
Chapter 3

Fuzzy compact operators in fuzzy
normed linear space

3.1 Introduction

The application of compact operators on normed linear spaces such as Hilbert spaces

is well known. Compact operators are particularly useful for dealing with integral

equations and solving various problems of mathematical physics due to their close

resemblance with the operators on finite dimensional spaces [42]. Application of

spectral theory of compact operators have been widespread; these are found in

statistical mechanics, partial differential equations, fluid mechanics, kinetic theory

(Kramers-Fokker-Planck Operator) [32] and so on. Since fuzzy mathematics, fuzzy

physics and related fields are constantly developing on the lines of their classical

counterparts, the study of fuzzy compact operators on FNLS, therefore, carries high

significance.

The rapid advances in linear theory of fuzzy normed spaces and fuzzy bounded linear

operators naturally leads to the development of fuzzy compact operator theory. In

2004, Xiao and Zhu defined a fuzzy compact operator as follows:

Definition 3.1.1. [67] Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs and T :

X → Y be a linear operator. Then T is said to be a fuzzy compact operator if T is

2The contents of this chapter have been accepted for publication in the form of an article in
New Mathematics and Natural Computation, World Scientific (2019).
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a fuzzy norm continuous operator and for each fuzzy bounded set A ⊂ X, T (A) is a

fuzzy compact set of Y .

Sadeqi and Salehi [60] argued that the requirement of continuity in the above defi-

nition is not necessary. For, if lim
a→0+

R(a, a) = 0, then for a fuzzy compact operator

T , the set T (A) is a fuzzy bounded set in Y (refer to Theorem 1.3.27 and Theo-

rem 1.3.28). Hence, T maps a fuzzy bounded set A in X to a fuzzy bounded set

T (A) in Y . Therefore, the fuzzy compact operator T is XZ-bounded. As every

XZ-bounded operator is also fuzzy norm continuous (Theorem 2.2.14), the fuzzy

compact operator T is itself fuzzy norm continuous.

Let us give some examples of fuzzy compact operators in FNLSs.

Example 3.1.2. Consider two normed linear spaces (X, ‖ . ‖) and (Y, ‖ . ‖∼) and

let T : X → Y be a compact operator. Let ‖ . ‖N and ‖ . ‖∼N be the induced fuzzy

norms on X and Y which are defined as follows:

‖ x ‖N (t) =

 1, t =‖ x ‖,

0, t 6=‖ x ‖;
and

‖ y ‖∼N (t) =

 1, t =‖ y ‖∼,

0, t 6=‖ y ‖∼.

Then T : (X, ‖ . ‖N)→ (Y, ‖ . ‖∼N) is a fuzzy compact operator.

Example 3.1.3. Let C[0, 1] be the set of all real valued functions on [0, 1] with the

fuzzy norm:

‖ f ‖ (t) =

 1, t =‖ f ‖sup;

0, otherwise.

where ‖ f ‖sup= supx∈(0,1] | f(x) |, for any f ∈ C[0, 1].

If K(x, y) is a real valued continuous function for x, y ∈ (0, 1], then the operator
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T : C[0, 1]→ C[0, 1] defined by:

(Tf)(x) =

∫ 1

0

K(x, y)f(y)dx,

where f ∈ C[0, 1] is a fuzzy compact operator.

Xiao and Zhu [67], Sadeqi and Salehi [60] have studied topological degree theory for

fuzzy compact operators. In 2006, Lael and Nourouzi [43] studied some fundamental

properties of fuzzy compact operators in FNLSs given by Bag and Samanta [3].

However, a careful examination of the development of fuzzy compact operators in

fuzzy spaces indicates several theoretical gaps unlike their classical counterparts. In

this chapter, we provide several new properties of fuzzy compact operators which

are useful for the study of fuzzy compact operators.

3.2 Fuzzy compact operators and fuzzy bounded-

ness

One of the basic properties of compact operators in classical space is its boundedness.

Every compact operator is bounded in a normed linear space [42]. But in case of

FNLSs, an adequate analogue of this result with respect to different notions of fuzzy

boundedness do not appear to be very straightforward. In this section, we examine

the relation between fuzzy compactness and fuzzy boundedness of linear operators

on FNLSs.

Definition 3.2.1. A sequence {xn} in an FNLS (X, ‖ . ‖, L,R) is said to be fuzzy

bounded if {xn} is a fuzzy bounded subset in X.

Theorem 3.2.2. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs with lim
a→0+

R(a, a) =

0. Let T be a linear operator from X to Y . Then T is fuzzy compact if and only if

it maps every fuzzy bounded sequence {xn} in X to a sequence {Txn} in Y which

has a fuzzy convergent subsequence.
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Proof. Consider T to be a fuzzy compact operator and {xn} be a fuzzy bounded

sequence in X. Then, the fuzzy closure {T (xn)} is fuzzy compact. Therefore,

{T (xn)} is sequentially compact (by Theorem 1.3.27) and so the sequence {T (xn)}

has a fuzzy convergent subsequence.

Conversely, let A ⊂ X be a fuzzy bounded set. Let {xn} be a sequence in T (A).

Then there exists a sequence {yn} in T (A) such that lim
n→∞

‖ xn − yn ‖= 0̄. Let

yn = Tzn for each n, where zn ∈ A. Since A is fuzzy bounded, therefore {zn} is a

fuzzy bounded sequence. By the hypothesis, {Tzn}, i.e., {yn} has a fuzzy convergent

subsequence, say {ynk}. Let lim
nk→∞

ynk = y for some y ∈ Y .

Now, using Lemma 1.3.19, for any α ∈ (0, 1] there exists β ∈ (0, α] such that,

‖ xnk − y ‖2α=‖ xnk − ynk + ynk − y ‖2α≤‖ xnk − ynk ‖2β + ‖ ynk − y ‖2β

Since lim
nk→∞

‖ xnk − ynk ‖2β= lim
nk→∞

‖ ynk − y ‖2β= 0, it gives

lim
nk→∞

‖ xnk − y ‖2α= 0, i.e., lim
nk→∞

xnk = y.

Thus {xnk} is a fuzzy convergent subsequence of {xn}. Therefore T (A) is fuzzy

compact (Theorem 1.3.27). Hence T is a fuzzy compact operator.

Lemma 3.2.3. In an FNLS X with R ≤ max, every convergent sequence is fuzzy

bounded.

Proof. Let {xn} be a convergent sequence in X and let lim
n→∞

xn = x for x( 6= θ) ∈ X.

Then given any ε > 0 and α ∈ (0, 1], there exists n◦(α) such that ‖ xn − x ‖2α< ε,

∀n ≥ n◦. This gives

‖ xn ‖2α≤‖ xn − x ‖2α + ‖ x ‖2α< ε+ ‖ x ‖2α, ∀α ∈ (0, 1] and n ≥ n◦.

Let Mα = max{ε+ ‖ x ‖2α, ‖ x1 ‖2α, ‖ x2 ‖2α, ..., ‖ xn◦ ‖2α}. Then, ‖ xn ‖2α≤ Mα, for

all n. Thus {xn} ⊆ N(Mα, α) and so {xn} is a fuzzy bounded subset of X.

We now have the the following result:
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Theorem 3.2.4. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs with R ≤ max.

Then a linear operator T from X to Y is fuzzy compact if and only if it maps

every convergent sequence {xn} in X to a sequence {Txn} in Y which has a fuzzy

convergent subsequence.

Proof. Follows from Theorem 3.2.2 and Lemma 3.2.3.

Thus, the fuzzy compactness of a linear operator can be interpreted with the help

of fuzzy bounded sequence or convergent sequence.

Saheli et al. showed that a fuzzy compact operator may not be fuzzy bounded in

general ([62], Example 6.1). However, since a fuzzy compact operator T is always

XZ-bounded, we have the following results.

Theorem 3.2.5. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs with lim
a→0+

R(a, a) =

0 and let T : X → Y be fuzzy compact. If for each α ∈ (0, 1] there exists Mα > 0

such that ‖x‖
2
α

‖x‖1α
≤Mα and sup

α∈(0,1]
‖ x ‖2α< +∞, sup

α∈(0,1]
‖ y ‖2α< +∞, for all x ∈ X and

y ∈ Y . Then T is weakly fuzzy bounded.

Theorem 3.2.6. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs with lim
a→0+

R(a, a) =

0 and T : X → Y be fuzzy compact. If for each α ∈ (0, 1] there exists Mα > 0 such

that ‖x‖
2
α

‖x‖1α
≤ Mα and sup

α∈(0,1]
‖ x ‖2α< +∞, sup

α∈(0,1]
‖ y ‖2α< +∞, for all x ∈ X and

y ∈ Y . Then T is fuzzy bounded.

Since a fuzzy compact operator is XZ-bounded, proofs of the above results follow

directly from Theorems 2.2.27 and 2.2.28. Thus, under certain conditions on the

fuzzy norm, a fuzzy compact operator can be made bounded.

Theorem 3.2.7. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs with lim
a→0+

R(a, a) =

0. Let T : X → Y be a XZ-bounded operator. If Y is finite dimensional then T is

fuzzy compact.
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Proof. Consider a fuzzy bounded subset A of X. Since T is XZ-bounded, therefore

T (A) is fuzzy bounded. It implies that the set T (A) is fuzzy bounded as well as

fuzzy closed. Since Y is finite dimensional, therefore the set T (A) is fuzzy compact

(using Theorem 1.3.29). Hence T is fuzzy compact.

Corollary 3.2.8. Let T : X → Y be strongly fuzzy bounded linear operator. If Y is

finite dimensional then T is fuzzy compact.

Proof. Since a strongly fuzzy bounded operator is XZ-bounded (Corollary 2.2.20),

therefore the proof follows from Theorem 3.2.7.

Similarly, we have the following corollaries:

Corollary 3.2.9. Let T : X → Y be a weakly fuzzy bounded linear operator. If Y

is finite dimensional then T is fuzzy compact.

Corollary 3.2.10. Let T : X → Y be a fuzzy bounded linear operator. If Y is finite

dimensional then T is fuzzy compact.

Bag and Samanta [4] proved that every linear operator T from a finite dimensional

FNLS X to an FNLS Y is always weakly fuzzy bounded (weakly fuzzy continuous).

Corollary 3.2.11. Let T : X → Y be a linear operator. If X is finite dimensional

then T is fuzzy compact.

Proof. Since X is finite dimensional, therefore T is weakly fuzzy bounded. However,

as dimT (X) < dimX, therefore T (X) is also finite dimensional. Thus, by Corollary

3.2.9, T is a fuzzy compact operator. Hence a linear operator T form a finite

dimensional FNLS X to Y is fuzzy compact.

Theorem 3.2.12. Let (X, ‖ . ‖, L,R) be a FNLS with lim
a→0+

R(a, a) = 0. Let

T : X → X be a fuzzy compact operator and S : X → X be a strongly fuzzy bounded

linear operator. Then ST and TS are fuzzy compact operators.
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Proof. Let {xn} be a fuzzy bounded sequence in X. As T is a fuzzy compact oper-

ator, {Txn} has a fuzzy convergent subsequence {Txnk} (using Theorem 3.2.2).

Let lim
nk→∞

Txnk = y. Since S is strongly fuzzy bounded, therefore, S is also fuzzy

norm continuous (using Lemma 2.2.19). Hence, lim
nk→∞

S(Txnk) = Sy. Thus, (ST ){xn}

has a fuzzy convergent subsequence and so, ST is fuzzy compact.

Again, for a fuzzy bounded sequence {xn} ∈ X, for each α ∈ (0, 1], there exists

Mα > 0 such that ‖ xn ‖2α< Mα, for all n. Since S is strongly fuzzy bounded, there

exists k > 0 such that ‖ Sxn ‖2α≤ k ‖ xn ‖1α for all n and for α ∈ (0, 1].

Thus, we have

‖ Sxn ‖2α≤ k ‖ xn ‖1α≤ k ‖ xn ‖2α< kMα

which implies {Sxn} is fuzzy bounded sequence. As T is a fuzzy compact oper-

ator, therefore, {T (Sxn)} has a fuzzy convergent subsequence. This implies that

(TS){xn} has a fuzzy convergent subsequence and hence TS is a fuzzy compact

operator.

Remark 3.2.13. Since every weakly fuzzy bounded or fuzzy bounded or XZ-

bounded operator is also fuzzy norm continuous, Theorem 3.2.12 also holds for

a weakly fuzzy bounded or a fuzzy bounded or an XZ-bounded operator.

3.3 Fuzzy compact operators and finite dimen-

sional FNLSs

Let us study fuzzy compact operators in the setting of finite dimensional FNLSs.

3.3.1 Riesz’s Lemma

In functional analysis, Riesz’s Lemma is a source of many interesting results [42].

The following result is a generalized form of Riesz’s Lemma to the FNLSs with the
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general right norm.

Lemma 3.3.1. Let (X, ‖ . ‖, L,R) with lim
a→0+

R(a, a) = 0 be an FNLS and Y, Z be

two subspaces of X. If Y is a fuzzy closed proper subset of Z, then for every real

number θ ∈ (0, 1) and each α ∈ (0, 1], there exists z ∈ Z such that ‖ z ‖2α< 1 and

‖ z − y ‖2α≥ θ for all y ∈ Y .

Proof. Since Y is a proper subset of Z, there exists an element v ∈ Z−Y . Consider

d = inf
y∈Y

sup
α∈(0,1]

‖ v − y ‖2α. Obviously d ≥ 0 (using Remark 1.3.7). We show that

d > 0.

For, if d = 0, i.e., inf
y∈Y

sup
α∈(0,1]

‖ v − y ‖2α= 0.

⇒ for α ∈ (0, 1], ∃y ∈ Y such that supα∈(0,1] ‖ v − y ‖2α< α

⇒‖ v − y ‖2α< α, for each α ∈ (0, 1]

⇒‖ v − y ‖2α=| −1 |‖ y − v ‖2α< α, i.e., y − v ∈ N(α, α),

which gives y ∈ v + N(α, α), for any α ∈ (0, 1]. Thus, {v + N(α, α)} ∩ Y 6= φ and

so v is a point of closure of Y , implies v ∈ Y . Since Y is fuzzy closed, therefore,

Y = Y . Hence, v ∈ Y , which is a contradiction. Therefore d > 0.

Consider θ ∈ (0, 1). There exists y◦ ∈ Y such that

d ≤ sup
α∈(0,1]

‖ v − y◦ ‖2α< k′ ≤ d

θ

Therefore, for any α ∈ (0, 1]

d ≤‖ v − y◦ ‖2α< k′ ≤ d

θ
(3.3.1)

Consider z ∈ Z such that z = v−y◦
k′

. Therefore, ‖ z ‖2α= 1
k′
‖ v − y◦ ‖2α< 1, using

(3.3.1) Now for any y ∈ Y , we have

‖ z − y ‖2α=‖ v − y◦
k′

− y ‖2α=
1

k′
‖ v − y◦ − k′y ‖2α=

1

k′
‖ v − y1 ‖2α

where y1 = y◦ + k′y ∈ Y . Therefore ‖ v − y1 ‖2α≥ d. Then,

‖ z − y ‖2α=
1

k′
‖ v − y1 ‖2α≥

d

k′
≥ θ
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Hence, ‖ z − y ‖2α≥ θ, for any y ∈ Y .

Using Lemma 3.3.1, we prove some properties of fuzzy compact operators in a finite

dimensional FNLS.

Let (X, ‖ . ‖, L,R) be an FNLS and R ≤ max. Consider the set N(1, α) = {x ∈

X :‖ x ‖2α≤ 1}, for α ∈ (0, 1]. Fang and Song [64] proved the following:

Lemma 3.3.2. Let (X, ‖ . ‖, L,R) be an FNLS with R ≤ max. Then, for each

α ∈ (0, 1] N(1, α) is a fuzzy closed, convex and absorbing set.

Remark 3.3.3. Xiao and Zhu [65] showed that a finite n-dimensional FNLS

(X, ‖ . ‖, L,R) is linearly homomorphic to the n-dimensional FNLS (En, ‖ . ‖, L,R)

induced by a classical n-dimensional normed linear space (En, ‖ . ‖∗). In this case,

a set A in X is fuzzy bounded, fuzzy closed, precompact in (En, ‖ . ‖, L,R) if and

only if A is bounded, closed, precompact in (En, ‖ . ‖∗).

In the finite dimensional normed linear space (En, ‖ . ‖∗), the closed unit ball

= {x ∈ X :‖ x ‖∗≤ 1} is bounded. In the FNLS (En, ‖ . ‖, L,R), for each α ∈ (0, 1],

N(1, α) = N(1, 1) = {x ∈ X :‖ x ‖∗≤ 1}

Thus, the set N(1, α) is fuzzy bounded (En, ‖ . ‖, L,R).

This leads to the natural question: whether or not the set N(1, α) in (X, ‖ . ‖, L,R)

is fuzzy bounded. We have the following:

Lemma 3.3.4. Let (X, ‖ . ‖, L,R) be an FNLS with R ≤ max. If lim
α→0+

‖ x ‖2α< +∞

for x (6= θ) ∈ X, then N(1, α) is fuzzy bounded for each α ∈ (0, 1].

Proof. Consider the set N(1, α) for a fixed α ∈ (0, 1]. Let β ∈ (0, 1] be arbitrary.

For α ≤ β, we have ‖ x ‖2β≤‖ x ‖2α≤ 1. Then N(1, α) ⊆ N(1, β).

Assume β < α. Since lim
α→0+

‖ x ‖2α< +∞, for any x ∈ X, For any β, ∃αβ ∈ (0, β]

such that ‖ x ‖2αβ< +∞.
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It gives: ‖ x ‖2αβ< Mαβ , for some Mαβ > 0. Thus, we have

‖ x ‖2β≤‖ x ‖2αβ< Mαβ

and, hence x ∈ N(Mαβ , β). Therefore, N(1, α) ⊆ N(Mαβ , β), for any β < α.

Hence, N(1, α) is fuzzy bounded, for each α ∈ (0, 1].

Theorem 3.3.5. Let (X, ‖ . ‖, L,R) be a finite dimensional FNLS with R ≤ max.

If lim
α→0+

‖ x ‖2α< +∞ for x(6= θ) ∈ X, then N(1, α) is fuzzy compact set.

Proof. Since the set N(1, α) is fuzzy bounded (by Lemma 3.3.4) and fuzzy closed

(using Lemma 3.3.2), therefore N(1, α) is fuzzy compact whenever X is finite di-

mensional.

Theorem 3.3.6. If the set N(1, α) is fuzzy compact, for any α ∈ (0, 1] in an FNLS

(X, ‖ . ‖, L,R), with R ≤ max, then X is finite dimensional.

Proof. Let the set N(1, α◦) be fuzzy compact for some α◦ ∈ (0, 1]. Let, if possible X

be infinite dimensional. Let x1 ∈ X such that ‖ x1 ‖2α◦≤ 1. Consider the subspace

X1 of X generated by x1. Since dimX1 = 1 and as every finite dimensional FNLS

is fuzzy closed (Felbin [20], Theorem 4.1), so X1 is fuzzy closed proper subspace of

X.

Therefore, using Lemma 3.3.1, there exists x2 ∈ X such that

‖ x2 ‖2α◦≤ 1 and ‖ x2 − x1 ‖2α◦≥
1
2
.

Then, following the argument as in the classical case [42] and proceeding inductively,

we obtain a sequence {xn} in N(1, α◦) such that for a α◦ ∈ (0, 1], ‖ xm− xn ‖2α◦≥
1
2
.

So {xn} cannot have a convergent subsequence. It contradicts the compactness of

N(1, α◦). Hence the FNLS X must be finite dimensional.

Theorem 3.3.7. Let (X, ‖ . ‖, L,R) be an FNLS, R ≤ max. If lim
α→0+

‖ x ‖2α< +∞

for x( 6= θ) ∈ X, then X is finite dimensional if and only if the set N(1, α) is fuzzy

compact, for any α ∈ (0, 1).
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Proof. The proof directly follows from Theorems 3.3.5 and 3.3.6.

Remark 3.3.8. This result is important in its own way as it characterizes the finite

dimensionality of FNLS in terms of the set N(1, α).

Theorem 3.3.9. In an infinite dimensional FNLS (X, ‖ . ‖, with R ≤ max, for

which lim
α→0+

‖ x ‖2α< +∞, for all x( 6= θ) ∈ X and α ∈ (0, 1], the identity operator

T : X → X is not fuzzy compact.

Proof. The identity operator T maps the fuzzy bounded set N(1, α) into itself. As-

sume T to be fuzzy compact. Therefore, TN(1, α) = N(1, α) is fuzzy compact. Since

N(1, α) is fuzzy closed, we have N(1, α) = N(1, α). Thus, N(1, α) is fuzzy com-

pact. Hence X is finite dimensional (using Theorem 3.3.7), which is a contradiction.

Therefore, the identity operator T is not a fuzzy compact operator.

3.3.2 Range of a fuzzy compact operator

Xiao and Zhu [65] proved that in an FNLS X, with lim
a→0+

R(a, a) = 0, if A ⊆ X is

precompact, then A is separable. Therefore, A ⊆ X is compact ⇒ A is sequentially

compact (using Theorem 1.3.27) ⇒ A is precompact (using Theorem 1.3.28) ⇒ A

is separable. Thus, every compact set A in X is also separable.

The range of a compact operator in a normed space is always separable. In case of

FNLSs, we prove the following result.

Theorem 3.3.10. Let (X, ‖ . ‖, L,R) be a FNLS with R ≤ max and lim
α→0+

‖ x ‖2α<

+∞, for x ∈ X and α ∈ (0, 1]. Then, the range R(T ) of a fuzzy compact operator

T : X → X is separable.

Proof. Consider the set Vαn = {x ∈ X :‖ x ‖2α≤ n}, where α ∈ (0, 1] and n ∈ N.

By (F2), Vαn=n N(1, α). Therefore, Vαn is fuzzy bounded for each α ∈ (0, 1] and

n ∈ N. Since T is fuzzy compact, therefore, T (Vαn) is relatively compact.
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Hence, each T (Vαn) is separable.

Now, let x( 6= θ) ∈ X. For each 0 < α ≤ 1, we can find an n ∈ N, sufficiently

large, such that 1
n
≤ α. As ‖ . ‖2α is monotonic decreasing for α ∈ (0, 1] and

lim
α→0+

‖ x ‖2α< +∞; we can obtain that ‖ x ‖2α≤‖ x ‖21
n

≤ n. Hence, x ∈ V 1
n
n. It gives

that X =
∞⋃
n=1

V 1
n
n. Hence T (X) =

∞⋃
n=1

T (V 1
n
n).

As each T (V 1
n
n) is separable, it has a countable dense subset, say, Dn. Let D =

∞⋃
n=1

Dn. Clearly D is countable. Since each T (V 1
n
n) ⊆ Dn, therefore,

∞⋃
n=1

T (V 1
n
n) ⊆

∞⋃
n=1

Dn

Thus T (X) = R(T ) ⊆ D. Hence, D is dense in R(T ) and R(T ) is separable.

This result allows us to deduce a very interesting result in a finite dimensional FNLS.

Theorem 3.3.11. Let (X, ‖ . ‖, L,R) be a finite dimensional FNLS with R ≤ max

and lim
α→0+

‖ x ‖2α< +∞, for x ∈ X and α ∈ (0, 1]. Then, the range R(T ) of a linear

operator T : X → X is separable.

Proof. As X is finite dimensional, therefore, by Corollary 3.2.11, the linear operator

T is fuzzy compact. The result now follows directly from Theorem 3.3.10.

3.4 Space of all fuzzy compact operators

In Chapter 2, we described the spaces of different bounded linear operators in the

fuzzy setting. In this section, we study the space of all fuzzy compact operators with

respect to the spaces of XZ-bounded, weakly fuzzy bounded and fuzzy bounded

operators. The choice of right norm R may vary according to the notion of fuzzy

boundedness.

Let C(X, Y ) be the set of all fuzzy compact operators from an FNLS (X, ‖ . ‖, L1, R2)

to an FNLS (Y, ‖ . ‖, L2, R2).
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Theorem 3.4.1. Let X and Y be FNLSs such that lim
a→0+

Ri(a, a) = 0 for i = 1, 2.

Then the set C(X, Y ) is a linear subspace of Bb(X, Y ), the space of all XZ-bounded

linear operators from X to Y .

Proof. Consider the linear space Bb(X, Y ) of all XZ-bounded linear operators from

X to Y . The linear operations on Bb(X, Y ) are defined by:

(T1 + T2)x = T1x+ T2x and (rT )x = r(Tx)

where T1, T2 ∈ Bb(X, Y ), r ∈ (−∞,+∞), x ∈ X. Since every fuzzy compact

operator is XZ-bounded, therefore, C(X, Y ) ⊂ Bb(X, Y ).

Let T1 and T2 ∈ C(X, Y ) and {xn} be a fuzzy bounded sequence in X. Since T1

is fuzzy compact, {T1xn} has a fuzzy convergent subsequence {T1xnk}. Then the

subsequence {xnk} of {xn} is also fuzzy bounded. As T2 is fuzzy compact, the

sequence {T2xnk} has a fuzzy convergent subsequence {T2zn}.

Hence, (T1zn) and (T2zn) are fuzzy convergent subsequences.

Let lim
n→∞

T1zn = u and lim
n→∞

T2zn = v, where u, v ∈ Y . Using Lemma 1.3.20, for any

α ∈ (0, 1], there is β ∈ (0, α] such that

‖ (T1+T2)(zn)−(u+v) ‖2α=‖ (T1zn−u)+(T2zn−v) ‖2α≤‖ T1zn−u ‖2β + ‖ T2zn−v ‖2β

Letting n→∞, we get:

‖ (T1 + T2)(zn)− (u+ v) ‖2α→ 0.

It gives lim
n→∞

(T1 + T2)(zn) = u + v. Hence, {(T1 + T2)(xn)} has a fuzzy convergent

subsequence {(T1 + T2)(zn)}, where {xn} is a fuzzy bounded sequence in X. Thus,

T1 + T2 is a fuzzy compact operator and T1 + T2 ∈ C(X, Y ).

Next, for T ∈ C(X, Y ) and fuzzy bounded sequence {xn}, {Txn} has a fuzzy con-

vergent subsequence {Txnk}. Let lim
nk→∞

Txnk = y, for some y ∈ Y . Using (F2)

(Definition 1.3.11), we get:

‖ (tT )xnk − ty ‖2α=| t |‖ Txnk − y ‖2α, for any t > 0

Letting nk →∞, we have, lim
nk→∞

(tT )xnk = ty. Hence, {xn} has a subsequence {xnk}
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so that tT (xnk) converges. Thus, tT ∈ C(X, Y ) for any T ∈ C(X, Y ) and t > 0.

Therefore, C(X, Y ) is a linear subspace of Bb(X, Y ).

Xiao and Zhu gave the fuzzy norm for an XZ-bounded operator as follows:

Definition 3.4.2. [66]. Let T ∈ Bb(X, Y ) with lim
a→0+

Ri(a, a) = 0 for i = 1, 2. The

fuzzy norm ‖ T ‖: R→ [0, 1] is a function defined as:

‖ T ‖ (t) = lim
α→0+

sup
‖x‖2α=1

‖ Tx ‖ (t)

For any β ∈ (0, 1], [‖ T ‖]β = [‖ T ‖1β, ‖ T ‖2β] where ‖ T ‖1β= lim
α→0+

inf
‖x‖2α=1

‖ Tx ‖1β

and ‖ T ‖2β= lim
α→0+

sup
‖x‖2α=1

‖ Tx ‖2β .

Theorem 3.4.3. [66] The FNLS Bb(X, Y ) is complete when Y is complete with

lim
a→0+

R1(a, a) = 0 and R2 ≤ max.

Theorem 3.4.4. The linear space C(X, Y ) is an FNLS with the operator norm

defined as in Definition 3.4.2. Further C(X, Y ) is complete when Y is complete with

lim
a→0+

R1(a, a) = 0 and R2 ≤ max.

Proof. The proof follows from Theorems 3.4.1 and 3.4.3.

As a fuzzy compact operator is also fuzzy bounded and weakly fuzzy bounded, Theo-

rems 3.4.1 and 3.4.4 allow us to state the following results which are straightforward.

Theorem 3.4.5. Let X and Y be FNLSs with the conditions as in Theorem 2.2.27,

where Ri ≤ max for i = 1, 2. Then C(X, Y ) is a linear subspace of B′(X, Y ), the

FNLS of all weakly fuzzy bounded linear operators from X to Y . In fact, C(X, Y )

is a FNLS with the operator norm in B′(X, Y ) as defined by Bag and Samanta [4].

Further C(X, Y ) is complete when Y is complete.

Theorem 3.4.6. Let X and Y be FNLSs with the conditions as defined in Theorem

2.2.28, where Ri ≤ max for i = 1, 2. Then C(X, Y ) is a subspace of B(X, Y ), the
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FNLS of all fuzzy bounded linear operators from X to Y with the operator norm in

B(X, Y ) as defined by Hasankhani et. al [31]. Further C(X, Y ) is complete when

Y is complete.

In spite of the above results, a fuzzy compact operator T of an infinite dimensional

FNLS X to Y fails to be invertible in any of Bb(X, Y ) or B(X, Y ) or B′(X, Y ).

Suppose, if possible, T has an inverse S in B(X, Y ) (or in Bb(X, Y ) or B′(X, Y )).

Then, by Theorem 3.2.12, TS = ST = I, where I is the identity operator on X,

is also fuzzy compact. However, if I is fuzzy compact, then X is finite dimensional

(using Theorem 3.3.9), which is a contradiction. Thus T in not invertible.

Theorem 3.4.7. Let (X, ‖ . ‖, L,R) and (Y, ‖ . ‖, L,R) be FNLSs with lim
a→0+

R(a, a) =

0. Let {Tn} be a sequence of fuzzy compact operators from X to Y , where Y is com-

plete. If {Tn} converges to T : X → Y with respect to the operator norm in C(X, Y ),

that is ‖ Tn − T ‖→ 0̄, then the limit operator T is fuzzy compact.

Proof. Consider a fuzzy bounded sequence {xm} in X. Then, using the similar

argument as in its classical counterparts [42], we can construct a subsequence {ym} =

{xm,m} such that for every n ∈ N, the sequence {Tnym} is Cauchy.

Then, for ε > 0, there exists N such that

‖ Tnyj − Tnyk ‖2α<
ε

3
,∀j, k > N and for each α ∈ (0, 1] (3.4.1)

Choose α ∈ (0, 1]. Using Lemma 1.3.20, there exists β ∈ (0, α] such that ∀j, k > N ,

‖ Tyj − Tyk ‖2α≤‖ Tyj − Tnyj ‖2β + ‖ Tnyj − Tnyk ‖2β + ‖ Tnyk − Tyk ‖2β (3.4.2)

Since ‖ Tn − T ‖→ 0̄, therefore lim
n→∞

‖ Tn − T ‖1β= lim
n→∞

‖ Tn − T ‖2β= 0.

Hence,

lim
n→∞

lim
γ→0+

sup
‖yj‖2γ=1

‖ Tnyj − Tyj ‖2β= 0 (3.4.3)
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Since {ym} is fuzzy bounded, for each γ ∈ (0, β] we can find an Mγ such that

{ym} ⊆ N(Mγ, γ). That is, ‖ ym ‖2γ< Mγ, for all m. Therefore, for each γ ∈ (0, β]

there exists n◦ ∈ N such that (3.4.3) gives:

‖ Tn◦yj − Tyj ‖2β<
ε

3Mγ

‖ yj ‖2γ<
ε

3
(3.4.4)

Using (3.4.1) and (3.4.4) in (3.4.2), we get ‖ Tyj − Tyk ‖2α< ε for all j, k > N

(considering n = n◦). Therefore, {Tym} is a Cauchy sequence in Y . Since Y is

complete, therefore {Tym} converges. Thus, T is fuzzy compact.

Remark 3.4.8. The above result also holds when the FNLS C(X, Y ) is considered

with the operator norms as in B′(X, Y ) and B(X, Y ). Thus the operator limit of a

sequence of fuzzy compact operators in C(X, Y ) is always a fuzzy compact operator.

Proofs are similar to Theorem 3.4.7.
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