (X, ‖ . ‖, L,R) be a finite dimensional FNLS with

lim
a→0+

R(a, a) = 0 and A ⊆ X. Then,

(1) A is complete if and only if A is fuzzy closed.

(2) A is compact if and only if A is fuzzy bounded and fuzzy closed.

From the above results, one can see that an FNLS which is also a topological vector

space, is rich in topological properties according to the change from weak right norm

R to strong right norm R.

Remark 1.3.30. The right norm R and left norm L have great significance in the

theory of FNLS. In this context we refer to the work done by Xiao and Zhu [65].

Therefore while generalizing the results in FNLS, the choice of right and left norms

need to be specific according to the context. In our study we have attempted to

obtained the results with general right and left norms, whenever possible.

1.3.2 L -fuzzy metric space

We shall assume all lattices L = (L,≤L) to be complete. A complete lattice L is

a partially ordered set in which all subsets have both a supremum (join) and an

infimum (meet). Let 0L = inf L and 1L = supL, for a lattice L .

For example, the pair ([0, 1],≤) is a complete lattice where ≤ stands for usual

comparison of real numbers. Let us denote this pair as (L′,≤L′), where L′ = [0, 1]

denotes the set and ≤L′ is the usual comparison.

Lemma 1.3.31. [11] Consider the set L∗ and operation ≤L∗ on L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1}, and

(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1, and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗. Then

(L∗,≤L∗) is a complete lattice.
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Definition 1.3.32. [25] An L -fuzzy set is defined as a mapping A : U → L, where

U is a non empty set called a universe. For each u in U , A(u) represents the degree

(in L) to which u satisfies A.

Triangular norms play a very important part in the theory of L -fuzzy metric spaces;

as the right norm and left norm in case of FNLSs. Classically, a triangular norm

T on ([0, 1],≤) is a mapping T : [0, 1]2 → [0, 1] which is increasing, commutative,

associative and satisfies T (x, 1) = x, for all x ∈ [0, 1], called the boundary condition.

In case of any lattice L , irrespective of its completeness, this definition can be

generalized as follows.

Definition 1.3.33. [53] A triangular norm (t-norm) on L is a mapping T : L2 → L

satisfying the following conditions:

(i) boundary condition: T (x, 1L ) = x, ∀x ∈ L

(ii) commutativity: T (x, y) = T (y, x), ∀x, y ∈ L

(iii) associativity: T (x, T (y, z) = T (T (x, y), z), ∀x, y, z ∈ L

(iv) monotonicity: x ≤L x′ and y ≤L y′ ⇒ T (x, y) ≤L T (x′, y′), ∀x, x′, y, y′ ∈ L

Definition 1.3.34. [53] A t-norm T on L is said to be continuous if for any x, y ∈

L and any sequences {xn} and {yn} in L such that lim
n→∞

xn = x and lim
n→∞

yn = y, we

have: lim
n→∞

T (xn, yn) = T (x, y).

Example 1.3.35. (1) T (x, y) = min(x, y) and (2) T (x, y) = xy are two continuous

t-norms on [0, 1].

A t-norm can also be defined recursively as an (n + 1)-ary operation (n ∈ N) by

T 1 = T and T n(x1, ..., xn+1) = T (T n−1(x1, ..., xn), xn+1) for n ≥ 2 and xi ∈ L.

Definition 1.3.36. [53] A negation on a lattice L is a order reversing mapping

N : L → L satisfying N (0L ) = 1L and N (1L ) = 0L . If N (N (x)) = x, for all

x ∈ L, then N is called an involutive negation.
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The standard negation Ns on ([0, 1],≤) is defined as Ns(x) = 1− x, for x ∈ [0, 1].

Remark 1.3.37. In our study, we assume that T is a continuous t-norm on lattice

L such that for every µ ∈ L\{0L , 1L }, there is a λ ∈ L\{0L , 1L } such that

T n−1(N (λ), ...,N (λ)) >l N (µ).

The following definition of an L -FMS is due to Saadati et al.

Definition 1.3.38. [53] The 3-tuple (X,M, T ) is said to be an L -fuzzy metric

space (briefly, L -FMS) if X is an arbitrary (non-empty) set, T is a continuous

t-norm on L and M is an L -fuzzy set on X2 × (0,+∞) satisfying the following

conditions for every x, y, z in X and t, s in (0,+∞):

(FM1) M(x, y, t) >L 0L ,

(FM2) M(x, y, t) = 1L for all t > 0 if and only if x = y,

(FN3) M(x, y, t) =M(y, x, t),

(FM4) T (M(x, y, t),M(y, z, s)) ≤LM(x, z, t+ s),

(FM5) M(x, y, .) : (0,+∞)→ L is continuous.

HereM is called an L -fuzzy metric. The fuzzy metricM(x, y, t) can be considered

as the degree of nearness between x and y with respect to t.

Example 1.3.39. [14] Let (X, d) be a metric space. Define T (a, b) = ab, for all

a, b ∈ L′ and let L be an L -fuzzy set defined as: for all t, h,m, n ∈ R+

L (x, y, t) =
htn

htn +md(x, y)
(1.3.1)

Then (X,L , T ) is an L -FMS. If h = m = n = 1, then (1.3.1) gives:

L (x, y, t) =
t

t+ d(x, y)
(1.3.2)
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In this case (X,L , T ) is called the standard L -FMS [23]. Let us denote the L -

fuzzy metric by Ld. Hence every metric induces an L -fuzzy metric.

Lemma 1.3.40. [14] Let (X,L , T ) be an L -FMS. Then, L (x, y, t) is nondecreas-

ing with respect to t, for all x, y ∈ x.

Let (X,M, T ) be an L -FMS. The following definitions are due to Saadati [56].

For t ∈ (0,+∞), the open ball B(x, r, t) with center x ∈ X and radius r ∈

L\{0L , 1L } is defined as:

B(x, r, t) = {y ∈ X :M(x, y, t) >L N (r)}

A subset A ⊆ X is said to be open if for each x ∈ A, there exist t > 0 and

r ∈ L\{0L , 1L } such that B(x, r, t) ⊆ A. Let τM denotes the family of all open

subsets of X. Then τM is a topology (in the classical sense) on X induced by the

L -fuzzy metric M.

Proposition 1.3.41. [56] In an L -FMS (X,M, T ), {B(x, 1
k
, 1
k
) : k ∈ N} is a

countable local base for each x ∈ X. Hence the topology τM is first countable.

Definition 1.3.42. [53] Let (X,L , T ) be an L -FMS. A sequence {xn} ⊂ X is

called a Cauchy sequence if for each ε ∈ L\{0L } and t > 0, there exist n0 ∈ N such

that: for all m ≥ n ≥ n0 (n ≥ m ≥ n0)

L (xn, xm, t) >l N (ε)

The sequence {xn} is said to be convergent to x ∈ X, denoted by xn
M−→ x, if

L (xn, x, t) = L (x, xn, t)→ 1L as n→∞ for every t > 0.

An L -FMS is said to be complete iff every cauchy sequence is convergent.

Theorem 1.3.43. [14] Every L -FMS (X,M, T ) is Hausdorff.

Definition 1.3.44. [14] An L -FMS (X,M, T ) is called precompact if for each

r ∈ L\{0L , 1L } and t > 0, ∃ a finite set A ⊂ X such that X = ∪a∈AB(a, r, t). In
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this case, M is said to be precompact L -fuzzy metric on X.

An L -fuzzy metric is called compact if (X, τM) is a compact topological space.

A ⊆ X is called countably compact if every countable open cover of A has finite

subcover.

A ⊆ X is called sequentially compact if every sequence in A has a subsequence

converging to a point of A.

Remark 1.3.45. For our study we have considered the fuzzy norm given by Felbin

[20], where as the notion of the L -fuzzy metric is in accordance to the fuzzy norm

given by Bag and Samanta, an approach different from Felbin’s approach. However,

all these notions were proved to be interrelated [5]. In our work, we choose two

different approaches of the two fundamental topological structures, i.e., norm and

metric in the fuzzy setting. It is expected to provide a better understanding of the

variation in the classical concepts of topology and of functional analysis in the fuzzy

framework.

1.4 Organization of the thesis

There are five chapters in this thesis including the introductory chapter.

Chapter 2 is dedicated to the study linear operators in FNLSs. Linear operators play

an important role in functional analysis. First we discuss and compare different ap-

proaches to fuzzy boundedness of linear operators. We then trace the interrelations

between these approaches with an aim to provide a unified framework for the study

of linear operators theory in fuzzy setting. The space of strongly fuzzy bounded

operators is probed for its completeness. Further, we obtain few interesting results

on extension and inverse of linear operators in the FNLSs.

Chapter 3 is devoted to the study of fuzzy compact operators in FNLSs. We study

boundednes of fuzzy compact operators with respect to the different notions of fuzzy
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boundedness. Fuzzy compact operators are also examined in the setting of finite di-

mensional FNLSs. A generalized form of Riesz’s Lemma is obtained in the setting

of FNLSs. Subject to specific condition, the completeness of the space of fuzzy

compact operators is also established.

Chapter 4 contains several topological characteristics of FNLSs. We study the vec-

tor topology induced by a fuzzy norm. The notion of Schauder basis is developed in

FNLSs. The completeness of the space of convergent sequences in a complete FNLS

ia also examined in this chapter.

In Chapter 5, we study the L -FMS to characterize the topology generated by an L -

fuzzy metric. Using the notions of precompact and sequentially compact L -FMSs,

a relationship between compact and complete L -fuzzy metric in terms of precom-

pactness is obtained. Subsequently, a generalized form of the Lebesgue covering

lemma for the sequentially compact L -fuzzy metric spaces is established.
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