
Chapter 2

Linear operators in fuzzy normed
linear spaces

2.1 Introduction

Linear operators are of great importance in classical functional analysis. In FNLSs

too, linear operators have evolved during the last few decades. Many authors have

contributed to the study of operators in FNLSs and their applications. We refer

to the work of Sadeqi and Kia [59] and the references listed there for details. The

authors used the notion of operators between the FNLS C[a, b] of all bounded se-

quences on the closed unit ball [a, b] and the n-dimensional FNLS Rn in an image

processing application.

In this chapter, we explore linear operators and establish several results in an FNLS

as described in the following subsections.

2.2 Boundedness of linear operators in FNLSs

One of the fundamental aspects of a linear operator in classical functional analysis is

its boundedness. In the classical case, a linear operator T from a normed linear space

1The results of Section 2.2 and 2.3 of this chapter have been accepted for publication in New
Mathematics and Natural Computation, World Scientific (2019).
The results of Section 2.4 of this chapter have been published in the form of an article in Annals
of Fuzzy Mathematics and Informatics (2017) .
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X into a normed linear space Y is bounded if and only if it maps every bounded

subset in X to a bounded set in Y . Fuzzy boundedness of linear operators, on

the other hand, in the fuzzy setting does not follow similar equivalence in general.

Usually these equivalent conditions give rise to different notions of fuzzy bounded

linear operators. As a result, various notions of fuzzy bounded linear operators are

found in literature.

2.2.1 Different notions of fuzzy boundedness and fuzzy con-

tinuity

In this section, we provide the different notions of fuzzy bounded linear operators

and fuzzy continuous linear operators in FNLSs that are found in the literature.

One of the earlier definitions of fuzzy bounded linear operators in FNLSs is given

by Felbin in 1999.

Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be two FNLSs.

Definition 2.2.1. [22] The linear operator T : X → Y is said to be fuzzy bounded

if there exists a fuzzy real number η ∈ F+, η � 0̄, bα <∞ for every α ∈ (0, 1], where

[η]α = [aα, bα] such that, ∀x ∈ X:

‖ Tx ‖� η� ‖ x ‖ (2.2.1)

Earlier, in 1998, Itoh and Chō gave the following definition.

Definition 2.2.2. [34] The linear operator T : X → Y is called a fuzzy bounded

operator if there exists a fuzzy number K � 0̄ (K ∈ F+) with sup{K2
α|α ∈ (0, 1]} <

∞, such that

(a) whenever s ≤‖ x ‖11, t ≤ K1
1 and st ≤‖ Tx ‖11,

‖ Tx ‖ (st) ≥ min(‖ x ‖ (s), K(t)) and

(b) whenever s ≥‖ x ‖11, t ≥ K1
1 and st ≥‖ Tx ‖11,

‖ Tx ‖ (st) ≤ max(‖ x ‖ (s), K(t))
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where [K]α = [K1
α, K

2
α] and [‖ Tx ‖]α = [‖ Tx ‖1α, ‖ Tx ‖2α]

However, in the same paper, the authors proved that the inequalities (a) and (b) in

Definition 2.2.2 are equivalent to the inequality:

‖ Tx ‖� K� ‖ x ‖,∀x( 6= θ) ∈ X. (2.2.2)

This is similar to (2.1.1). Therefore definition by Felbin (Definition 2.2.1) and

definition by Itoh and Chō (Definition 2.2.2) are the same. In both these cases

the right norm R and left norm L are taken as R = max and L = min.

In 2003, Xiao and Zhu defined another type of fuzzy bounded linear operators, using

general right and left norms instead of the standard right and left norms. We refer

to this notion as XZ-bounded linear operators.

Definition 2.2.3. [66] The linear operator T : X → Y is called XZ-bounded if T

maps fuzzy bounded subsets of X into fuzzy bounded subsets of Y .

Later, in 2008, Bag and Samanta defined two types of fuzzy boundedness of a linear

operator, viz., strongly fuzzy bounded linear operator and weakly fuzzy bounded

linear operator.

Definition 2.2.4. [4] A linear operator T : X → Y is said to be strongly fuzzy

bounded if there exists k > 0 such that:

‖ Tx ‖ � ‖ x ‖� k̄,∀x(6= θ) ∈ X. (2.2.3)

Definition 2.2.5. [4] A linear operator T : X → Y is said to be weakly fuzzy

bounded if there exists a fuzzy interval η ∈ F+, η > 0̄ such that:

‖ Tx ‖ � ‖ x ‖� η,∀x(6= θ) ∈ X. (2.2.4)

Remark 2.2.6. Bag and Samanta proved that every strongly fuzzy bounded linear

operator is weakly fuzzy bounded. They provided an example to show that converse

does not hold ([4], Example 4.2).
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In literature, one can find various other notions of boundedness of linear operators

in fuzzy setting. However most of the other notions fall into one of the notions

mentioned above.

Similar to fuzzy boundedness, there are also various notions of fuzzy continuous

linear operator in FNLSs. Xiao and Zhu and Itoh and Chō gave similar definitions

of fuzzy continuous linear operators with right norm R satisfying lim
a→0+

R(a, a) = 0.

Definition 2.2.7. [34, 65] A linear operator T : X → Y is said to be fuzzy norm

continuous if lim
n→∞

xn = x implies lim
n→∞

Txn = Tx, for arbitrary sequence {xn} ∈ X.

Bag and Samanta defined two types of continuity, which are strongly fuzzy continuity

and weakly fuzzy continuity.

Definition 2.2.8. [4] The linear operator T : X → Y is said to be strongly fuzzy

continuous at x ∈ X if for a given ε > 0, there exists δ > 0 such that

‖ Tx− Ty ‖2α< ε,whenever ‖ x− y ‖1α< δ,∀α ∈ (0, 1].

If T is strongly fuzzy continuous at all points of X, then T is said to be strongly

fuzzy continuous on X.

Definition 2.2.9. [4] The linear operator T : X → Y is said to be weakly fuzzy

continuous at x ∈ X if for a given ε > 0, there exists δ � 0̄ such that for [δ]α =

[δ1α, δ
2
α] and α ∈ (0, 1]

‖ Tx− Tx◦ ‖1α< ε whenever ‖ x− x◦ ‖2α< δ2α, and

‖ Tx− Tx◦ ‖2α< ε whenever ‖ x− x◦ ‖1α< δ1α.

Bag and Samanta further proved the following:

Theorem 2.2.10. [4] A linear operator T : X → Y is strongly(weakly) fuzzy

bounded if and only if T is strongly (weakly) fuzzy continuous.

Hence every strongly fuzzy continuous operator T is weakly fuzzy continuous. In

2010, Hasankhani et al. proposed another notion of continuous operators, namely

strongly continuous linear operators.
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Definition 2.2.11. [31] A linear operator T : X → Y is said to be strongly con-

tinuous if for ε > 0, there exists δ � 0̄ such that if ‖ x ‖2α< δ1α, ‖ Tx ‖2α< ε and if

‖ x ‖1α< δ2α, ‖ Tx ‖1α< ε, for α ∈ (0, 1] and x ∈ X.

Hasankhani et al. obtained the following equivalent conditions.

Theorem 2.2.12. [31] A linear operator T is fuzzy bounded if and only if T strongly

continuous.

Theorem 2.2.13. [31] If T : X → Y is fuzzy bounded then, T is fuzzy norm

continuous.

With a general right norm R satisfying lim
a→0+

R(a, a) = 0, Xiao and Zhu proved the

following result:

Theorem 2.2.14. [66] A linear operator T : X → Y is XZ-bounded if and only if

T is fuzzy norm continuous.

Combining Theorems 2.2.13 and 2.2.14 we get the following result:

Theorem 2.2.15. If T : X → Y is fuzzy bounded, then T is XZ-bounded.

Remark 2.2.16. Fuzzy boundedness is not equivalent to fuzzy norm continuity.

We refer to Example 6.2 in [31] which shows that fuzzy norm continuity does not

imply fuzzy boundedness.

In view of Theorems 2.2.13 and 2.2.14 and Remark 2.2.16, we can conclude that

XZ- boundedness (refer to Definition 2.2.3) is, therefore, not equivalent to fuzzy

boundedness (refer to Definition 2.2.1) of a linear operator.

Remark 2.2.17. The right norm and left norm, in the above discussion, satisfy

R ≤ max and L ≥ min.

Remark 2.2.18. Despite the use of the same notation ‖ . ‖ for the fuzzy norms on

X as well as Y , it may be mentioned that these are different in general.
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2.2.2 Main results

In the sequel, we undertake a comparative study on the boundedness and continuity

of linear operators in FNLSs. We shall use the right norm R ≤ max and the left

norm L ≥ min, unless otherwise specified.

Theorem 2.2.19. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs and T : X → Y

be a linear operator. If T is strongly fuzzy bounded, then T is fuzzy norm continuous.

Proof. Let lim
n→∞

xn = x. Therefore, lim
n→∞

‖ xn − x ‖1α= lim
n→∞

‖ xn − x ‖2α= 0. As T is

strongly fuzzy bounded, there exists k > 0 such that ‖ Txn−Tx ‖ � ‖ xn−x ‖� k̄.

Hence:

‖ Txn − Tx ‖2α≤ k ‖ xn − x ‖1α and ‖ Txn − Tx ‖1α≤ k ‖ xn − x ‖2α

Thus, we have lim
n→∞

‖ Txn − Tx ‖1α= lim
n→∞

‖ Txn − Tx ‖2α= 0 ⇒ lim
n→∞

Txn = Tx.

Therefore, T is fuzzy norm continuous.

Corollary 2.2.20. A strongly fuzzy bounded linear operator T from X to Y , is

XZ-bounded.

Proof. Proof follows directly from Theorems 2.2.14 and 2.2.19.

Corollary 2.2.21. A weakly fuzzy bounded linear operator T from X to Y , is fuzzy

norm continuous.

Proof. Proof follows directly from Remark 2.2.6 and Theorem 2.2.19.

In reference to Lemma 2.2.19 and Corollary 2.2.21, we now show that the converse is

not true in general, i.e., a fuzzy norm continuous linear operator need not be weakly

fuzzy bounded and hence, by Remark 2.2.6, need not be strongly fuzzy bounded.

Example 2.2.22. Let X be a vector space over R and B = {ei}∞i=1 a basis for X

(dim X =∞). With L = min and R = max, let us define the fuzzy norms on X as

follows:
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‖ x ‖◦ (t) =


1, if t =

n∑
i=1

| ai |;

0, otherwise.

and

‖ x ‖ (t) =



n∑
i=1

| ai |
ti

, if
n∑
i=1

| ai |≤ t;

1, if t =
n∑
i=1

| ai |=0;

0, otherwise.

where, x =
n∑
i=1

aiei. Then the α-level sets of ‖ . ‖◦ and ‖ . ‖ are:

[‖ x ‖◦]α = [
n∑
i=1

| ai |,
n∑
i=1

| ai |], and [‖ x ‖]α = [
n∑
i=1

| ai |,
n∑
i=1

| ai |
αi

]

Let T : (X, ‖ . ‖) → (X, ‖ . ‖◦) be a linear operator and for each en ∈ B, let us

define as: Ten = nen .

The linear T is fuzzy norm continuous:

Let us consider a sequence {xn} ⊆ X such that lim
n→∞

xn = 0. Then, lim
n→∞

‖ xn ‖1α=

lim
n→∞

‖ xn ‖2α= 0.

Let xn =
kn∑
i=1

aniei. Then, Txn =
kn∑
i=1

ianiei. It gives: ‖ Txn ‖2◦α=
kn∑
i=1

| anii |, for

all α ∈ (0, 1]. Then, we have:

‖ Txn ‖2◦α=
kn∑
i=1

| anii |=
kn∑
i=1

i | ani |≤
kn∑
i=1

1

αi
| ani |=‖ xn ‖2α

Letting n → ∞, we get ‖ Txn ‖2◦α→ 0 as ‖ xn ‖2α→ 0, for any α ∈ (0, 1]. Thus

lim
n→∞

Txn = 0 and hence T is fuzzy norm continuous.

The linear T is not weakly fuzzy bounded:

Let T be weakly fuzzy bounded. There exists a fuzzy real number η � 0̄ and η ∈ F+,

such that, ‖ Tx ‖◦ � ‖ x ‖� η, for all x ∈ X. Therefore:

‖ Tx ‖2◦1=‖ nen ‖2◦1=| n |= n ≤ η21 ‖ en ‖21= η21

Hence n ≤ η21, for all n ∈ N, which is a contradiction. Hence T is not weakly fuzzy
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bounded.

Next, we proceed to compare fuzzy bounded and weakly fuzzy bounded linear op-

erators.

Theorem 2.2.23. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs and let T :

X → Y be a linear operator. If for each α ∈ (0, 1], sup
x∈X
x 6=θ

‖ x ‖2α< +∞, then T is fuzzy

bounded ⇔ T is weakly fuzzy bounded.

Proof. Suppose T : X → Y is fuzzy bounded. Then there exists η � 0̄ such that

‖ Tx ‖� η� ‖ x ‖ for all x( 6= θ) ∈ X. That gives ‖ Tx ‖1α≤ η1α ‖ x ‖1α and

‖ Tx ‖2α≤ η2α ‖ x ‖2α. Set mα = inf
x∈X
x 6=θ

‖ x ‖1α and Mα = sup
x∈X
x 6=θ

‖ x ‖2α, for any α ∈ (0, ].

Then,

‖ Tx ‖1α
‖ x ‖2α

≤ η1α ‖ x ‖1α
‖ x ‖2α

≤ η1α and,
‖ Tx ‖2α
‖ x ‖1α

≤ η2α ‖ x ‖2α
‖ x ‖1α

≤ η2α
Mα

mα

Let K be the fuzzy real number generated by the family of nested bounded closed

intervals {[η1α, η2αMα

mα
] : α ∈ (0, 1]}. Obviously K � 0̄ and K ∈ F+ (by Proposition

1.3.10). Then, we have ‖ Tx ‖ � ‖ x ‖� K, for all x( 6= θ) ∈ X. Hence T is weakly

fuzzy bounded.

Conversely, suppose T is a weakly fuzzy bounded linear operator. Therefore, there

exists η ∈ F , η � 0̄ such that ‖ Tx ‖ � ‖ x ‖� η. Using similar argument, we have:

‖ Tx ‖1α
‖ x ‖1α

≤ η1α ‖ x ‖2α
‖ x ‖1α

≤ η1α
Mα

mα

and,
‖ Tx ‖2α
‖ x ‖2α

≤ η2α ‖ x ‖1α
‖ x ‖2α

≤ η2α

Then, there exists a fuzzy real number K ∈ F+ and K � 0̄ generated by the family

of nested bounded closed intervals {[η1αMα

mα
, η2α] : α ∈ (0, 1]} and ‖ Tx ‖� K� ‖ x ‖.

Thus T is fuzzy bounded.

Analogues to Lemma 5.8 by Hasankhani et al. [31], we obtain the following necessary

condition for a linear operator to be weakly fuzzy bounded.
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Lemma 2.2.24. Let (X, ‖ . ‖) and (Y, ‖ . ‖) be FNLSs and let T : X → Y be a linear

operator. If for all α ∈ (0, 1] , sup
‖x‖1α≤1

‖ Tx ‖2α< ∞ and sup
α∈(0,1]

sup
‖x‖2α≤1

‖ Tx ‖1α< ∞,

then T is weakly fuzzy bounded.

Proof. Let Sα = sup
‖x‖1α≤1

‖ Tx ‖2α, for all α ∈ (0, 1]. If α ≤ γ, then ‖ x ‖1α≤‖ x ‖1γ and

‖ Tx ‖2γ≤‖ Tx ‖2α. This implies that Sγ ≤ Sα. Let us assume that Iα = inf
β<α

Sβ. For

α < γ, we have Sβ < Sα < Sγ and hence

Iγ ≤ Iα (2.2.5)

Let {αk} be an increasing sequence in (0, 1] converging to α. Since αk ≤ α for each

k, therefore Iα ≤ Iαk and hence

Iα ≤ inf
k
Iαk . (2.2.6)

Using definition of infimum, there is a β◦ < α such that Sβ◦ ≤ Iα + ε. Since αk

is increasing and converges to α, there exists k◦ > 0 such that β◦ < αk◦ . Then

inf
k
Iαk ≤ Iαk◦ ≤ Sβ◦ and hence inf

k
Iαk ≤ Iα + ε.

Letting ε→ 0, we have

inf
k
Iαk ≤ Iα. (2.2.7)

Hence by (2.2.6) and (2.2.7), infk Iαk = Iα implies

inf
k
Iαk = Iα = lim

k→∞
Iαk . (2.2.8)

Now, we have Sα ≤ Sβ, for all β < α, thus Sα ≤ inf
β<α

Sβ = Iα. Then, for any

x( 6= 0) ∈ X

‖ Tx ‖2α ≤ Sα ‖ x ‖1α≤ Iα ‖ x ‖1α . (2.2.9)

Next, let I = sup
α∈(0,1]

sup
‖x‖2α≤1

‖ Tx ‖1α. Then, for any x( 6= 0) ∈ X

‖ Tx ‖1α≤ I ‖ x ‖2α≤ (I + Iα) ‖ x ‖2α . (2.2.10)
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By Proposition 1.3.10, we obtain that {[‖Tx‖
1
α

‖x‖2α
, ‖Tx‖

2
α

‖x‖1α
] : α ∈ (0, 1]} generates the

fuzzy real number ‖ Tx ‖ � ‖ x ‖ for all x(6= 0) ∈ X. Define [η]α = [I, I + Iα].

Then, the inequalities (2.2.5) and (2.2.8) imply that the family {[η]α : α ∈ (0, 1]}

represents the α-level sets of a fuzzy real number η. Using inequalities (2.2.9) and

(2.2.10), we obtain that ‖ Tx ‖ � ‖ x ‖� η.

Hence T is a weakly fuzzy bounded linear operator.

Remark 2.2.25. If the FNLS X is finite dimensional, then, for all α ∈ (0, 1]:

sup
‖x‖1α≤1

‖ Tx ‖2α<∞ and sup
α∈(0,1]

sup
‖x‖2α≤1

‖ Tx ‖1α<∞. We thus have:

Corollary 2.2.26. A linear operator T from a finite dimensional FNLS X to an

FNLS Y is weakly fuzzy bounded.

In view of Theorem 2.2.14 and Example 2.2.22, we can conclude that an XZ-

bounded operator is not weakly fuzzy bounded, in general. However, we obtain

a condition for a XZ-bounded operator to be weakly fuzzy bounded.

Theorem 2.2.27. Let (X, ‖ . ‖) and (Y, ‖ . ‖) be FNLSs and T : X → Y be

XZ-bounded. If for each α ∈ (0, 1] there exists Mα > 0 such that ‖x‖
2
α

‖x‖1α
≤ Mα and

sup
α∈(0,1]

‖ x ‖2α< +∞, sup
α∈(0,1]

‖ y ‖2α< +∞, for all x ∈ X and y ∈ Y , then T is weakly

fuzzy bounded.

Proof. Let T : X → Y be XZ-bounded operator, so T maps a fuzzy bounded subset

of X into a fuzzy bounded subset of Y . Choose any α ∈ (0, 1]. Consider the set

N1 = {x ∈ X :‖ x ‖1α≤ 1}. For β ∈ (0, α],

‖ x ‖2α≤‖ x ‖2β≤Mβ ‖ x ‖1β≤Mβ ‖ x ‖1α≤Mβ (2.2.11)

and, for β ∈ (α, 1],

‖ x ‖2β≤‖ x ‖2α≤Mα ‖ x ‖1α≤Mα (2.2.12)
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Therefore, for any β ∈ (0, 1] we can find M ′
β = max(Mβ,Mα), such that (2.2.11)

and (2.2.12) imply N1 ⊆ N(M ′
β, β). Thus, N1 is a fuzzy bounded set in X and so

TN1 is a fuzzy bounded subset in Y . Thus for any β ∈ (0, 1], using Lemma 1.3.25,

sup
x∈N1

‖ Tx ‖2β< +∞, i.e., sup
‖x‖1α≤1

‖ Tx ‖2β< +∞

Since β ∈ (0, 1] is arbitrary, we have

sup
‖x‖1α≤1

‖ Tx ‖2α< +∞ (2.2.13)

Also, for any β ∈ (0, 1], {x :‖ x ‖2β≤ 1} ⊆ {x :‖ x ‖1β≤ 1} and ‖ Tx ‖1β≤‖ Tx ‖2β.

Therefore

sup
‖x‖2β≤1

‖ Tx ‖1β≤ sup
‖x‖2β≤1

‖ Tx ‖2β≤ sup
‖x‖1β≤1

‖ Tx ‖2β< +∞ (2.2.14)

Thus for each β ∈ (0, 1], (2.2.14) gives:

sup
‖x‖2β≤1

‖ Tx ‖1β< +∞

Since sup
β∈(0,1]

‖ x ‖2β< +∞, sup
β∈(0,1]

‖ y ‖2β< +∞, for all x ∈ X and y ∈ Y , therefore

sup
β∈(0,1]

sup
‖x‖2β≤1

‖ Tx ‖1β< +∞ (2.2.15)

From (2.1.13), (2.1.15) and Lemma 2.2.24, T is weakly fuzzy bounded.

Theorem 2.2.28. Let (X, ‖ . ‖) and (Y, ‖ . ‖) be FNLSs and T : X → Y be

XZ-bounded. If for each α ∈ (0, 1] there exists Mα > 0 such that ‖x‖
2
α

‖x‖1α
≤ Mα and

sup
α∈(0,1]

‖ x ‖2α< +∞, sup
α∈(0,1]

‖ y ‖2α< +∞, for all x ∈ X and y ∈ Y , then T is fuzzy

bounded.

Proof. Using similar argument as in Theorem 2.2.27, we get, for all α ∈ (0, 1]

sup
‖x‖1α≤1

‖ Tx ‖2α< +∞ (2.2.16)
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Since for any β ∈ (0, 1], ‖ Tx ‖1β≤‖ Tx ‖2β, therefore sup
‖x‖1β≤1

‖ Tx ‖1β≤ sup
‖x‖1β≤1

‖

Tx ‖2β< +∞, using (2.2.16). Hence,

sup
β∈(0,1]

sup
‖x‖1β≤1

‖ Tx ‖1β< +∞ (2.2.17)

From inequalities (2.1.16) and (2.1.17), we have T is fuzzy bounded (Hasankhani et.

al [31], Lemma 5.8).

A weakly fuzzy bounded linear operator T may not be strongly fuzzy bounded

(Remark 2.2.6). We, however, have the following result:

Theorem 2.2.29. Let T be a weakly fuzzy bounded linear operator from a FNLS

(X, ‖ . ‖) to a FNLS (Y, ‖ . ‖). If sup
α∈(0,1]

η2α < +∞ where, ‖ Tx ‖ � ‖ x ‖� η and

η � 0̄ ∈ F+. Then T is strongly fuzzy bounded as well.

Proof. Let T : X → Y be weakly fuzzy bounded. Therefore ∃η � 0̄ ∈ F+ so that

‖ Tx ‖ � ‖ x ‖� η. It gives:

‖ Tx ‖1α≤ η1α ‖ x ‖2α and ‖ Tx ‖2α≤ η2α ‖ x ‖1α (2.2.18)

for each α ∈ (0, 1]. We have 0 < η1α ≤ η2α < +∞. Let ηα = max(η1α, η
2
α) and

k = supα∈(0,1] ηα. Since sup
α∈(0,1]

η2α < +∞, we have 0 < k < +∞. Hence, using

(2.2.18), we get

‖ Tx ‖1α≤ k ‖ x ‖2α and ‖ Tx ‖2α≤ k ‖ x ‖1α

Thus, ∃k > 0 such that ‖ Tx ‖ � ‖ x ‖� k̄ and hence T is strongly fuzzy bounded.

The interrelationships amongst various boundedness notions help us in obtaining a

fair analysis of the existing theorems of linear operators in FNLSs.
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2.3 Space of strongly fuzzy bounded operators

Different notions of fuzzy boundedness of linear operators apparently constitute

various types of fuzzy norms. As mentioned earlier, various authors discussed the

FNLSs of linear operators. In this section, we study the completeness of the FNLS of

strongly fuzzy bounded operators with respect to the FNLS of weakly fuzzy bounded

operators.

Before going to the main results, we prove the following general property of an

FNLS.

Lemma 2.3.1. Let (X, ‖ . ‖ be a complete FNLS with lim
a→0+

R(a, a) = 0. If A is a

fuzzy closed subset of X, then A is complete.

Proof. Let {xn} be a Cauchy sequence in A. Then {xn} is a Cauchy sequence in

X also. Since X is complete, therefore, {xn} converges in X such that lim
n→∞

xn = x

where x ∈ X. As A is fuzzy closed, using Lemma 1.3.26, we have x ∈ A. Thus {xn}

converges in A and so A is complete.

Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖) be two FNLSs, with R ≤ max.

Bag and Samanta [4] defined the fuzzy norm ‖ . ‖∗ of a linear operator T : X → Y

as a function ‖ T ‖∗: R→ [0, 1] such that:

‖ T ‖∗ (t) =
∨
{α ∈ (0, 1] : t ∈ [‖ T ‖∗1α , ‖ T ‖∗2α ]},

where

‖ T ‖∗1α = sup
x∈X
x 6=θ

‖ Tx ‖1α
‖ x ‖2α

, and ‖ T ‖∗2α = sup
x∈X
x 6=θ

‖ Tx ‖2α
‖ x ‖1α

The fuzzy norm ‖ T ‖∗ is, thus, generated by the family of nested bounded closed

intervals {[‖ T ‖∗1α , ‖ T ‖∗2α ] : α ∈ (0, 1]}.

Let us denote the space of all strongly fuzzy bounded operators from X to Y by

Bs(X, Y ) and the space of all weakly fuzzy bounded operators by B(X, Y ). Ji

et al. [37] stated that the spaces Bs(X, Y ) and B(X, Y ) are quite different spaces.

However, it is already been proved that every strongly fuzzy bounded linear operator
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is weakly fuzzy bounded, so we have Bs(X, Y ) ⊂ B(X, Y ). We can, in fact, prove

the following:

Theorem 2.3.2. Bs(X, Y ) is a fuzzy closed proper subspace of B(X, Y ).

Proof. Let {Tn} be a sequence of strongly fuzzy bounded linear operators inBs(X, Y )

and let lim
n→∞

Tn = T , for some T ∈ B(X, Y ). Fix any x ∈ X and α ∈ (0, 1]. For

ε > 0 there exists nε (depending on ε and α) such that ‖ Tn − T ‖∗2α < ε for all

n ≥ nε.

That is, sup
x∈X
x 6=θ

‖ Tnx− Tx ‖2α
‖ x ‖1α

< ε for all n ≥ nε, i.e., ‖ Tnx− Tx ‖2α< ε ‖ x ‖1α, for all

n ≥ nε and x ∈ X

In particular, for any x ∈ X,

‖ Tnεx− Tx ‖2α< ε ‖ x ‖1α, (2.3.1)

As Tnε is strongly fuzzy bounded, there exists Knε > 0 such that ‖ Tnεx ‖ � ‖ x ‖�

Knε ,∀x ∈ X. Therefore:

‖ Tnεx ‖2α< Knε ‖ x ‖1α and ‖ Tnεx ‖1α< Knε ‖ x ‖2α (2.3.2)

Since R ≤ max, for any x(6= θ) ∈ X, from (2.3.1) and (2.3.2):

‖ Tx ‖2α≤‖ Tx− Tnεx ‖2α + ‖ Tnεx ‖2α≤ ε ‖ x ‖1α +Knε ‖ x ‖1α

i.e.,

‖ Tx ‖2α≤‖ x ‖1α (ε+Knε) (2.3.3)

Thus, sup
x∈X
x 6=θ

‖ Tx ‖2α
‖ x ‖1α

< (ε+Knε).

Similarly, sup
x∈X
x 6=θ

‖ Tx ‖1α
‖ x ‖2α

< (ε+Knε). Therefore, ‖ Tx ‖ � ‖ x ‖� (ε+Knε),∀x ∈ X

and hence, T is strongly fuzzy bounded, i.e., T ∈ Bs(X, Y ).

Therefore Bs(X, Y ) is fuzzy closed subset of B(X, Y ).
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Theorem 2.3.3. If B(X, Y ) is complete then Bs(X, Y ) is also complete.

Proof. As Bs(X, Y ) is a fuzzy closed subset of B(X, Y ), the proof follows directly

from Lemmas 2.3.1 and 2.3.2.

Ji et al. [37] proved that the space B(X, Y ) is complete if Y is complete. Thus,

completeness of Y implies completeness of Bs(X, Y ). However, Bs(X, Y ) may be

complete even if Y is not complete ([37], Example 3.3 ). Therefore, while complete-

ness of B(X, Y ) implies the completeness of Bs(X, Y ), the converse is not true in

general.

2.4 Few results on linear operators

In this section, we obtain several results on linear operators in FNLSs. The results

are obtained using the general right and left norms respectively.

2.4.1 Extension of a linear operator

We first introduce an extension of a linear operator in FNLSs and then prove a

boundedness result for the extension operator. The definitions of range space and

null space of a linear operator are considered as in Kreiszig [42].

Definition 2.4.1. Let T : (X, ‖ . ‖, L,R) → (Y, ‖ . ‖, L,R) be a linear operator.

The restriction of the operator T to a set A ⊆ X, denoted by T |A, is defined as:

T |A: A→ Y , T |A (x) = Tx,∀x ∈ A.

Definition 2.4.2. An extension of T from a set M ⊂ X to X is the operator

T̃ : X → Y such that: T̃ |M= T, i.e., T̃ (x) = T (x), ∀x ∈M.

Theorem 2.4.3. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs with lim
a→0+

R(a, a) =

0 where Y is complete. Let T : D → Y be a strongly fuzzy bounded linear operator,

where D ⊂ X. Then T has an extension T̃ : D → Y such that T̃ is strongly fuzzy

bounded linear operator of fuzzy norm ‖ T̃ ‖∗=‖ T ‖∗.
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Proof. Consider any x ∈ D. Then, there exists a sequence {xn} in D such that

lim
n→∞

xn = x (by Lemma 1.3.26). Since T is a strongly fuzzy bounded linear operator,

∃k ∈ R+ such that, for all x ∈ X, ‖ Tx ‖ � ‖ x ‖� k̄. Thus, we have ‖ Txm−Txn ‖

� ‖ xm − xn ‖� k̄. This gives:

‖ Txm − Txn ‖1α
‖ xm − xn ‖2α

≤ k, and
‖ Txm − Txn ‖2α
‖ xm − xn ‖1α

≤ k (2.4.1)

As {xn} converges, {xn} is a Cauchy sequence. Therefore, lim
n,m→∞

‖ xm − xn ‖2α=

lim
n,m→∞

‖ xm − xn ‖1α= 0. Thus, (2.4.1) gives, lim
n,m→∞

‖ Txm − Txn ‖2α= 0, and

hence, {Txn} is a Cauchy sequence in Y . Since Y is complete, {Txn} converges.

Let lim
n
Txn = y, where y ∈ Y .

Let us define a function T̃ : D → Y as T̃ x = y for x ∈ D. As {xn} is a sequence in

D ⊆ X, for all n, we have ‖ Txn ‖1α≤ k ‖ xn ‖2α.

Now,

‖ T̃ x ‖1α= ‖ y ‖1α=‖ lim
n→∞

Txn ‖1α= lim
n→∞

‖ Txn ‖1α

≤ k lim
n→∞

‖ xn ‖2α= k ‖ lim
n→∞

xn ‖2α

= k ‖ x ‖2α

Thus, ‖ T̃ x ‖1α≤ k ‖ x ‖2α, i.e., ‖T̃ x‖
1
α

‖x‖2α
≤ k.

In the same way, it can be proved that ‖T̃ x‖2α
‖x‖1α

≤ k. Combining these, we get

‖ T̃ x ‖ � ‖ x ‖� k̄ and hence T̃ is strongly fuzzy bounded.

We now show that ‖ T ‖∗=‖ T̃ ‖∗. For x ∈ D, Tx = T̃ x gives ‖ T ‖∗=‖ T̃ ‖∗.

For x ∈ D − D: There exists a sequence (xn) in D such that lim
n→∞

xn = x. For all

such x ∈ D −D,

‖ T̃ ‖∗1α = sup
x

‖ T̃ x ‖1α
‖ x ‖2α

= sup
x

‖ lim
n→∞

Txn ‖1α
‖ x ‖2α

= sup
x

‖ T ( lim
n→∞

xn) ‖1α
‖ x ‖2α

= sup
x

‖ Tx ‖1α
‖ x ‖2α

,

which gives ‖ T̃ ‖∗1α =‖ T ‖∗1α . In the similar way, we can show that: ‖ T̃ ‖∗2α =‖ T ‖∗2α .

Hence the two families {[‖ T ‖∗1α , ‖ T ‖∗2α ] : α ∈ (0, 1]} and {[‖ T̃ ‖∗1α , ‖ T̃ ‖∗2α
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] : α ∈ (0, 1]} generate the same fuzzy number (using Proposition 1.3.10). Hence

‖ T ‖∗=‖ T̃ ‖∗ .

Example 2.4.4. Consider X = Y = R, the linear space of all real numbers and

L = min and R = max. Define the fuzzy norms ‖ . ‖ and ‖ . ‖∼ on R as follows:

‖ x ‖ (t) =


|x|
t

if | x |< t;

1 if | x |= t = 0;

0 otherwise.

and

‖ x ‖∼ (t) =

 1 if | x |= t;

0 otherwise.

The α-level sets of ‖ x ‖ and ‖ x ‖∼ are given by: [‖ x ‖]α = [| x |, |x|
α

] and

[‖ x ‖]∼α = [| x |, | x |].

Define a mapping T : D → X, D = (−1, 1) as Tx = x,∀x ∈ D. Clearly T is linear

and strongly fuzzy bounded. For

‖ Tx ‖∼1α
‖ x ‖2α

=
| x |
|x|
α

= α ≤ 1,∀x 6= θ ∈ D (2.4.2)

‖ Tx ‖∼2α
‖ x ‖1α

=
| x |
| x |

= 1,∀x(6= θ) ∈ D (2.4.3)

From (2.4.2) and (2.4.3), ‖ Tx ‖∼ � ‖ x ‖� 1̄, ∀x( 6= θ) ∈ D. Hence T is strongly

fuzzy bounded. As R = max ⇒ lim
a→0+

R(a, a) = 0, using Lemma 1.3.26 we get

D = [−1, 1]. Now define a function T̃ : D → X as follows:

T̃ x =


−1 if x = −1;

1 if x = 1;

Tx if x(6= −1, 1) ∈ D.

Then, clearly T̃ |D= T and hence T̃ is an extension of T . Also,

‖ T ‖∗1α = sup
x(6=θ)∈D

‖ Tx ‖∼1α
‖ x ‖2α

= sup
x( 6=θ)∈D

| x |
|x|
α

= α ≤ 1.
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‖ T ‖∗2α = sup
x(6=θ)∈D

‖ Tx ‖∼2α
‖ x ‖1α

= sup
x( 6=θ)∈D

| x |
| x |

= 1.

‖ T̃ ‖∗1α = sup
x(6=θ)∈D

‖ T̃ x ‖∼1α
‖ x ‖2α

= max{‖ T̃ (−1) ‖∼1α
‖ (−1) ‖2α

,
‖ T̃ (1) ‖∼1α
‖ (1) ‖2α

, sup
x∈D−{−1,1}

‖ T̃ x ‖∼1α
‖ x ‖2α

}

= max{| (−1) |
(−1)
α

,
| 1 |
|1|
α

, ‖ T ‖∗1α } = max{α, α, α} = α ≤ 1.

‖ T̃ ‖∗2α = sup
x(6=θ)∈D

‖ T̃ x ‖∼2α
‖ x ‖1α

= max{‖ T̃ (−1) ‖∼2α
‖ (−1) ‖1α

,
‖ T̃ (1) ‖∼2α
‖ (1) ‖1α

, sup
x∈D−{−1,1}

‖ T̃ x ‖∼2α
‖ x ‖1α

}

= max{| (−1) |
| (−1) |

,
| 1 |
| 1 |

, ‖ T ‖∗2α } = max{1, 1, 1} = 1.

Hence, ‖ T ‖∗1α =‖ T̃ ‖∗1α and ‖ T ‖∗2α =‖ T̃ ‖∗2α .

Therefore, the fuzzy real numbers ‖ T ‖∗ and ‖ T̃ ‖∗ generated by the families of

closed intervals {[‖ T ‖∗1α , ‖ T ‖∗2α ], α ∈ (0, 1]} and {[‖ T̃ ‖∗1α , ‖ T̃ ‖∗2α ], α ∈ (0, 1]}

respectively are the same, i.e., ‖ T ‖∗=‖ T̃ ‖∗.

2.4.2 Inverse of a linear operator

In this section, we define the inverse of a linear operator on FNLSs and establish an

existence theorem.

Definition 2.4.5. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs and T : X → Y

be a linear operator. Let R(T ) and N (T ) be the range space and null space of T

respectively (definitions are same as their classical counterparts).

If T is bijective, then inverse of T−1 exists and for A ⊆ Y , let us define

T−1[A ∩R(T )] = {x ∈ X : Tx ∈ A}.

First we prove the following lemma.

Lemma 2.4.6. Let T be a XZ-bounded linear operator from an FNLS (X, ‖ . ‖

, L,R) to an FNLS (Y, ‖ . ‖, L,R) with lim
a→0+

R(a, a) = 0. Then, the null space N (T )

of T is fuzzy closed.
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Proof. Let x ∈ N (T ). Then, there exists a sequence {xn} in N (T ) such that

lim
n→∞

xn = x. Since T is XZ-bounded, therefore, T is fuzzy norm continuous. Thus,

we get lim
n→∞

Txn = Tx. Again, for each n, Txn = θ as xn ∈ N (T ). Therefore,

Tx = 0 and hence x ∈ N (T ). Hence, N (T ) is fuzzy closed.

Since a strongly fuzzy bounded or weakly fuzzy bounded or fuzzy bounded linear

operator is also XZ-bounded, Lemma 2.4.6 is valid for this type of linear operators

as well.

Theorem 2.4.7. Let T be a strongly fuzzy bounded linear operator from a complete

FNLS (X, ‖ . ‖, L,R) to an FNLS (Y, ‖ . ‖, L,R) with lim
a→0+

R(a, a) = 0. Suppose

that for some c > 0, ‖ Tx ‖ � ‖ x ‖� c̄, ∀x ∈ X. Then the range R(T ) of T is

fuzzy closed.

Further if R(T ) = Y , then T is invertible and ‖ T−1 ‖∗2α ≤ 1
c
.

Proof. Let {yn} be a convergent sequence in R(T ) and let lim
n→∞

yn = y. Correspond-

ing to each yn, there exists xn in X such that Txn = yn. Therefore, lim
n→∞

Txn = y.

As

‖ Txn ‖ � ‖ xn ‖� c̄ (2.4.4)

we have:

‖ Txn ‖2α≥ c ‖ xn ‖1α and ‖ Txn ‖1α≥ c ‖ xn ‖2α (2.4.5)

As {Txn} converges, it is a Cauchy sequence. Using the inequality (2.4.5) we get:

c ‖ xm − xn ‖2α≤‖ Txm − Txn ‖∼1α ≤‖ Txm − Txn ‖∼2α (2.4.6)

This implies that lim
m,n→∞

‖ xm − xn ‖2α= 0. Therefore {xn} is Cauchy. As X is

complete, (xn) converges in X. Let lim
n→∞

xn = x, for x ∈ X.

Since T is strongly fuzzy bounded, therefore T is fuzzy norm continuous (Lemma
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2.2.19) and we have lim
n→∞

Txn = Tx. Hence, Tx = y.

Therefore, y ∈ R(T ) and thus R(T ) is fuzzy closed.

Next, let R(T ) = Y , then T is onto. Consider x1, x2 ∈ X. Using (2.4.4), we get

‖ Tx1 ‖1α 6=‖ Tx2 ‖1α and ‖ Tx1 ‖2α 6=‖ Tx2 ‖2α. Thus Tx1 6= Tx2 and so T is one-one.

Hence T is invertible. Let T−1 be the inverse of T . We have

‖ T−1 ‖2∗α = sup
x∈Y,x 6=θ

‖ T−1x ‖2α
‖ x ‖1α

(2.4.7)

For x( 6= θ) ∈ Y , let T−1x = y ∈ X ⇒ Ty = x. Using ‖ Ty ‖ � ‖ y ‖� c̄ (from

2.4.4), we obtain for any x ∈ Y :

‖ Ty ‖1α
‖ y ‖2α

≥ c⇒‖ y ‖2α≤ c−1 ‖ Ty ‖1α⇒‖ T−1x ‖2α≤ c−1 ‖ x ‖∼1α

Therefore, we get: sup
x∈Y,x 6=θ

‖ T−1x ‖2α
‖ x ‖1α

≤ c−1 and hence ‖ T−1 ‖2∗α ≤ c−1.

Corollary 2.4.8. Let T be a weakly fuzzy bounded linear operator from a complete

FNLS (X, ‖ . ‖, L,R) to an FNLS (Y, ‖ . ‖, L,R) with lim
a→0+

R(a, a) = 0. Suppose

there is a fuzzy real number η > 0̄ such that ‖ Tx ‖ � ‖ x ‖� η. Then the range

R(T ) of T is fuzzy closed. Also if R(T ) = Y , then T is invertible and ‖ T−1 ‖∗2α ≤ 1
η1α

.

Proof. Proceeding as in Theorem 2.4.7, for any convergent sequence {yn} in R(T ),

there exists a sequence xn ∈ X such that Txn = yn. Therefore, lim
n→∞

Txn = y, for

y ∈ Y . Using similar argument as above, {xn} is Cauchy. As X is complete, {xn}

converges in X. Let lim
n→∞

xn = x, for x ∈ X.

Since T is weakly fuzzy bounded, T is fuzzy norm continuous (Corollary 2.2.21) and

therefore lim
n→∞

Txn = Tx. It gives Tx = y and hence y ∈ R(T ).

Thus, R(T ) is fuzzy closed.

Next, let R(T ) = Y , then T is onto and one one, similar to Theorem 2.4.7. Hence

T is invertible. Consider T−1 be the inverse of T . We have

‖ T−1 ‖2∗α = sup
y∈Y,y 6=θ

‖ T−1y ‖2α
‖ y ‖1α

(2.4.8)
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For y ∈ Y , let T−1y = x ∈ X ⇒ Tx = y. Using

‖ Tx ‖ � ‖ x ‖� η, (2.4.9)

For any y ∈ Y we obtain:

‖ Tx ‖1α
‖ x ‖2α

≥ η1α ⇒‖ x ‖2α≤
1

η1α
‖ Tx ‖1α⇒‖ T−1y ‖2α≤

1

η1α
‖ y ‖∼1α , (2.4.10)

Therefore, sup
y∈Y,y 6=θ

‖ T−1y ‖2α
‖ y ‖1α

≤ 1

η1α
and hence ‖ T−1 ‖2∗α ≤ 1

η1α
.

Similar results can be proved for fuzzy bounded linear operators. The proofs are

straightforward and follows from Theorem 2.4.7 and Corollary 2.4.8.

Corollary 2.4.9. Let T be a fuzzy bounded linear operator from a complete FNLS

(X, ‖ . ‖, L,R) to an FNLS (Y, ‖ . ‖, L,R) with lim
a→0+

R(a, a) = 0. Suppose there is a

fuzzy real number η > 0̄ such that ‖ Tx ‖� η� ‖ x ‖. Then the range R(T ) of T is

fuzzy closed. Also if R(T ) = Y , then T is invertible and ‖ T−1 ‖∗2α ≤ 1
η2α

.
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