CHAPTER-4

ENERGY ANALYSIS OF DOUBLE EFFECT $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ ABSORPTION REFRIGERATION SYSTEMS AND COMPARISON WITH $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ SYSTEMS

CHAPTER-4

ENERGY ANALYSIS OF DOUBLE EFFECT $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ ABSORPTION REFRIGERATION SYSTEMS AND COMPARISON WITH $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ SYSTEMS

4.1 Introduction

Vapour absorption refrigeration system (VARS) has received significant research interest in recent times. This was evident from the large number of research articles those were reviewed in Chapter 2. The major advantage is that low grade heat can be utilized for driving VARS. It was also mentioned in Chapter 1 that among the VARS configurations, the single effect system is the most commonly used. However, multi effect (double and triple effect) systems are also being considered for commercial use in refrigeration and HVAC industry due to higher COP of these systems. The triple effect system, although it provides the highest COP, but due to presence of more number of generators and other associated system components, additional cost and complexity are involved with the triple effect system. Hence among the multi effect systems, the double effect systems are gaining more popularity and finding more commercial use in the HVAC industry.

From the literature review in Chapter 2, it was found that performance of ASHRAE recommended double effect $\mathrm{H}_{2} \mathrm{O}$-LiCl VARS configurations have not been investigated in detail. There is not enough research articles related to $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ operated double effect VARS performance analysis except the articles [1, 2], where it was done separately for the series and parallel flow configurations. As such, the double effect series, parallel and reverse parallel VARS configurations were never compared earlier with $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ solution pair and thus, detail analysis is not available. Certainly, the effect of operating parameters on maximum allowable LiCl mass concentration limit (to avoid crystallization) and also on performance of double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ absorption refrigeration systems would be different. This requires a detail investigation and therefore in this research study, the series, parallel and reverse parallel flow configurations of double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ absorption refrigeration systems have been considered to analyze and compare their performance. A new set of thermodynamic property relations [3], which are valid for maximum up to $50 \% \mathrm{wt}$. concentration of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ solutions, is considered in this Chapter. A parametric analysis is carried out to
show performance variation of the series, parallel and reverse parallel flow configurations of double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ VARS with LPG and HPG temperatures against fixed evaporator, condenser and absorber temperatures. The effect of distribution ratio (D), on performance the double effect parallel and reverse parallel flow systems is also investigated. Further, the performances of the double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems are compared with their counterparts operated with $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ pair under identical operating conditions. Details regarding performance of double $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ VARS configurations and their operational difference with corresponding double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ VARS configurations are also highlighted in this chapter.

4.2 Description of the double effect absorption refrigeration systems

The schematics, the $\mathrm{P}-\mathrm{T}-\mathrm{X}$ and the enthalpy concentration diagrams of the three different double effect VARS configurations (series parallel and reverse parallel) are shown in Figs. 4.1-4.3. The presented double effect VARS configurations are similar to those which were earlier presented by Farshi et al. [4]. In the series configuration (Fig. 4.1a), the strong solution from the absorber is pumped directly to the HPG via the two solution heat exchangers (SHE I and SHE II). In the HPG, due to heat supply from steam, water vapour is generated and the medium concentration solution is produced which then goes to the LPG. In the LPG, the HPG off primary vapour provides the latent heat of condensation required for secondary vapour generation from the medium concentration solution and no external heat source is used. The medium solution after vapour generation in the LPG becomes weak which is then routed to the absorber via SHE I and expansion valve (ExV3). The LPG off condensed water and the secondary water vapour, both enters the condenser and the condensed liquid refrigerant (water) then goes to the evaporator through expansion valve $1(\mathrm{ExV1})$. In the evaporator, the liquid refrigerant is evaporated which then goes to the absorber and dissolved with the weak refrigerant solution.

Fig. 4.1a: Schematic of a double effect VARS (Series configuration)

Fig. 4.1b: $\mathrm{P}-\mathrm{T}-\mathrm{X}$ diagram of double effect VARS (Series configuration)

Fig.4.1c: Enthalpy-Concentration diagram (Series configuration)

In the parallel configuration (Fig. 4.2a), the absorber leaving strong solution from the absorber is distributed among the LPG and the HPG. The strong refrigerant solution after passing through SHE I, is divided into two streams: one stream goes to the LPG via expansion valve $4(E x V 4)$ and the other stream enters the HPG via SHE II. The medium concentration solution from the HPG flows back via SHE II and expansion valve 5 (ExV5) which then mix with the LPG off weak solution before it finally enters the absorber via SHE I and ExV3.

In the reverse parallel flow configuration (Fig. 4.3a), the absorber leaving strong solution first goes to the LPG via SHE I for partial vapour generation where the weak refrigerant solution is also produced. The LPG off weak solution is divided into two parts: one part is pumped to the HPG via SHE II and the other part is mixed with the HPG off medium concentration solution before it is routed to the absorber via SHE II
and ExV3. As such, two SPs are required in the reverse parallel configuration compared to one in the series and parallel configurations. Similarly in the series and reverse parallel configurations, total four expansion valves are required while in the parallel configuration, total five expansion valves are used.

Fig. 4.2a: Schematic of a double effect VARS (parallel configuration)

Temperature ${ }^{\circ} \mathrm{C}$
Fig. 4.2b: $\mathrm{P}-\mathrm{T}-\mathrm{X}$ diagram of double effect VARS (Parallel configuration)

Fig.4.2c: Enthalpy-Concentration diagram (Parallel configuration)

Fig. 4.3a: Schematic of a double effect VARS (reverse parallel configuration)

Temperature ${ }^{\circ} \mathrm{C}$

Fig. 4.3b: $\mathrm{P}-\mathrm{T}-\mathrm{X}$ diagram of double effect VARS (Reverse parallel configuration)

Fig.4.3c: Enthalpy-Concentration diagram (Reverse Parallel configuration)

4.3 Modeling assumptions

For energy analysis of the double effect systems also, certain assumptions are made in aligned with the assumptions of some previous studies [4, 5, 6, 7, 8, 9]. It is assumed that the systems operate under steady state. Heat loss between the system and surroundings is negligible. Pressure losses in the pipelines and heat exchangers are neglected. The refrigerant (water) is saturated liquid at condenser exit and saturated vapour at the evaporator outlet. Further, it is assumed that the absorber and evaporator pressures are equal. Similarly, condenser and LPG pressure are also assumed same. It is also assumed that the strong refrigerant solution at absorber exit is saturated liquid mixture at absorber temperature and pressure. Medium and weak solutions at HPG and LPG exits are saturated liquid mixtures at their respective generator temperature and pressure. HPG heat source is saturated steam with its saturation temperature $10^{\circ} \mathrm{C}$ higher than the HPG temperature. Simulation is carried out for a fixed cooling load of 350 kW . Motor efficiency is taken as 90% while the efficiencies of SHE I and SHE II are taken as 75%. Water temperatures at inlet and outlet of the condenser and absorber are considered as $25^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ respectively. For condensation of refrigerant vapour in the condenser, the vapour needs to reject heat to water and therefore, the water temperatures must be less than that of the condenser temperature $\left(T_{C}\right)$. For this reason, the water temperature at condenser exit is considered $30^{\circ} \mathrm{C}$ to maintain a minimum $3^{\circ} \mathrm{C}$ of terminal temperature difference. In the absorber also, for the same reason, the water inlet and outlet temperatures are considered to be less than that of the absorber temperature $\left(T_{A}\right)$ for effective heat transfer between the two mediums. In fact, similar water temperatures $\left(25^{\circ} \mathrm{C}\right.$ and $\left.30^{\circ} \mathrm{C}\right)$ at inlet and outlet of the condenser and absorber were considered in the Ref. [5]. Evaporator inlet and outlet water temperatures are taken as $15^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ respectively. It can be assumed that the chilled water coming out from the evaporator at $10^{\circ} \mathrm{C}$ can cool and dehumidify certain amount of hot and humid moist air in air conditioning (AC) apparatus. After receiving heat from the AC apparatus, the temperature of water at AC apparatus exit will increase and therefore, the water temperature at evaporator inlet is assumed $15^{\circ} \mathrm{C}$.

4.4 Mathematical Modeling of the double effect VARS configurations

Thermodynamic properties of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ solution are calculated using the correlations of Patek and Klomfer [3]. The medium solution concentration at the HPG
exit (X_{8}) depends on pressure and temperature in the LPG, HPG, evaporator, absorber and the condenser. This is calculated in an iterative manner such that it satisfies the energy balance in the LPG [4]. For calculation of X_{8}, first the strong and weak solution concentrations (X_{4} and X_{15}) at the outlets of the absorber and the LPG are required to be calculated. X_{4} and X_{15} are also calculated iteratively using some specific set of equations (chemical potential) given in Ref. [3] from known pressure and temperature in these components. Details are shown in the Appendix. From known medium solution concentration at HPG exit (X_{8}) and HPG temperature ($T_{H P G}$), next the HGP pressure is determined using correlations given in Ref. [3] through iterative procedure. Thermodynamic properties of liquid water and water vapour (steam) are computed using equations taken from International Associations for the Properties of Water and Steam (IAPWS) formulation 1997 [10].

For all the three (series, parallel and reverse parallel flow) configurations, the following general mass and energy balance equations of steady flow processes are applied.

Mass conservation: $\quad \sum \dot{m}_{\text {in }}=\sum \dot{m}_{\text {out }}$

$$
\begin{equation*}
\sum \dot{m}_{\text {in }} X_{\text {in }}=\sum \dot{m}_{\text {out }} X_{\text {out }} \tag{4.2}
\end{equation*}
$$

Energy conservation: $\sum \dot{Q}-\sum \dot{W}=\sum(\dot{m} h)_{i n}-\sum(\dot{m} h)_{o u t}$

The distribution ratio (D) is an important parameter for the double effect parallel (Fig. 4.1b) and reverse parallel flow (Fig. 4.1c) configurations which is defined as follows.

$$
\begin{align*}
& D_{\text {parallel }}=\frac{\dot{m}_{6 a}}{\dot{m}_{4}} \tag{4.4}\\
& D_{\text {reversepaullel }}=\frac{\dot{m}_{15 a}}{\dot{m}_{15}} \tag{4.5}
\end{align*}
$$

From mass balance, the solution concentration at absorber inlet of the parallel and reverse parallel configurations, in terms of D, X_{8} and X_{15}, can be expressed as follows.

$$
\begin{equation*}
X_{17}=\frac{1}{\left[\frac{D}{X_{8}}+\frac{1-D}{X_{15}}\right]} \tag{4.6}
\end{equation*}
$$

Effectiveness method is used to calculate solution temperatures at the outlets of SHE I and SHE II. The mass flow rates of refrigerant $\left(\dot{m}_{r}\right)$ in the double effect series, parallel and reverse parallel systems are determined from known evaporator cooling load $\left(\dot{Q}_{E}\right)$ as follows.

$$
\begin{equation*}
\dot{m}_{r}=\frac{\dot{Q}_{E}}{h_{3}-h_{2}} \tag{4.7}
\end{equation*}
$$

The amount of steam required in the HPG of the double effect series, parallel and reverse parallel systems are calculated using the following equations.

$$
\begin{equation*}
\dot{m}_{s, G}=\frac{\dot{Q}_{H P G}}{h_{18}-h_{19}} \tag{4.8}
\end{equation*}
$$

where, $\dot{Q}_{H P G}$ is the heat load in the HPG.

COP of the double effect systems are determined as follows.
$C O P=\frac{\dot{Q}_{E}}{\dot{Q}_{H P G}+\dot{W}_{S P}}, \dot{W}_{S P}$ is the SP pumping work.

The modeling procedure adopted for simulation of double effect VARS configurations is same for both $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ and $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ solution pairs. Thermodynamic property relations for $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ are taken from Patek and Klomfar [9].

4.5 Validation

Not much experimental data related to VARS performance is available in the literature; neither for $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ nor for $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ operated double effect systems. Contrary to this, a good number of theoretical studies on $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ systems are available in the literature. In many theoretical studies related to VARS performance analysis with $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ solution pair, the property equations of Patek and Klomfer [8] are used [4, 5, 8-11]. From measured experimental data, Kaita [12] also developed equations for calculations of vapour pressure, specific heat, enthalpy and entropy of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$
solution to facilitate modeling of multi-effect absorption chillers. Property equations of Kaita [12] are also used in VARS simulation [13]. For $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ solution also, experimental studies were carried out to develop equations for determining properties through curve fitting of experimental results [3, 14-16]. As such, the property model equations of Patek and Klomfar [3] are the most recent ones. Moreover, entropy related information of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ solution is given only in the Ref. [3]. To show that the calculated property values are accurate, the present results are compared in Table 4.1 with those of Patek and Klomfar [3, 11] separately for $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ and $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$. This comparison now shows the correct implementation of the model equations into a corresponding computer code in the sense that the results of Patek and Klomfar [3, 11] could be produced exactly by using their model equations. Further, vapor pressure and enthalpy of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ solution are compared with the experimental results of Conde [14] and Chaudhari and Patil [16]. The comparison is shown in Table 4.2 which shows some deviation in the present results obtained from the model equations of Patek and Klomfar [3] with those of Refs. [14, 16]. It may be mentioned that the formulation of thermodynamic property relations by Patek and Klomfar [3] is also based on curve fitting of experimental data where they used total 136 experimental works containing more than 2921 data points on various thermodynamic properties of the $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ solutions.

It was also tried to validate the system model, which however was not possible for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ operated double effect VARS configurations due to lack of available results. A double effect series configuration was earlier modeled by Won and Lee [1] using $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ as working pair, but the modeling procedure and equations used for calculating properties of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ were entirely different from the present ones. Recently She et al. [17] and Bellos et al. [2] also made use of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ in modeling respectively a two stage and a double effect parallel VARS configuration but these configurations presented in Refs. [2, 17] are not similar with the ones presented in this Chapter. Instead, the system model validation is presented for the $\mathrm{H}_{2} \mathrm{O}$-LiBr based double effect series configuration in which, the simulation results are compared with the results of Gomri and Hakimi [9] and Farshi et al. [6]. The comparison is shown in Table 4.3 and Table 4.4. A good agreement between the present and the previously published results was observed except little deviations in the enthalpy values at state points 6, 7, 9 and 10. Due to this little change in the enthalpy value at state point 7 , the HPG heat load ($\dot{Q}_{H P G}$) also changed slightly in Table 4.3 and consequently, COP value was found
slightly higher in this study than those of Gomri [9] and Farshi et al. [4] at same operating conditions.

The calculated enthalpy and entropy values of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ solution were compared additionally with the results of Kaita [12] and it was found that the results match very well. Say for example, at a temperature of $200^{\circ} \mathrm{C}$ and $50 \% \mathrm{wt}$. concentration, the enthalpy and entropy values obtained from equations of Patek and Klomfar [11] in this study were found to be $448.864 \mathrm{~kJ} / \mathrm{kg}$ ad $1.219 \mathrm{~kJ} / \mathrm{kgK}$ respectively against $444.9 \mathrm{~kJ} / \mathrm{kg}$ and $1.217 \mathrm{~kJ} / \mathrm{kgK}$ reported by Kaita [12].

Attempt was also made to validate the present $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ based simulation results with those of Farshi et al. [6] for the double effect parallel and reverse parallel configurations. However, due to lack of information regarding LPG temperature, considered during $T_{H P G}$ variation in Ref. [6], this could not be done. In fact, Farshi et al. [6] also validated their simulation results comparing with those of Gomri and Hakimi [9] only.

Table 4.1: Comparison of property values obtained from the computer program with values given in Patek and Klomfar [3] and Patek and Klomfar

Property values of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ given in Patek and Klomfar [3]

| T
 $(\mathrm{~K})$ | $P(\mathrm{~Pa})$ | ρ
 $\left(\mathrm{mol} / \mathrm{m}^{3}\right)$ | $h(\mathrm{~J} / \mathrm{mol})$ | $S(\mathrm{~J} / \mathrm{molK})$ | C_{p}
 $(\mathrm{~J} / \mathrm{molK})$ | $P(\mathrm{~Pa})$ | ρ
 $\left(\mathrm{mol} / \mathrm{m}^{3}\right)$ | $h(\mathrm{~J} / \mathrm{mol})$ | $S(\mathrm{~J} / \mathrm{molK})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

	Property values of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ given in Patek and Klomfar [11]						Property values obtained from the computer program				
X	$\begin{gathered} T \\ (\mathrm{~K}) \end{gathered}$	$P(\mathrm{~Pa})$	$\begin{gathered} \rho \\ \left(\mathrm{mol} / \mathrm{m}^{3}\right) \end{gathered}$	$h(\mathrm{~J} / \mathrm{mol})$	s ($\mathrm{J} / \mathrm{molK}$)	$\begin{gathered} C_{p} \\ (\mathrm{~J} / \mathrm{molK}) \end{gathered}$	$P(\mathrm{~Pa})$	$\begin{gathered} \rho \\ \left(\mathrm{mol} / \mathrm{m}^{3}\right) \end{gathered}$	$h(\mathrm{~J} / \mathrm{mol})$	$s(\mathrm{~J} / \mathrm{molK})$	$\begin{gathered} C_{p} \\ (\mathrm{~J} / \mathrm{molK}) \end{gathered}$
0.05	300	3025.1805	54148.9	1603.9	7.79057	69.931	3025.1805	54148.95	1603.851	7.79047	69.931
0.05	450	835,097.47	48984.9	12,189.00	36.5288	74.047	835097.48	48984.95	12188.91	36.5287	74.047
0.1	300	2286.4858	52985.4	1445.1	7.66416	65.52	2286.4858	52985.42	1445.004	7.66407	65.52
0.1	450	647,702.12	48550.2	11,555.20	34.9553	70.305	647702.12	48550.22	11555.09	34.9552	70.305
0.3	350	2237.3986	47826.4	9072.1	15.3214	66.597	2237.3986	47826.42	9072.022	15.3213	66.597
0.4	450	43,075.149	45941.8	21,024.40	33.3788	70.294	43075.149	45941.89	21024.33	33.3788	70.294

Table 4.2: Comparison of vapour pressure and enthalpy values obtained from the computer program with experimental results [16] and results of Conde [14]

Temperature (${ }^{\circ} \mathrm{C}$)							
X (\%)	Vapour pressure (kPa)	30	40	50	60	70	80
19.27	Conde [14]	3	5.24	8.8	14.27	22.42	34.22
	Experimental [16]	3.01	5.25	8.83	14.32	22.5	34.37
	Present study	3.23	5.64	9.46	15.33	24.05	36.66
36.98	Conde [14]	1.06	1.93	3.37	5.67	9.23	14.56
	Experimental [16]	1.03	1.87	3.28	5.54	9.06	14.37
	Present study	1.35	2.43	4.19	6.99	11.28	17.66
44.19	Conde [14]	0.55	1.04	1.86	3.21	5.35	8.62
	Experimental [16]	0.57	1.07	1.92	3.32	5.56	9
	Present study	0.77	1.42	2.51	4.28	7.06	11.29
X (\%)	Enthalpy (kJ/kg)	30	40	50	60	70	80
20	Conde [14]	82.43	114.86	147.35	179.88	212.47	245.1
	Experimental [16]	82.5	115	147.5	180.1	212.6	245.3
	Present study	84.95	117.36	149.74	182.13	214.56	247.03
35	Conde [14]	108.87	137.24	165.6	193.94	222.27	250.59
	Experimental [16]	108.5	136.8	165.2	193.5	221.9	250.2
	Present study	89.44	116.99	144.39	171.66	198.86	226.00
45	Conde [14]	-	-	230.21	255.34	280.44	305.5
	Experimental [16]	-	-	230.9	256	281	306.1
	Present study	134.03	159.01	183.77	208.34	232.78	257.10

Table 4.3: Comparison of present results (double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ series configuration) with those of Gomri and Hakimi [9] and Farshi et al. [6]

State Point	T (K)		$\dot{m}(\mathrm{~kg} / \mathrm{s})$			X (\%)			$h(\mathrm{~kJ} / \mathrm{kg})$		
	Gomri	Farshi	Present study	Gomri	Farshi	Present study	Gomri	Farshi	Present study	Farshi	Present study
1	308	308	308.15	0.127	0.127	0.127	-	-	-	146.59	146.64
2	277	277	277.15	0.127	0.127	0.127	-	-	-	146.59	146.64
3	277	277	277.15	0.127	0.127	0.127	-	-	-	2507.87	2508.20
4	308	308	308.15	1.737	1.735	1.736	55.869	55.88	55.87	87.67	87.66
5	308	308	308.17	1.737	1.735	1.736	55.869	55.88	55.87	87.67	87.70
6	335.49	335.49	336.62	1.737	1.735	1.736	55.869	55.88	55.87	143.14	145.17
7	379.81	379.8	381.58	1.737	1.735	1.736	55.869	55.88	55.87	235.43	238.87
8	403	403	403.15	1.671	1.67	1.671	58.056	58.07	58.05	288.40	288.37
9	349.09	356.09	356.58	1.671	1.67	1.671	58.056	58.07	58.05	192.49	193.15
10	349.09	356.09	356.58	1.671	1.67	1.671	58.056	58.07	58.05	192.49	193.15
11	403	403	403.15	0.065	0.065	0.065	-	-	-	2740.53	2741.00
12	355.46	355.45	355.62	0.065	0.065	0.065	-	-	-	345.21	345.34
13	308	308	308.15	0.065	0.065	0.065	-	-	-	345.21	345.34
14	353	353	353.15	0.062	0.062	0.062	-	-	-	2649.57	2650.00
15	353	353	353.15	1.61	1.608	1.609	60.278	60.294	60.280	195.84	195.82
16	321.67	321.67	321.66	1.61	1.608	1.609	60.278	60.294	60.280	135.98	135.67
17	321.67	321.67	321.66	1.61	1.608	1.609	60.278	60.294	60.280	135.98	135.67

Table 4.4: Comparison of component heat loads, SP power and COP of present study with those of Gomri and Hakimi [9] and Farshi et al.
[4] at $T_{C}=T_{A}=35^{\circ} \mathrm{C}, T_{E}=4^{\circ} \mathrm{C}, T_{H P G}=130^{\circ} \mathrm{C}, T_{L P G}=80^{\circ} \mathrm{C}, 70 \%$ SHE I and SHE II efficiencies and 95% SP efficiency for the double effect series configuration

Parameter	Gomri [9]	Farshi [4]	Present study
HPG, $\left(\dot{Q}_{H P G} \mathrm{~kW}\right)$	252.407	252.394	245.353
Condenser, $\dot{Q}_{C} \mathrm{~kW}$	167.205	167.190	168.461
Evaporator, $\left(\dot{Q}_{E} \mathrm{~kW}\right)$	300.000	300.000	300.000
Absorber, $\left(\dot{Q}_{A} \mathrm{~kW}\right)$	385.236	385.203	384.716
$\mathrm{SP},\left(\dot{W}_{S P} \mathrm{~kW}\right)$	≈ 0.000	0.033	0.058
COP	1.189	1.188	1.222

4.6 Results and Discussion

In this section, the computer simulation based performance results are shown separately for each of the double effect series, parallel and reverse parallel configurations. For each system, performance variation is shown with respect to $T_{L P G}$ and $T_{H P G}$ for three cases of condenser and absorber temperatures (T_{C} and T_{A}) viz. $33^{\circ} \mathrm{C}$, $35^{\circ} \mathrm{C}$ and $38^{\circ} \mathrm{C}$ respectively where T_{C} and T_{A} values are assumed equal. Performance variation is also shown for two evaporator temperatures viz. $T_{E}=8^{\circ} \mathrm{C}$ and $T_{E}=5^{\circ} \mathrm{C}$. In case of the parallel and reverse parallel systems, the distribution ratio (D) is varied to show its effect on COP and also to find the optimum D with respect $T_{L P G}$ and $T_{H P G}$ variations. The ranges of $T_{L P G}$ and $T_{H P G}$ for the three systems and D in case of the parallel and reverse parallel systems are selected in such a way that in no case, the $\mathrm{H}_{2} \mathrm{O}-$ LiCl solution concentration exceeds 50% limit. Simulation of the three systems is carried out for a constant evaporator cooling load of 350 kW . During $T_{H P G}$ variation, the distribution ratio D for the parallel and reverse parallel systems are kept fixed at 0.5 . This is at this D, actually the COPs of the parallel and reverse parallel systems are found maximum and any attempt to reduce D below 0.5 results in increase of solution concentration above 50%. This is explained more clearly later in Section 4.6.3. In the reverse parallel system, during $T_{L P G}$ and $T_{H P G}$ variation at (i) fixed $T_{C}=T_{A}=38^{\circ} \mathrm{C}$ and T_{E} $=8^{\circ} \mathrm{C}$ and (ii) fixed $T_{C}=T_{A}=35^{\circ} \mathrm{C}$ and $T_{E}=5^{\circ} \mathrm{C}$ however, the distribution ratios are taken as 0.6 and 0.65 respectively.

4.6.1 Effect of HPG temperature ($T_{H P G}$) on performance of double effect $\mathbf{H}_{\mathbf{2}} \mathbf{O} \mathbf{-} \mathbf{L i C l}$ VARS configurations

The effect of $T_{H P G}$ variation on COP at three different absorber and condenser temperatures $\left(33^{\circ} \mathrm{C}, 35^{\circ} \mathrm{C}\right.$ and $38^{\circ} \mathrm{C}$) and two different evaporator temperatures ($T_{E}=5^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$) is shown in Fig. 4.4a and Fig. 4.4b. Fig. 4.4a corresponds to $T_{H P G}$ variation with simultaneous change in $T_{L P G}$ while in Fig. 4.4b, $T_{H P G}$ variation is done for fixed $T_{L P G}$ values. In Fig. 4.4a, during $T_{H P G}$ variation from $95^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ (Case 1: fixed $T_{C}=T_{A}=33^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$) with respect to the series flow configuration, a constant
$34^{\circ} \mathrm{C}$ difference is maintained between $T_{H P G}$ and $T_{L P G}$. In the parallel configuration, the $T_{H P G}$ range is taken from $98^{\circ} \mathrm{C}$ to $106^{\circ} \mathrm{C}$ while in the reverse parallel configuration; the $T_{\text {HPG }}$ range is small and it is varied from $100^{\circ} \mathrm{C}$ to $102^{\circ} \mathrm{C}$. The difference between $T_{H P G}$ and $T_{L P G}$ in the parallel and reverse parallel systems are taken as $37^{\circ} \mathrm{C}$ and $39^{\circ} \mathrm{C}$ respectively. With temperatures fixed in the other components, the selected range of $T_{H P G}$ variation for the series, parallel and reverse parallel configurations is clearly visible in Fig. 4.4a. At fixed $T_{C}=T_{A}=35^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$ (Case 2), a difference of $36^{\circ} \mathrm{C}$ between $T_{H P G}$ and $T_{L P G}$ is maintained in the series configuration. For the parallel and reverse parallel systems, this difference between $T_{H P G}$ and $T_{L P G}$ are $38^{\circ} \mathrm{C}$ and $41^{\circ} \mathrm{C}$ respectively. At fixed $T_{C}=T_{A}=38^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$ (Case 3), the difference between $T_{H P G}$ and $T_{L P G}$ is fixed at $40^{\circ} \mathrm{C}$ while for the parallel and reverse parallel systems, this difference between $T_{H P G}$ and $T_{L P G}$ are $41^{\circ} \mathrm{C}$ and $42^{\circ} \mathrm{C}$ respectively. At fixed $T_{C}=T_{A}=35^{\circ} \mathrm{C}$ and $T_{E}=5^{\circ} \mathrm{C}($ Case 4), $T_{H P G}$ and $T_{L P G}$ difference is considered to be $39^{\circ} \mathrm{C}$ for the series configuration while in the parallel and reverse parallel systems, this differences are taken as $41^{\circ} \mathrm{C}$ and $42^{\circ} \mathrm{C}$ respectively. The decision regarding this simultaneous $T_{H P G}$ and $T_{L P G}$ change and also fixed $T_{L P G}$ during $T_{H P G}$ variation was taken after lot of maneuvering with the computer simulation programs to finally arrive at the optimal temperature difference in various cases.

From Fig. 4.4a, it was seen that the COP increases with increase in both $T_{H P G}$ and $T_{L P G}$ for all the three double effect system configurations at fixed other component temperatures. In the series configuration, during $T_{H P G}$ variation from $95^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ (also $T_{L P G}$ with $34^{\circ} \mathrm{C}$ difference) at fixed $T_{C}=T_{A}=33^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$, the maximum COP (1.428) was obtained at $T_{H P G}=105^{\circ} \mathrm{C}$ and $T_{L P G}=71^{\circ} \mathrm{C}$. At fixed $T_{C}=T_{A}=33^{\circ} \mathrm{C}$ and T_{E} $=8^{\circ} \mathrm{C}$, the maximum COP in the parallel configuration was found to be 1.469 which occurs at $T_{H P G}=106^{\circ} \mathrm{C}$ and $T_{L P G}=69^{\circ} \mathrm{C}$. Similarly, in the reverse parallel configuration, the maximum COP (1.406) was found at $T_{H P G}=102^{\circ} \mathrm{C}$ and $T_{L P G}=63^{\circ} \mathrm{C}$. Further it was seen that at a fixed T_{E} of $8^{\circ} \mathrm{C}$, COP decreases with increasing absorber and condenser temperatures. The corresponding maximum COPs for Case 2 at $T_{C}=T_{A}=35^{\circ} \mathrm{C}$ and $T_{E}=$
$8^{\circ} \mathrm{C}$ for the series, parallel and reverse parallel systems were found $1.369,1.411$ and 1.347 respectively. These maximum COPs were obtained at $T_{H P G}=109^{\circ} \mathrm{C}$ and $T_{L P G}$ $=73^{\circ} \mathrm{C}$ in the series configuration; $T_{H P G}=109^{\circ} \mathrm{C}$ and $T_{L P G}=71^{\circ} \mathrm{C}$ in the parallel configuration; $T_{H P G}=108^{\circ} \mathrm{C}$ and $T_{L P G}=67^{\circ} \mathrm{C}$ in the reverse parallel configuration. At $T_{C}=$ $T_{A}=38^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$, the maximum COPs were found to be 1.207, 1.273 and 1.209 respectively and these maximum COP values were obtained at $T_{H P G}=116^{\circ} \mathrm{C}$ and $T_{L P G}$ $=76^{\circ} \mathrm{C}$ in the series configuration; $T_{H P G}=116^{\circ} \mathrm{C}$ and $T_{L P G}=75^{\circ} \mathrm{C}$ in the parallel configuration; $T_{H P G}=115^{\circ} \mathrm{C}$ and $T_{L P G}=73^{\circ} \mathrm{C}$ in the reverse parallel configuration. Comparing the performance of the double effects systems at fixed $T_{C}=T_{A}=35^{\circ} \mathrm{C}$ and at two different evaporator temperatures, it was found that the double effect systems perform better at $T_{E}=8^{\circ} \mathrm{C}$ than at $T_{E}=5^{\circ} \mathrm{C}$. It was also seen that the maximum COPs which were obtained for the double effect systems was the highest for the double effect parallel followed by those of the series and reverse parallel configurations.

Fig 4.4a: COP variation with simultaneous change in $T_{H P G}$ and $T_{L P G}$ for the series, parallel and reverse parallel configurations with $T_{H P G}-T_{L P G}$ differences of (i) $34^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$ and $39^{\circ} \mathrm{C}$ during Case 1 , (ii) $36^{\circ} \mathrm{C}, 38^{\circ} \mathrm{C}$ and $41^{\circ} \mathrm{C}$ during Case 2 (iii) $40^{\circ} \mathrm{C}, 41^{\circ} \mathrm{C}$ and $42^{\circ} \mathrm{C}$ during Case 3 and (iv) $39^{\circ} \mathrm{C}, 41^{\circ} \mathrm{C}$ and $42^{\circ} \mathrm{C}$ during Case 4

Fig 4.4b: COP variation with $T_{H P G}$ at fixed $T_{L P G}$ for the series, parallel and reverse parallel configurations respectively $\left[T_{L P G}\right.$ fixed at (i) $71^{\circ} \mathrm{C}, 69^{\circ} \mathrm{C}$ and $63^{\circ} \mathrm{C}$ during Case 1, (ii) $73^{\circ} \mathrm{C}, 71^{\circ} \mathrm{C}$ and $67^{\circ} \mathrm{C}$ during Case 2 (iii) $76^{\circ} \mathrm{C}, 75^{\circ} \mathrm{C}$ and $73^{\circ} \mathrm{C}$ during Case 3 (iv) $73^{\circ} \mathrm{C}, 72^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ during Case 4]

Further, it was observed that it is possible to operate the double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems relatively at low $T_{H P G}$ and $T_{L P G}$. The lower limit of $T_{H P G}$ (and hence also $T_{L P G}$) is actually decided by the operating temperatures of the other components. The systems can be operated at low $T_{H P G}$ by simultaneously lowering the absorber and condenser temperatures or alternately by increasing the evaporator temperature. Similarly, if the systems are to be operated at higher $T_{H P G}$ and $T_{L P G}$, then this can be done by simultaneously increasing the absorber and condenser temperatures and lowering the evaporator temperature. The lower limit of $T_{L P G}$ at fixed other component temperatures is actually limited by the mass balance in the system. It was earlier stated that the solution concentrations at the absorber, HPG and LPG outlets (X_{4}, X_{8} and X_{15}) were determined by using a specific set of equations taken from Patek and Klomfar [3] through an iterative calculation. System operation of a given double effect system at $T_{H P G}$ below certain limit leads to concentration values at which mass balance is no longer
satisfied. Say for example, X_{4} in case of the series flow system must be less than X_{15} which is not satisfied when $T_{H P G}$ is lowered below $95^{\circ} \mathrm{C}$ keeping T_{C} and T_{A} fixed at $33^{\circ} \mathrm{C}$ and T_{E} at $8^{\circ} \mathrm{C}$ (Fig. 4.4a). As mentioned earlier, X_{4} and X_{15} calculations are done iteratively with known pressure and temperature in the absorber and LPG respectively. However, X_{8} calculation is based on heat balance in the LPG (see Appendix for details). Therefore, at $T_{H P G}$ below certain limit, X_{15} becomes less than X_{4} and it affects the mass balance making system operation unrealistic.

It was also observed that the maximum solution concentration $\left(X_{15}\right)$ in the series configuration is mainly controlled by $T_{L P G}$ at fixed other components' temperatures. In the parallel and reverse parallel configurations, however, the maximum concentration (X_{8}) depends upon both $T_{L P G}$ and the distribution ratio D. In Fig. 4.4a, during simultaneous $T_{H P G}$ and $T_{L P G}$ variation at fixed $T_{C}=T_{A}=33^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$ (Case 1), the maximum limit of $T_{L P G}$ was not allowed to exceed $71^{\circ} \mathrm{C}$ in the series configuration, $69^{\circ} \mathrm{C}$ in the parallel configuration and $63^{\circ} \mathrm{C}$ in the reverse parallel configuration. Similarly, at fixed $T_{C}=T_{A}=35^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$ (Case 2), these maximum limits of $T_{L P G}$ in the series, parallel and reverse parallel configurations were fixed at $71^{\circ} \mathrm{C}, 69^{\circ} \mathrm{C}$ and $63^{\circ} \mathrm{C}$ respectively. These upper $T_{L P G}$ limits for the three double effect systems were $76^{\circ} \mathrm{C}$., $75^{\circ} \mathrm{C}$ and $73^{\circ} \mathrm{C}$ at fixed $T_{C}=T_{A}=38^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}$ (Case 3). Accordingly, at fixed $T_{C}=T_{A}$ $=35^{\circ} \mathrm{C}, T_{E}=5^{\circ} \mathrm{C}$ (Case 4) also, the maximum $T_{L P G}$ limits were different for the three double effect VARS configuration. This was done because otherwise the maximum solution concentration (X_{15} in the series and X_{8} in the parallel and reverse parallel) exceeds 50%. The changing solution concentrations (with simultaneous $T_{H P G}$ and $T_{L P G}$ variation) of the series, parallel and reverse parallel systems are shown in Table 4.5 (a-b) for all the four cases (Case 1-Case 4). That the maximum concentration in all these cases is within the limit of 0.5 is distinctly visible in Table $4.5(\mathrm{a}-\mathrm{b})$.

The pressure variation in the HPG is also shown in Table 4.5 (a-b) with simultaneous change in $T_{H P G}$ and $T_{L P G}$ for various test cases for all the three double effect systems. It was seen that for the series configuration, the HPG pressure ($P_{\text {HPG }}$) increases
with increase in $T_{H P G}$ and $T_{L P G}$ for all test cases while it decreases for the parallel and reverse parallel systems. The HPG pressure is dependent on $T_{H P G}$ and X_{8}; since with simultaneous increase in $T_{H P G}$ and $T_{L P G}, X_{8}$ also changes, therefore ultimately, the HPG pressure changes. The decreasing trend of $P_{H P G}$ with simultaneous increase in $T_{H P G}$ and $T_{L P G}$ in the parallel and reverse parallel systems (as opposed to the series one) could be due to the distribution ratio (D) which is very crucial in these two systems as indicated earlier.

Since the evaporator temperature is the same ($T_{E}=8^{\circ} \mathrm{C}$) during Case 1 , Case 2 and Case 3, therefore, the evaporator pressure $\left(P_{E}\right)$ remains is the same $(1.073 \mathrm{kPa})$ for all the three cases and it is also equal to the absorber pressure $\left(P_{A}\right)$. During Case 4 at T_{E} $=5^{\circ} \mathrm{C}$, however, $P_{E}=P_{A}=0.873 \mathrm{kPa}$. The evaporator and the absorber pressures are thus independent of change in $T_{C}, T_{A}, T_{H P G}$ and $T_{L P G}$. Similarly the equal LPG and condenser pressures ($P_{L P G}$ and P_{C}) are also shown in Table $4.5(\mathrm{a}-\mathrm{b})$ with respect to various test cases and these pressures don't change with $T_{E}, T_{A}, T_{H P G}$ and $T_{L P G}$.

The corresponding results of heat loads in various system components and the SP power for all the three double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems are shown in Table 4.6 (a-b). Heat load in the HPG $\left(\dot{Q}_{H P G}\right)$ and SP power $\left(\dot{W}_{S P}\right)$ decrease with simultaneous increase in $T_{H P G}$ and $T_{L P G}$ in all the three double effect VARS configurations. Therefore, COP shows a continuous increase with simultaneous increase in $T_{H P G}$ and $T_{L P G}$ in all the four cases. Absorber and condenser heat loads $\left(\dot{Q}_{A}\right.$ and $\left.\dot{Q}_{C}\right)$ also decrease with simultaneous increase in $T_{H P G}$ and $T_{L P G}$. LPG heat load $\left(\dot{Q}_{L P G}\right)$ in the series configuration shows an increasing trend while the trend is opposite in the parallel and reverse parallel configurations. Depending on fixed temperatures in the other system components, since $T_{L P G}$ cannot exceed beyond certain limit, therefore in Fig. 4.4b, the system performance (COP) variation is shown for the three double effect systems at $T_{H P G}$ values higher than those presented in Fig. 4.4a, including also the last $T_{H P G}$ value. However, here in Fig.
4.4b, $T_{L P G}$ values are fixed at their corresponding limiting values with respect to the four different cases of fixed other components' temperatures.

Table 4.5a: Pressure and concentration variation with simultaneous $T_{H P G}$ and $T_{L P G}$ change

$T_{H P G}\left({ }^{\circ} \mathrm{C}\right)$	Series			Parallel			Reverse Parallel							
	$P_{H P G}(\mathrm{kPa})$	X_{4}	X_{8}	X_{15}	$P_{H P G}(\mathrm{kPa})$	X_{4}	X_{8}	X_{15}	X_{17}	$P_{H P G}(\mathrm{kPa})$	X_{4}	X_{8}	X_{15}	X_{17}
Case 1: $T_{C}=T_{A}=33^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.035 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$														
95	24.061	0.423	0.424	0.426		-	-	-	-		-	-	-	-
96	24.491	0.423	0.428	0.433		-	-	-	-		-	-	-	-
97	24.934	0.423	0.432	0.441		-	-	-	-		-	-	-	-
98	25.388	0.423	0.436	0.448	26.398	0.423	0.429	0.426	0.428		-	-	-	-
99	25.856	0.423	0.439	0.455	26.113	0.423	0.438	0.433	0.436		-	-	-	-
100	26.337	0.423	0.443	0.463	25.811	0.423	0.446	0.441	0.444	27.367	0.423	0.437	0.426	0.431
101	26.830	0.423	0.447	0.470	25.492	0.423	0.455	0.448	0.452	24.234	0.423	0.464	0.433	0.448
102	27.339	0.423	0.450	0.477	25.155	0.423	0.464	0.455	0.460	20.882	0.423	0.493	0.441	0.465
103	27.864	0.423	0.454	0.484	24.792	0.423	0.473	0.463	0.468		-	-	-	-
104	28.406	0.423	0.457	0.491	24.404	0.423	0.482	0.470	0.476		-	-	-	-
105	28.965	0.423	0.460	0.498	23.989	0.423	0.491	0.477	0.484		-	-	-	-
106		-	-	-	23.552	0.423	0.499	0.484	0.492		-	-	-	-
Case 2: $T_{C}=T_{A}=35^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.629 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$														
103		-	-	-	29.853	0.439	0.442	0.439	0.441		-	-	-	-
104	29.650	0.439	0.450	0.461	29.508	0.439	0.451	0.446	0.449		-	-	-	-
105	30.165	0.439	0.454	0.468	29.140	0.439	0.459	0.454	0.457		-	-	--	-
106	30.696	0.439	0.457	0.475	28.751	0.439	0.468	0.461	0.465	33.266	0.439	0.444	0.439	0.441
107	31.243	0.439	0.461	0.482	28.329	0.439	0.477	0.468	0.472	29.592	0.439	0.470	0.446	0.458
108	31.805	0.439	0.464	0.489	27.880	0.439	0.486	0.475	0.480	25.727	0.439	0.498	0.454	0.475
109	32.384	0.439	0.468	0.496	27.404	0.439	0.495	0.482	0.488					

Table 4.5b: Pressure and concentration variation with simultaneous $T_{H P G}$ and $T_{L P G}$ change

$T_{\text {HPG }}\left({ }^{\circ} \mathrm{C}\right)$	Series			Parallel			Reverse Parallel							
	$P_{\text {HPG }}(\mathrm{kPa})$	X_{4}	X_{8}	X_{15}	$P_{\text {HPG }}(\mathrm{kPa})$	X_{4}	X_{8}	X_{15}	X_{17}	$P_{\text {HPG }}(\mathrm{kPa})$	X_{4}	X_{8}	X_{15}	X_{17}
Case 3: $T_{C}=T_{A}=38^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=6.632 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$														
112	37.299	0.463	0.463	0.466		-	-	-	-		-	-	-	-
113	37.870	0.463	0.467	0.473	37.343	0.463	0.470	0.466	0.468		-	-	-	-
114	38.454	0.463	0.471	0.480	36.810	0.463	0.478	0.473	0.475	37.440	0.463	0.474	0.466	0.471
115	39.054	0.463	0.475	0.487	36.236	0.463	0.487	0.480	0.483	33.615	0.463	0.496	0.473	0.488
116	39.668	0.463	0.478	0.494	35.630	0.463	0.495	0.487	0.491		-	-	-	-
Case 4: $T_{C}=T_{A}=35^{\circ} \mathrm{C}, T_{E}=5^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.629 \mathrm{kPa}, P_{A}=P_{E}=0.873 \mathrm{kPa}$														
108	31.460	0.466	0.466	0.468		-	-	-	-		-	-	-	-
109	31.951	0.466	0.470	0.475		-	-	-	-		-	-	-	-
110	32.454	0.466	0.474	0.482	32.799	0.466	0.472	0.468	0.470		-	-	-	-
111	32.968	0.466	0.478	0.489	32.311	0.466	0.481	0.475	0.478	33.237	0.466	0.476	0.468	0.473
112	33.497	0.466	0.481	0.496	31.792	0.466	0.490	0.482	0.486	30.054	0.466	0.498	0.475	0.490
113		-	-	-	31.241	0.466	0.498	0.489	0.494		-	-	-	-

Table 4.6a: Variation of heat Loads (\dot{Q} in kW) and SP powers ($\dot{W}_{S P 1}$ and $\dot{W}_{S P 2}$ in Watt) with simultaneous $T_{H P G}$ and $T_{L P G}$ change for Case 1 and Case 2

Table 4.6b: Variation of heat Loads (\dot{Q} in kW) and SP powers ($\dot{W}_{S P 1}$ and $\dot{W}_{S P 2}$ in Watt) with simultaneous $T_{H P G}$ and $T_{L P G}$ change for Case 3 and Case 4

From Fig. 4.4b, it is seen that if $T_{H P G}$ is increased further, keeping $T_{L P G}$ fixed at their respective limiting values, COP of all the three double effect systems decreases. Therefore, it can now be said that the COPs which were shown earlier in Fig. 4.4a are the maximum at the respective values of $T_{H P G}$ and $T_{L P G}$. During this $T_{H P G}$ variation at fixed $T_{L P G}$, the solution concentrations don't change with $T_{H P G}$ although the values are different in different test cases. The solution concentration values are shown in Table 4.7. Say for example in Case 1 at $T_{C}=T_{A}=33^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}, X_{4}$ remains constant at 0.423 in all the three double effect systems. In the series configuration, X_{8} and X_{15} remain fixed at 0.46 and 0.498 respectively.

In the parallel configuration, fixed X_{8} and X_{15} values are 0.499 and 0.484 while in the reverse parallel configuration, these are respectively 0.492 and 0.441 . It shows that the solution concentrations don't depend on $T_{H P G}$ and hence the concentration values remain unchanged with increasing $T_{H P G}$ at fixed $T_{L P G}$. Since, the concentration values don't change with $T_{H P G}$ at fixed $T_{L P G}$, therefore, X_{8} also remains invariant and consequently, the HPG pressure in the double effect systems increase when $T_{\text {HPG }}$ increase. This is depicted in Fig. 4.5 for various test cases.

Corresponding to change in $T_{H P G}$ at fixed $T_{L P G}$, the results concerning heat loads and SP power are shown in Table 4.8a for Case 1, Table 4.8b for Case 2 and Case 3 and in Table 4.8c for Case 4. COP decreases with further increase in $T_{H P G}$ at fixed $T_{L P G}$ for all the systems due to increase in HPG heat load $\left(\dot{Q}_{H P G}\right)$ and SP power $\left(\dot{W}_{S P}\right)$. In all the four cases, LPG heat load ($\dot{Q}_{L P G}$) decreases while condenser heat load (\dot{Q}_{C}) increases with $T_{H P G}$ at fixed $T_{L P G}$. Absorber heat load $\left(\dot{Q}_{A}\right)$ slightly increases in the parallel and reverse parallel configurations, which, however remains invariant with $T_{H P G}$ in the series configuration.

Table 4.7: Fixed solution concentrations in various cases with respect to $T_{H P G}$ variation at fixed $T_{L P G}$

Cases	Series		Parallel			Reverse Parallel					
	X_{4}	X_{8}	X_{15}	X_{4}	X_{8}	X_{15}	X_{17}	X_{4}	X_{8}	X_{15}	X_{17}
Case 1: $T_{C}=T_{A}=33^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}$	0.423	0.460	0.498	0.423	0.499	0.484	0.492	0.423	0.492	0.441	0.465
Case 2: $T_{C}=T_{A}=35^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}$	0.439	0.467	0.496	0.439	0.494	0.482	0.488	0.439	0.498	0.454	0.475
Case 3: $T_{C}=T_{A}=38^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}$	0.463	0.478	0.494	0.463	0.495	0.487	0.491	0.463	0.496	0.473	0.487
Case 4: $T_{C}=T_{A}=35^{\circ} \mathrm{C}, T_{E}=5^{\circ} \mathrm{C}$	0.466	0.481	0.496	0.466	0.498	0.489	0.494	0.466	0.498	0.475	0.490

Table 4.8a: Variation of heat Loads (\dot{Q} in kW) and SP powers ($\dot{W}_{S P 1}$ and $\dot{W}_{S P 2}$ in Watt) with $T_{H P G}$ at fixed $T_{L P G}$ for Case 1

Table 4.8b: Variation of heat Loads (\dot{Q} in kW) and SP powers ($\dot{W}_{S P 1}$ and $\dot{W}_{S P 2}$ in Watt) with $T_{H P G}$ at fixed $T_{L P G}$ for Case 2 and Case 3

$\begin{aligned} & T_{H P G} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Series					Parallel					Reverse Parallel					
	$\dot{Q}_{H P G}$	$\dot{Q}_{L P G}$	\dot{Q}_{A}	\dot{Q}_{C}	$\dot{W}_{S P}$	$\dot{Q}_{H P G}$	$\dot{Q}_{L P G}$	\dot{Q}_{A}	Q_{C}	$\dot{W}_{S P}$	$\dot{Q}_{H P G}$	$\dot{Q}_{L P G}$	\dot{Q}_{A}	\dot{Q}_{C}	$\dot{W}_{S P 1}$	$\dot{W}_{S P 2}$
	Case 2: $T_{C}=T_{A}=35^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.629 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$															
108	-	-	-	-	-	-	-	-	-	-	259.7	205.0	433.1	167.6	7.44	15.9
109	255.6	190.0	419.9	183.1	33.5	248.1	198.8	421.7	174.3	32.2	260.3	204.8	433.2	168.0	7.44	16.7
110	256.2	189.6	419.9	183.7	34.8	248.5	198.7	421.8	174.6	33.5	260.8	204.5	433.4	168.4	7.45	17.5
111	256.8	189.1	419.9	184.2	36.2	249.0	198.5	422.0	174.9	34.9	261.4	204.3	433.5	168.8	7.45	18.4
112	257.3	188.7	419.9	184.8	37.7	249.5	198.3	422.1	175.2	36.3	262.0	204.0	433.7	169.2	7.46	19.3
113	257.9	188.3	419.9	185.4	39.2	249.9	198.2	422.2	175.5	37.8	262.5	203.8	433.8	169.6	7.46	20.3
114	258.5	187.9	419.9	185.9	40.8	250.4	198.0	422.3	175.9	39.3	263.1	203.5	434.0	170.0	7.46	21.3
115	259.1	187.4	419.9	186.5	42.4	250.9	197.8	422.5	176.2	40.9	263.7	203.3	434.1	170.4	7.47	22.3
116	259.7	187.0	419.9	187.0	44.1	251.3	197.7	422.6	176.5	42.5	264.2	203.0	434.3	170.8	7.47	23.4
117	260.3	186.6	419.9	187.6	45.8	251.8	197.5	422.7	176.8	44.2	264.8	202.8	434.4	171.2	7.48	24.4
118	260.8	186.2	419.9	188.1	47.5	252.2	197.3	422.8	177.1	45.9	265.3	202.5	434.6	171.6	7.48	25.6
119	261.4	185.7	419.9	188.7	49.4	252.7	197.2	423.0	177.4	47.7	265.9	202.2	434.7	172.0	7.49	26.7
120	262.0	185.3	419.9	189.2	51.3	253.1	197.0	423.1	177.7	49.5	266.5	202.0	434.9	172.4	7.49	27.9
Case 3: $T_{C}=T_{A}=38^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=6.632 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$																
115	-	-	-	-	-	-	-	-	-	-	289.4	211.5	463.2	163.2	13.1	37.4
116	289.8	186.6	447.0	187.9	75.1	274.8	205.1	451.1	169.9	72.9	290.3	211.2	463.5	163.8	13.1	39.3
117	290.7	185.9	447.0	188.7	78.1	275.5	204.9	451.3	170.3	75.8	291.2	210.8	463.9	164.3	13.1	41.2
118	291.6	185.2	447.0	189.6	81.1	276.2	204.6	451.6	170.7	78.8	292.1	210.4	464.2	164.8	13.1	43.2
119	292.5	184.5	447.0	190.4	84.2	276.9	204.4	451.8	171.0	81.9	293.0	210.0	464.6	165.4	13.2	45.3
120	293.3	183.8	447.0	191.2	87.5	277.6	204.1	452.1	171.4	85.1	293.9	209.6	464.9	165.9	13.2	47.4

Table 4.8c: Variation of heat Loads (\dot{Q} in kW) and SP powers ($\dot{W}_{S P 1}$ and $\dot{W}_{S P 2}$ in Watt) with $T_{H P G}$ at fixed $T_{L P G}$ for Case 4

$T_{H P G}$ $\left({ }^{\circ} \mathrm{C}\right)$	Series					Parallel					Reverse Parallel					
	$\dot{Q}_{\text {HPG }}$	$\dot{Q}_{L P G}$	\dot{Q}_{A}	\dot{Q}_{C}	$\dot{W}_{S P}$	$\dot{Q}_{\text {HPG }}$	$\dot{Q}_{L P G}$	\dot{Q}_{A}	\dot{Q}_{C}	$\dot{W}_{S P}$	$\dot{Q}_{\text {HPG }}$	$\dot{Q}_{L P G}$	\dot{Q}_{A}	\dot{Q}_{C}	$\dot{W}_{S P 1}$	$\dot{W}_{S P 2}$
	Case 4: $T_{C}=T_{A}=35^{\circ} \mathrm{C}, T_{E}=5^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.629 \mathrm{kPa}, P_{A}=P_{E}=0.873 \mathrm{kPa}$															
112	289.7	187.4	447.6	186.9	63.7	-	-	-	-	-	295.2	211.0	466.8	163.7	11.6	38.0
113	290.6	186.7	447.6	187.7	66.3	275.5	205.3	451.7	169.6	64.4	296.2	210.6	467.2	164.3	11.6	39.9
114	291.5	186.0	447.6	188.6	68.9	276.2	205.1	451.9	170.0	67.1	297.2	210.1	467.6	164.9	11.6	41.9
115	292.4	185.2	447.6	189.4	71.7	276.9	204.8	452.2	170.4	69.8	298.3	209.7	468.0	165.4	11.6	43.9
116	293.3	184.5	447.5	190.3	74.5	277.6	204.6	452.5	170.8	72.6	299.3	209.3	468.4	166.0	11.6	46.1
117	294.2	183.8	447.5	191.1	77.4	278.3	204.3	452.7	171.2	75.5	300.3	208.9	468.8	166.6	11.7	48.3
118	295.1	183.1	447.5	192.0	80.4	279.0	204.1	453.0	171.6	78.5	301.3	208.4	469.2	167.1	11.7	50.6
119	296.0	182.4	447.5	192.8	83.5	279.7	203.9	453.3	172.0	81.6	302.3	208.0	469.6	167.7	11.7	52.9
120	296.9	181.6	447.5	193.7	86.7	280.4	203.6	453.5	172.4	84.8	303.4	207.6	470.0	168.3	11.7	55.4

Fig 4.5: $P_{H P G}$ variation with $T_{H P G}$ at fixed $T_{L P G}$ for the series, parallel and reverse parallel configurations respectively $\left[T_{L P G}\right.$ fixed at (i) $71^{\circ} \mathrm{C}, 69^{\circ} \mathrm{C}$ and $63^{\circ} \mathrm{C}$ during Case 1 , (ii) $73^{\circ} \mathrm{C}, 71^{\circ} \mathrm{C}$ and $67^{\circ} \mathrm{C}$ during Case 2 iii) $76^{\circ} \mathrm{C}, 75^{\circ} \mathrm{C}$ and $73^{\circ} \mathrm{C}$ during Case 3 (iv) $73^{\circ} \mathrm{C}$, $72^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ during Case 4]

4.6.2 Effect of LPG temperature ($T_{H P G}$) on performance of double effect $\mathbf{H}_{\mathbf{2}} \mathbf{O} \mathbf{-} \mathbf{- L i C l}$ VARS configurations

Earlier in Fig. 4.4a and Fig. 4.4b, when COP was shown corresponding to (i) simultaneous $T_{H P G}$ and $T_{L P G}$ variation and (ii) $T_{H P G}$ variation at fixed $T_{L P G}$, it was found that for a given test case, there exists an optimal $T_{H P G}$ and $T_{L P G}$ combination at which the COPs of the respective double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems are maximum. During simultaneous $T_{H P G}$ and $T_{L P G}$ variation, the difference between the two were so selected (after running the computer programs several times with various temperature differences between $T_{H P G}$ and $T_{L P G}$ and finally selecting the one that was reported earlier) that the COP value that was obtained is ultimately a maximum COP value within that range. The limiting upper $T_{L P G}$ (the value at which maximum solution concentration is within the limit of 0.5) was also found out earlier for all the three systems for various test cases.

Here in Fig. 4.6, COP is now shown for all the systems with changing $T_{L P G}$ at the corresponding fixed optimum $T_{H P G}$ values to establish the fact regarding maximum COP and the corresponding optimal $T_{H P G}$ and $T_{L P G}$ values for all the cases.

Fig 4.6: COP variation with $T_{L P G}$ at fixed $T_{H P G}$ for the series, parallel and reverse parallel configurations respectively $\left[T_{H P G}\right.$ fixed at (i) $105^{\circ} \mathrm{C}, 106^{\circ} \mathrm{C}$ and $102^{\circ} \mathrm{C}$ during Case 1 , (ii) $109^{\circ} \mathrm{C}, 109^{\circ} \mathrm{C}$ and $108^{\circ} \mathrm{C}$ during Case 2 (iii) $116^{\circ} \mathrm{C}, 116^{\circ} \mathrm{C}$ and $115^{\circ} \mathrm{C}$ during Case 3 (iv) $112^{\circ} \mathrm{C}, 113^{\circ} \mathrm{C}$ and $112^{\circ} \mathrm{C}$ during Case 4]

Say for example, in Case 1 at $T_{C}=T_{A}=33^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$, the $T_{H P G}$ values for the series, parallel and reverse parallel systems were fixed at $105^{\circ} \mathrm{C}, 106^{\circ} \mathrm{C}$ and $102^{\circ} \mathrm{C}$ and accordingly, $T_{L P G}$ was increased to its maximum possible value (limited by 50% solution concentration) to show the occurrence of maximum COP at those $T_{H P G}$ and $T_{L P G}$ values that were obtained earlier. This COP variation is additionally shown in Fig. 4.6 because earlier in Fig. 4.4a, it was shown for a constant temperature difference between $T_{H P G}$ and $T_{L P G}$. From Fig. 4.6, it is now seen that COP increases with $T_{L P G}$ at fixed $T_{H P G}$ for all the systems in various test cases. However, $T_{L P G}$ cannot cross the upper limit set by the maximum solution concentration of $50 \% . T_{L P G}$ also has a lower limit set by the mass
balance due to non fulfillment of previously mentioned criteria of concentration values. This is the reason that the range of $T_{L P G}$ was very narrow for the reverse parallel systems in all the test cases.

At fixed $T_{H P G}$, the HPG pressure ($P_{H P G}$) decreases with increase in $T_{L P G}$ in all the three double effect VARS configurations at various test cases. Say for example during Case 1, $P_{H P G}$ decreases from 35.909 kPa at $T_{L P G}=61^{\circ} \mathrm{C}$ to 28.964 kPa at $T_{L P G}=71^{\circ} \mathrm{C}$ in the series configuration. Similarly, in the reverse parallel system, during Case $1, P_{\text {HPG }}$ decreases from 36.262 kPa at $T_{L P G}=61^{\circ} \mathrm{C}$ to 23.552 kPa at $T_{L P G}=69^{\circ} \mathrm{C}$ Actually with increase in $T_{L P G}$ at fixed $T_{H P G}, X_{8}$ increases and since $P_{H P G}$ is a function of X_{8} and $T_{H P G}$, therefore, it finally results in decrease of $P_{H P G}$ at higher $T_{L P G}$.

The component heat loads and SP power with respect to $T_{L P G}$ variation at fixed $T_{\text {HPG }}$ for various test cases is shown in Table 4.9(a-b). With $T_{H P G}$ fixed at their respective optimal values, when $T_{L P G}$ is increased up to the maximum limit, HPG heat load $\left(\dot{Q}_{H P G}\right)$ and SP power $\left(\dot{W}_{S P}\right)$ decreases leading to COP increase in all the four test cases. In all the four various cases, $\dot{Q}_{L P G}$ increases while \dot{Q}_{A} and \dot{Q}_{C} decrease with $T_{L P G}$ in the series configuration. On the other hand, in the parallel and reverse parallel configurations, both $\dot{Q}_{L P G}$ and \dot{Q}_{A} decrease while \dot{Q}_{C} increases with increase in $T_{L P G}$.

4.6.3 Effect of \boldsymbol{D} on performance of the double effect parallel and reverse parallel $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems

The effect of distribution ratio ' D ' on performance (COP) of the double effect parallel and reverse parallel configurations is shown in Fig. 4.7. It was seen that the COP of both the parallel and reverse parallel systems decreases with increase in D in all the cases. D cannot be lowered below certain value in the parallel and reverse parallel systems because the solution concentration at HPG exit (X_{8}) in that case exceeds 50%. In the parallel system, the lower D limit was found to be 0.5 in Case $1\left(T_{C}=T_{A}=33^{\circ} \mathrm{C}\right.$ and $\left.T_{E}=8^{\circ} \mathrm{C}\right)$, Case $2\left(T_{C}=T_{A}=35^{\circ} \mathrm{C}\right.$ and $\left.T_{E}=8^{\circ} \mathrm{C}\right)$ and Case $3\left(T_{C}=T_{A}=38^{\circ} \mathrm{C}\right.$ and T_{E} $=8^{\circ} \mathrm{C}$.

Table 4.9a: Variation of heat Loads (\dot{Q} in kW) and SP powers ($\dot{W}_{S P 1}$ and $\dot{W}_{S P 2}$ in Watt) with $T_{L P G}$ at fixed $T_{H P G}$ for Case 1 and case 2

Table 4.9b: Variation of heat Loads (\dot{Q} in kW) and SP powers ($\dot{W}_{S P 1}$ and $\dot{W}_{S P 2}$ in Watt) with $T_{L P G}$ at fixed $T_{H P G}$ for Case 3 and case 4

Fig 4.7: COP variation with distribution ratio (D) at fixed $T_{H P G}$ and $T_{L P G}$ for the parallel and reverse parallel configurations respectively [(i) $T_{H P G}$ fixed at $106^{\circ} \mathrm{C}$ and $102^{\circ} \mathrm{C} ; T_{L P G}$ fixed at $69^{\circ} \mathrm{C}$ and $63^{\circ} \mathrm{C}$ during Case 1 , (ii) $T_{H P G}$ fixed at $109^{\circ} \mathrm{C}$ and $108^{\circ} \mathrm{C} ; T_{L P G}$ fixed at $71^{\circ} \mathrm{C}$ and $67^{\circ} \mathrm{C}$ during Case 2, (iii) $T_{H P G}$ fixed at $116^{\circ} \mathrm{C}$ and $115^{\circ} \mathrm{C}$; $T_{L P G}$ fixed at $75^{\circ} \mathrm{C}$ and $73^{\circ} \mathrm{C}$ during Case 3 , (iv) $T_{H P G}$ fixed at $113^{\circ} \mathrm{C}$ and $T_{L P G}$ fixed at 72 for the parallel system during Case 4 (v) $T_{H P G}$ fixed at $106^{\circ} \mathrm{C}$ and $104^{\circ} \mathrm{C} ; T_{L P G}$ fixed at $66^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$ during the additional case (Case 5: $T_{C}=T_{A}=33^{\circ} \mathrm{C}, T_{E}=5^{\circ} \mathrm{C}$)]

Similarly in the reverse parallel system also, the lower D limit was found 0.5 for Case 1 and Case 2. However, in Case 3, the lower D limit of the reverse parallel system was found 0.6 . Not much D variation was possible in the reverse parallel system in Case 4 ($T_{C}=T_{A}=35^{\circ} \mathrm{C}$ and $T_{E}=5^{\circ} \mathrm{C}$), hence COP variation with D is not shown and the lower D limit for this case was found 0.65 . However, when $T_{C}=T_{A}=33^{\circ} \mathrm{C}$ and $T_{E}=5^{\circ} \mathrm{C}, D$ can be lowered up to 0.3 in both the parallel and reverse parallel systems and this case is now additionally shown in Fig. 4.7. It was also found that there exists a certain range of D values at which the COP of the parallel system is more compared to that of the reverse parallel system and vice versa.

The solution concentrations with changing D for all these cases are shown in Table 4.10. It is seen that that the maximum solution concentrations (X_{8} in the parallel and reverse parallel) occur when D is in its lower limit in all the cases and increase in D causes reduction in maximum concentration values.

Table 4.10: Pressure and concentration variation with D of the double effect parallel and reverse parallel systems

	Parallel	Reverse Parallel								
D	$\begin{aligned} & P_{\text {HPG }} \\ & (\mathrm{kPa}) \end{aligned}$	X_{4}	X_{8}	X_{15}	X_{17}	$\begin{aligned} & P_{H P G} \\ & (\mathrm{kPa}) \end{aligned}$	X_{4}	X_{8}	X_{15}	X_{17}
Case 1: $T_{C}=T_{A}=33^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.035 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$										
0.50	23.552	0.423	0.499	0.484	0.492	20.982	0.423	0.493	0.441	0.465
0.60	28.219	0.423	0.471	0.484	0.476	22.380	0.423	0.483	0.441	0.465
0.70	31.540	0.423	0.453	0.484	0.462	23.383	0.423	0.476	0.441	0.465
0.80	34.011	0.423	0.440	0.484	0.448	24.138	0.423	0.471	0.441	0.464
Case 2: $T_{C}=T_{A}=35^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.629 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$										
0.50	27.404	0.439	0.495	0.482	0.488	25.727	0.439	0.498	0.454	0.475
0.60	31.129	0.439	0.474	0.482	0.478	27.199	0.439	0.490	0.454	0.475
0.70	33.763	0.439	0.461	0.482	0.467	28.255	0.439	0.484	0.454	0.474
0.80	35.712	0.439	0.451	0.482	0.457	29.048	0.439	0.479	0.454	0.474
Case 3: $T_{C}=T_{A}=38^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=6.632 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$										
0.50	35.630	0.463	0.495	0.487	0.491		-	-	-	-
0.60	38.355	0.463	0.484	0.487	0.485	33.615	0.463	0.499	0.473	0.488
0.70	40.273	0.463	0.476	0.487	0.479	34.589	0.463	0.494	0.473	0.488
0.75	41.028	0.463	0.473	0.487	0.476	34.979	0.463	0.492	0.473	0.487
0.80		-	-	-	-	35.321	0.463	0.491	0.473	0.487
Additional case (Case 5) : $T_{C}=T_{A}=33^{\circ} \mathrm{C}, T_{E}=5^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.035 \mathrm{kPa}, P_{A}=P_{E}=0.873 \mathrm{kPa}$										
0.30	23.967	0.450	0.497	0.463	0.472	22.957	0.450	0.491	0.455	0.466
0.40	26.947	0.450	0.479	0.463	0.469	24.532	0.450	0.481	0.455	0.465
0.50	28.731	0.450	0.468	0.463	0.465	25.480	0.450	0.475	0.455	0.465
0.60	29.909	0.450	0.462	0.463	0.462	26.113	0.450	0.471	0.455	0.465
0.70	30.738	0.450	0.457	0.463	0.459	26.566	0.450	0.468	0.455	0.464
0.80	31.344	0.450	0.454	0.463	0.456	26.907	0.450	0.466	0.455	0.464

Further, the HPG pressure also increases with D at various cases in both the double effect parallel and reverse parallel systems. This is mainly due to reduction in X_{8} at higher D that occurs in both the parallel and reverse parallel systems in all the test cases. Earlier with $T_{L P G}$ variation at fixed $T_{H P G}$, it was observed that when X_{8} increases, simultaneously $P_{H P G}$ also reduces. Now since with increase in D, X_{8} decreases, therefore it causes increase in $P_{H P G}$.

Weak and strong solution concentrations are not affected by D variation. This is because, the strong solution concentration $\left(X_{4}\right)$ at absorber exit is a function of absorber pressure and temperature while the weak strong solution concentration at LPG exit (X_{15}) depends on LPG pressure and LPG temperature. These are not related and have nothing to do with the distribution ratio D because distribution ratio D in no way affects the pressure and temperature in the absorber and the LPG. Absorber and LPG temperatures are input model parameters. The absorber pressure is set equal to the evaporator pressure and thus it is the saturation pressure of water (refrigerant) corresponding to evaporator temperature. Similarly, the LPG pressure is set equal to condenser pressure and it is the saturation pressure of water (refrigerant) corresponding to condenser temperature.

Component heat loads and SP power corresponding to D variation are shown in Table 4.11. With increase in $D, \dot{Q}_{H P G}$ and $\dot{W}_{S P}$ increase in both the parallel and reverse parallel double effect systems at various test cases and therefore COP decreases with increase in D. In the double effect parallel configuration, with increase in D, the mass flow rate of strong solution entering the HPG $\left(\dot{m}_{7}\right)$ increases while the flow rate of primary vapour generated in the HPG (\dot{m}_{11}) slightly reduces. Due to this reason, the mass flow rate of HPG leaving medium solution (\dot{m}_{8}) also shows a proportionate increase in its value. Increase in D also causes an increase in the temperature of the strong solution at state 7 . The pressure at state 7 also increases due to increase in $P_{\text {HPG }}$ with D. With concentration remaining constant but due to change in temperature and pressure, finally the specific enthalpy at state $7\left(h_{7}\right)$ increases from $253.982 \mathrm{~kJ} / \mathrm{kg}$ at $D=0.5$ to $273.456 \mathrm{~kJ} / \mathrm{kg}$ at $D=0.8$ during Case 1 at $T_{C}=T_{A}=33^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$. On the
other hand, the specific enthalpy at state $8\left(h_{8}\right)$ decreases from $345.167 \mathrm{~kJ} / \mathrm{kg}$ at $D=0.5$ to $315.7 \mathrm{~kJ} / \mathrm{kg}$ at $D=0.8$; mainly due to increase in $P_{H P G}$ and reduction in X_{8}.

Table 4.11: Heat Load and SP power variation with D

D	Parallel	Reverse Parallel									
	$\dot{Q}_{\text {HPG }}$	$\dot{Q}_{L P G}$	\dot{Q}_{A}	\dot{Q}_{C}	$\dot{W}_{S P}$	$\dot{Q}_{\text {HPG }}$	$\dot{Q}_{L P G}$	\dot{Q}_{A}	\dot{Q}_{C}	$\dot{W}_{S P 1}$	$\dot{W}_{S P 2}$
Case 1: $T_{C}=T_{A}=33^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.035 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$											
0.50	238.2	196.3	410.9	176.0	20.1	248.9	201.3	421.3	169.8	5.5	10.5
0.60	245.0	194.9	415.6	177.4	30.3	252.6	199.9	422.3	171.1	5.5	13.8
0.70	256.8	193.5	424.9	178.7	45.6	256.4	198.6	423.4	172.4	5.5	17.2
0.80	281.1	192.0	445.8	180.1	74.3	260.3	197.2	424.6	173.7	5.6	20.6
Case 2: $T_{C}=T_{A}=35^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.629 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$											
0.50	248.1	198.8	421.7	174.3	32.2	259.7	205.0	433.1	167.6	7.4	15.9
0.60	258.0	197.4	429.4	175.6	46.0	264.4	203.3	434.5	169.3	7.5	20.6
0.70	274.8	196.1	443.4	177.0	67.0	269.1	201.7	436.1	170.8	7.6	25.4
0.80	309.2	194.6	473.5	178.4	107.1	273.9	200.1	437.6	172.4	7.6	30.3
Case 3: $T_{C}=T_{A}=38^{\circ} \mathrm{C}, T_{E}=8^{\circ} \mathrm{C}, P_{L P G}=P_{C}=6.632 \mathrm{kPa}, P_{A}=P_{E}=1.073 \mathrm{kPa}$											
0.50	274.8	205.1	451.1	169.9	72.9	-	-	-	-	-	-
0.60	293.5	203.6	466.7	171.3	98.8	289.4	211.5	463.2	163.2	13.1	37.4
0.70	324.9	202.0	494.1	172.9	139.6	296.3	209.2	465.9	165.5	13.3	45.9
0.75	350.3	201.1	516.6	173.7	171.5	299.8	208.1	467.4	166.6	13.4	50.2
0.80	-	-	-	-	-	303.4	206.9	468.8	167.7	13.5	54.6
Additional case (Case 5): $T_{C}=T_{A}=33^{\circ} \mathrm{C}, T_{E}=5^{\circ} \mathrm{C}, P_{L P G}=P_{C}=5.035 \mathrm{kPa}, P_{A}=P_{E}=0.873 \mathrm{kPa}$											
0.30	268.2	212.2	453.1	161.0	58.5	287.2	226.4	481.3	146.8	14.8	19.0
0.40	282.5	210.6	464.5	162.6	77.3	296.3	223.4	485.5	149.8	15.1	28.1
0.50	302.7	209.0	481.4	164.1	99.9	305.8	220.3	490.0	152.7	15.4	37.6
0.60	333.6	207.2	507.8	165.9	131.4	315.8	217.1	494.9	155.8	15.7	47.5
0.70	385.7	205.1	553.4	167.9	182.5	326.3	213.9	500.0	159.0	16.1	57.8
0.80	491.3	202.6	647.3	170.3	283.6	337.3	210.5	505.4	162.3	16.5	68.7

Similarly, due to increase in $P_{H P G}$, the specific enthalpy at state $11\left(h_{11}\right)$ decreases slightly from $2697.7 \mathrm{~kJ} / \mathrm{kg}$ at $D=0.5$ to 2696.4 at $D=0.8$. All these variations finally lead to an increase in $\dot{Q}_{H P G}$ in the double effect parallel system when D is increased. Similar variation was observed also in the reverse parallel system and this variation of increasing $\dot{Q}_{H P G}$ with D also holds well in the other cases of fixed component temperatures.

Further, $\dot{Q}_{L P G}$ decreases and \dot{Q}_{A} and \dot{Q}_{C} increases with D in both the parallel and reverse parallel systems at various test cases. At state 11, both the primary vapour flow rate and specific enthalpy (\dot{m}_{11} and h_{11}) decreases slightly with D while the specific enthalpy at state 12 increases. Therefore, the LPG heat load ($\dot{Q}_{L P G}$) shows a decreasing trend in Table 4.11 at higher D. The mass flow rates of medium solution at LPG inlet (\dot{m}_{10}) and weak solution at LPG exit (\dot{m}_{15}) also increase with D in the parallel system. The specific enthalpy at state $10\left(h_{10}\right)$ also increases with D mainly due to increase in temperature and reduction in solution concentration at state 10 . The pressure, temperature, concentration and hence the enthalpy at state point 15 is not dependent of D variation. Accordingly, it affects the mass flow rates of the weak solution and secondary vapour stream leaving the LPG and these mass flow rates increase slightly with D. The enthalpy at state 14 is however independent of D. These changes in mass flow rates and enthalpies caused by D variation also affect the conditions downstream in the condenser and absorber. Condenser heat load $\left(\dot{Q}_{C}\right)$ increases with D mainly due to increase in specific enthalpy value at state point 13 . Mass flow rate and specific enthalpy at state 1 remains unchanged with D. Mass flow rate at state point $13\left(\dot{m}_{13}\right)$ slightly reduces while the mass flow rate at state point $14\left(\dot{m}_{14}\right)$ shows a marginal increase with D, hence these are not responsible for increase in \dot{Q}_{C}. Similarly, the mass flow rate and specific enthalpy of the refrigerant vapour at state 3 remain invariant with D. Since \dot{m}_{8} and \dot{m}_{15} both increase with D, therefore, the solution mass flow rate at state $17\left(\dot{m}_{15}\right)$ also increases proportionately, causing an increase in the strong solution mass flow rate at absorber exit $\left(\dot{m}_{4}\right)$. The specific enthalpies at state points 3 and 4 are however fixed and these don't vary with D. Only the enthalpy at state 17 shows some increase due to decrease in solution concentration and slight increase in the temperature at state 17.

Therefore, \dot{Q}_{A} increases due to increase in mass flow rate at state 4 and mass flow rate and enthalpy at state points 4 and 17. Increase in \dot{Q}_{C} and \dot{Q}_{A} has a direct impact on the water circulation rate through these devices which is required for vapour condensation in the condenser and cooling of the absorber. In the reverse parallel system also, similar observations were made although the solution distribution is done in this system in a slightly different manner and some state points differ from that of the parallel configuration.

4.6.4 Performance comparison between double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ and $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ systems

In Chapter 3, the comparison of performance between single effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ and $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ VARS at same operating conditions was presented and also similar comparison was available in the Refs. [17, 18]. However, in so far as double effect VARS is concerned, it was not done earlier. Here in this Chapter, the performance comparison between double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ and $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ VARS configurations is provided under identical conditions of operating temperatures. The performance comparison between $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ and $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ operated double effect VARS configurations is shown in Table 4.12 at same operating conditions of $T_{C}=T_{A}=33^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$.

Results show that COP of all the double effect $\mathrm{H}_{2} \mathrm{O}$ - LiCl VARS configurations are slightly higher than those of the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ systems. In case of the series configuration, the COP difference, which is somewhat more at lower $T_{L P G}$ and $T_{H P G}$, decreases however at higher $T_{L P G}$ and $T_{H P G}$. The trend of decreasing COP difference at higher $T_{L P G}$ and $T_{H P G}$ is also the same in the parallel and reverse parallel configurations. The COP difference between the two systems is the highest in the reverse parallel configuration.

From Table 4.12, it is also seen that for the double effect series and parallel systems, the HPG pressures are slightly higher for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ solution pair compared to those for $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ at similar conditions of component temperatures. An increase in HPG pressure apparently implies higher pumping power for the solution pump at the absorber exit which however was not the case because the SP powers in case of the
$\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ operated series, parallel and reverse parallel systems were drastically less compared to the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ based systems. This was mainly due to lower mass flow rate of the strong solution at absorber exit ($\dot{m}_{s s}$) in respect of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ solution. In fact, for a given cooling load (hence for the same refrigerant mass flow rate), the mass flow rates of weak and medium solutions are significantly less when the systems are operated with $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ solution pair. For the reverse parallel system, however, the HPG pressures are found to be slightly lower for $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ compared to $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$.

For the series configurations, the COP comparison is not shown for $T_{L P G}$ above $71^{\circ} \mathrm{C}$ because this is the limit for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ series configuration at Case 1 . In the parallel and reverse parallel configurations also, the COP comparison is not shown for $T_{L P G}$ values above their corresponding limiting values. Of course, such limitation is not so restrictive in the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ system. Double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ systems can be operated over a wider range of $T_{L P G}$ and it usually performs better at higher $T_{L P G}$. For example, a COP of 1.437 can be obtained by operating the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ series configuration at $T_{L P G}$ $=80^{\circ} \mathrm{C}$ and $T_{H P G}=120^{\circ} \mathrm{C}$ while maintaining the other component temperatures as indicated in Case $1\left(T_{C}=T_{A}=33^{\circ} \mathrm{C}\right.$ and $\left.T_{E}=8^{\circ} \mathrm{C}\right)$. For the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ series configuration, the maximum possible COP is 1.428 and this occurs at $T_{L P G}=71^{\circ} \mathrm{C}$ and $T_{H P G}=105^{\circ} \mathrm{C}$ if it is operated with other components' temperatures as indicated in Case 1. Moreover, it would not be possible to operate the double effect $\mathrm{H}_{2} \mathrm{O}$-LiCl VARS configurations at $T_{L P G}=80^{\circ} \mathrm{C}$ and $T_{H P G}=120^{\circ} \mathrm{C}$ keeping other component temperatures fixed at $T_{C}=T_{A}$ $=33^{\circ} \mathrm{C}$ and $T_{E}=8^{\circ} \mathrm{C}$ due to the crystallization problem (solution concentration will exceed 50%). In order to operate the double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems particularly at higher $T_{L P G}$, the condenser and absorber temperatures also need to be increased simultaneously. However, in that case, it would not be possible to obtain better COP at higher condenser and absorber temperatures.

4.7 Summary

The thermodynamic performance of double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ VARS configurations (series, parallel and reverse parallel) was simulated in this study. Effect of components' temperature and distribution ratio (in case of parallel and reverse parallel system) on performance (COP), solution concentrations and components' heat loads was
investigated through parametric variation. Further, a performance comparison between double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ and $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ VARS configurations was done. The following conclusions are made from the results obtained and the analysis performed.

- COPs of all the three double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ VARS configurations are more at lower condenser and absorber temperatures and higher evaporator temperature.
- Usually with LPG temperature ($T_{L P G}$), the COP increases; however, depending on set temperatures in the other components (absorber, condenser and evaporator), $T_{L P G}$ can't be increased beyond certain limit due to the limitation posed by maximum concentration exceeding 50% limit.
- At fixed temperatures in the other components, the maximum solution concentration is mainly controlled by $T_{L P G}$ in the series configuration. However, in the parallel and reverse parallel configurations, both $T_{L P G}$ and distribution ratio ' D ' controls the maximum solution concentration.
- Depending on set temperatures in the other components, the COPs of the double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ VARS configurations are maximized at a particular combination of $T_{L P G}$ and $T_{H P G}$. Moreover, the optimum COP of a given double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ VARS is governed by an optimal temperature difference between $T_{H P G}$ and $T_{L P G}$.
- Among the double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ VARS configurations, the parallel configuration gives better COP compared to the series and reverse parallel configurations usually at higher $T_{L P G}$ and $T_{H P G}$. At certain lower range of $T_{L P G}$ and $T_{H P G}$ however, the series flow configuration performs better than the parallel system.
- The distribution parameter ' D ' plays an important role in determining performance of the double effect parallel and reverse parallel flow configurations. Usually better system performance is obtained at lower ' D ' values, but the lower D limit is fixed by 50% maximum solution concentration limit in the double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ parallel and reverse parallel systems. Further, at certain lower range of D values, the parallel
system shows better performance compared to the reverse parallel system while at higher D range, the reverse parallel system performs better than the parallel system. The extent to which the D value can be lowered in parallel and reverse parallel systems depends upon the components' temperatures.
- The performance comparison between the double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ and $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ VARS configurations at same operating conditions showed better performance in respect of $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems. This is however the case at lower $T_{L P G}$ and $T_{H P G}$ only. This implies that it is possible to obtain better performance from the double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems relatively at low $T_{H P G}$ and $T_{L P G}$. The range of $T_{L P G}$ is however limited in the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems compared to the $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ systems where the system operation is possible for a wider range of $T_{L P G}$. At higher $T_{L P G}$ and corresponding optimum $T_{H P G}$, certainly, the performance of the double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiBr}$ systems would be better than the corresponding double $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ systems.
- Further, the performance of double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ parallel and series configurations were found superior to the reverse parallel configuration. Double effect $\mathrm{H}_{2} \mathrm{O}-\mathrm{LiCl}$ VARS configurations could certainly provide lot of opportunity in utilizing solar and other relatively low temperature waste heat sources.

Bibliography

[1] Won, S. H. and Lee, W. Y. Thermodynamic Design Data for Double-Effect Absorption Heat Pump Systems Using Water-Lithium Chloride Cooling. Heat Recovery Systems and CHP, 11: 41-48, 1991.
[2] Bellos, E., Tzivanidis, C., Pavlovic, S., and Stefanovic, V. Thermodynamic investigation of $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ working pair in a double effect absorption chiller driven by parabolic trough collectors. Thermal Science and Engineering Progress, 3:75-87, 2017.
[3] Patek, J. and Klomfar, J. Thermodynamic properties of the $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ system at vapour-liquid equilibrium from 273 K to 400 K . International Journal of Refrigeration, 31:287-303, 2008.
[4] Farshi, L. G., Mahmoudi, S. M. S., Rosen, M. A., and Yari, M. A. Comparative study of the performance characteristics of double-effect absorption refrigeration systems. International Journal of Energy Research, 36:182-192, 2012.
[5] Gomri, R. Second law comparison of single effect and double effect vapour absorption refrigeration systems. Energy Conversion and Management, 50: 1279-1287, 2009.
[6] Farshi, L. G., Mahmoudi, S. M. S., and Rosen, M. A. Analysis of crystallization risk in double effect absorption refrigeration systems. Applied Thermal Engineering, 31: 1712-1717, 2011.
[7] Talukdar, K. and Gogoi, T. K. Exergy analysis of a combined vapor power cycle and boiler flue gas driven double effect water- LiBr absorption refrigeration system. Energy Conversion and Management, 108: 468-477, 2016.
[8] Khaliq, A. and Kumar, R. Exergy analysis of double effect vapor absorption refrigeration system. International Journal of Energy Research, 32: 161-174, 2008.
[9] Gomri, R. and Hakimi, R. Second law analysis of double effect vapour absorption cooler system. Energy Conversion and Management, 49: 3343-3348, 2008.
[10] Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H. J., Kruse, A., et al. The IAPWS Industrial Formulation 1997 for the thermodynamic properties of water and steam. Journal of Engineering, Gas Turbine Power, 122:150-81, 2000.
[11] Patek, J. and Klomfar, J. A computationally effective formulation of thermodynamic properties of $\mathrm{LiBr}-\mathrm{H}_{2} \mathrm{O}$ solutions from 273 to 500 K over full composition range. International Journal of Refrigeration, 29: 566-578, 2006.
[12] Kaita, Y. Thermodynamic properties of lithium bromide water solutions at high temperatures. International Journal of Refrigeration, 24: 374-390, 2001.
[13] Gebreslassie, B. H., Medrano, M., and Boer, D. Exergy analysis of multi-effect water -LiBr absorption systems: from half to triple effect. Renewable Energy, 35:1773-1782, 2010.
[14] Conde, M. R. Properties of aqueous solutions of Lithium and Calcium chlorides: formulations for use in air conditioning equipment design. International Journal of Thermal Science, 43:367-82, 2004.
[15] Patek, J. and Klomfar, J. Solid-liquid phase equilibrium in the systems of $\mathrm{LiBr}-$ $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$. Fluid Phase Equilibrium, 250:138-49, 2006.
[16] Chaudhari, S. K. and Patil, K. R. Thermodynamic Properties of Aqueous Solutions of Lithium Chloride. Physics and Chemistry of Liquids: An International journal, 40:317-325, 2002.
[17] She. X., Yin, Y., Xu, M., and Zhang, X. A novel low-grade heat-driven absorption refrigeration system with $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{LiBr}-\mathrm{H}_{2} \mathrm{O}$ working pairs. International Journal of Refrigeration, 58: 219-34, 2015.

