LIST OF TABLE

Table 3.1	Assumed Parameter	101
Table 3.2	Estimated combinations of operating temperatures with $X_{\scriptscriptstyle \rm WS}$	105
	\leq 50% as objective function	
Table 3.3a	Performance data with respect to the temperature	107
	combinations estimated during test runs 1 to 17 in Table 3.2	
Table 3.3b	Performance data with respect to the temperature	108
	combinations estimated during test runs 18 to 34 in Table 3.2	
Table 3.4a	Irreversibility and other performance data with respect to	109
	estimated temperature combinations (1 to 17) in Table 3.2	
Table 3.4b	Irreversibility and other performance data with respect to	110
	estimated temperature combinations (18 to 34) in Table 3.2	
Table 3.5	Variation of component heat loads and mass flow rates with	112
	T_E at two different condenser temperatures	
Table 3.6	Variation of component heat loads and mass flow rates with	114
	T_E at two different absorber temperatures	
Table 3.7	Variation of component heat loads and mass flow rates with	119
	T_G at two different condenser temperatures	
Table 3.8	Variation of component heat loads and mass flow rates with	120
	T_G at two different absorber temperatures	
Table 3.9	Performance comparison of the H2O-LiCl and H2O-LiBr	125
	VARS at some selected component temperatures	
Table 4.1	Comparison of property values obtained from the computer	152
	program with values given in Patek and Klomfar [3] and	
	Patek and Klomfar [7]	
Table 4.2	Comparison of vapour pressure and enthalpy values obtained	153
	from the computer program with experimental results [16]	
	and results of Conde [14]	
Table 4.3	Comparison of present results (double effect H2O-LiBr	154
	series configuration) with those of Gomri and Hakimi [9]	
	and Farshi et al. [6]	

Table 4.4	Comparison of component heat loads, SP power and COP of present study with those of Gomri and Hakimi [9] and Farshi et al. [4] at $T_C = T_A = 35^{\circ}$ C, $T_E = 4^{\circ}$ C, $T_{HPG} = 130^{\circ}$ C,	155
	$T_{LPG} = 80^{\circ}$ C, 70% SHE-I and SHE-II efficiencies and 95%	
	SP efficiency for the double effect series configuration	
Table 4.5a	Pressure and concentration variation with simultaneous T_{HPG}	164
	and T_{LPG} change	
Table 4.5b	Pressure and concentration variation with simultaneous T_{HPG}	165
	and T_{LPG} change	
Table 4.6a	Variation of heat Loads (\dot{Q} in kW) and SP powers (\dot{W}_{SP1} and	166
	\dot{W}_{SP2} in Watt) with simultaneous T_{HPG} and T_{LPG} change for	
	Case 1 and Case 2	
Table 4.6b	Variation of heat Loads (\dot{Q} in kW) and SP powers (\dot{W}_{SP1} and	167
	\dot{W}_{SP2} in Watt) with simultaneous T_{HPG} and T_{LPG} change for	
	Case 3 and Case 4	
Table 4.7	Fixed solution concentrations in various cases with respect to	169
	T_{HPG} variation at fixed T_{LPG}	
Table 4.8a	Variation of heat Loads (\dot{Q} in kW) and SP powers (\dot{W}_{SP1} and	170
	\dot{W}_{SP2} in Watt) with T_{HPG} at fixed T_{LPG} for Case 1	
Table 4.8b	Variation of heat Loads (\dot{Q} in kW) and SP powers (\dot{W}_{SP1} and	171
	\dot{W}_{SP2} in Watt) with T_{HPG} at fixed T_{LPG} for Case 2 and Case 3	
Table 4.8c	Variation of heat Loads (\dot{Q} in kW) and SP powers (\dot{W}_{SP1} and	172
	\dot{W}_{SP2} in Watt) with T_{HPG} at fixed T_{LPG} for Case 4	
Table 4.9a	Variation of heat Loads (\dot{Q} in kW) and SP powers (\dot{W}_{SP1} and	176
	\dot{W}_{SP2} in Watt) with T_{LPG} at fixed T_{HPG} for Case 1 and case 2	
Table 4.9b	Variation of heat Loads (\dot{Q} in kW) and SP powers (\dot{W}_{SP1} and	177
	\dot{W}_{SP2} in Watt) with T_{LPG} at fixed T_{HPG} for Case 3 and case 4	
Table 4.10	Pressure and concentration variation with D of the double	180
	effect parallel and reverse parallel systems	

Table 4.11	Heat Load and SP power variation with D	183
Table 5.1	Selected range of T_{HPG} and difference between T_{HPG} and T_{LPG}	199
	used in simulation	
Table 5.2a	Component wise irreversibility (in kW) variation with	204
	simultaneous change in T_{HPG} and T_{LPG} for Case 1 at fixed	
	$T_C = T_A = 33^{\circ}\text{C}, T_E = 8^{\circ}\text{C} \text{ (Series)}$	
Table 5.2b	Component wise irreversibility (in kW) variation with	205
	simultaneous change in T_{HPG} and T_{LPG} for Case 1 at fixed	
	$T_C = T_A = 33^{\circ}$ C, $T_E = 8^{\circ}$ C (Parallel and Reverse Parallel)	
Table 5.3a	Component wise irreversibility (in kW) variation with T_{HPG}	207
	(fixed T_{LPG}) in the double effect series systems for Case 1	
	$(T_c = T_A = 33^{\circ}\text{C}, T_E = 8^{\circ}\text{C})$	
Table 5.3b	Component wise irreversibility (in kW) variation with T_{HPG}	208
	(fixed T_{LPG}) in the double effect parallel systems for Case 1	
	$(T_c = T_A = 33^{\circ}\text{C}, T_E = 8^{\circ}\text{C})$	
Table 5.3c	Component wise irreversibility (in kW) variation with T_{HPG}	209
	(fixed T_{LPG}) in the double effect reverse parallel system for	
	Case 1 ($T_C = T_A = 33^{\circ}$ C, $T_E = 8^{\circ}$ C)	
Table 5.4	Maximum COP, maximum exergy efficiency and minimum	212
	total system irreversibility obtained for the double effect	
Table 5 5a	H_2O -LiCl systems in various test cases	216
Table 5.5a	Component wise irreversibility (in kW) variation with T_{LPG}	210
	$(T_{HPG} \text{ fixed at it optimal value}) \text{ for Case 1 (Series)}$	
Table 5.5b	Component wise irreversibility (in kW) variation with T_{LPG}	217
	$(T_{HPG}$ fixed at it optimal value) for Case 1 (Parallel and	
	Reverse parallel)	
Table 5.6	Component wise irreversibility (in kW) variation with D	221
	variation at fixed T_{HPG} , T_{LPG} , T_C , T_A and T_E	

Table 5 7a	Derformence comparison between U.O. LiCl and U.O. LiDr	222
Table 5.7a	Performance comparison between H ₂ O–LiCl and H ₂ O–LiBr	223
	at $T_C = T_A = 33^{\circ}$ C and $T_E = 8^{\circ}$ C (Series and Parallel)	
Table 5.7b	Performance comparison between H ₂ O-LiCl and H ₂ O-LiBr	224
	at $T_C = T_A = 33^{\circ}$ C and $T_E = 8^{\circ}$ C (Reverse parallel)	
Table 6.1	Range of lower and upper bounds of decision parameters	242
Table 6.2	Optimal combinations of T_{LPG} and T_{HPG} and the optimized	257
	COP, exergy efficiency and total system irreversibility obtained for various cases of fixed component temperatures with H ₂ O–LiCl and H ₂ O–LiBr as solution pairs in the double effect series configuration.	
Table 6.3	The irreversible losses occurring in different VARS components (except LPG where it irreversibility is almost negligible) of the double effect series configuration with respect to the first set of results in Table 6.2 corresponding to minimum irreversibility and maximum exergy efficiency for both the working fluid pairs during various test cases.	258
Table 6.4	Optimal combinations of D , T_{LPG} and T_{HPG} and the optimized	260
	COP, exergy efficiency and total system irreversibility obtained for various cases of fixed component temperatures with H ₂ O–LiCl and H ₂ O–LiBr as solution pairs in the double effect parallel configuration.	
Table 6.5	Optimal combinations of T_{LPG} and T_{HPG} and the optimized	267
	COP, exergy efficiency and total system irreversibility obtained during optimization of the H ₂ O–LiCl operated double effect series configuration at $T_C = T_A = 33^{\circ}$ C and $T_E = 8^{\circ}$ C.	
Table 6.6	Comparison of optimal T_{LPG} and T_{HPG} and the optimized COP exercy efficiency and total system irreversibility	273

COP, exergy efficiency and total system irreversibility presented in this study with those of Chapters 4 and 5 for the double effect series configuration with H₂O–LiCl as working fluid.

- Table 6.7Comparison of optimal T_{LPG} and T_{HPG} and the optimized273COP, exergy efficiency and total system irreversibility
presented in this study with those of Chapters 4 and 5 for the
double effect parallel configuration with H2O–LiCl as
working fluid.
- Table 7.1Input parameters for the single and double effect VARS285(series, parallel and reverse parallel) configurations at T_C =35°C, T_A =35°C and T_E =5°C

LIST OF FIGURE

Fig. 1.1	1 Schematic of a single effect VCRS	3
Fig. 1.2	2 Schematic of a single effect VARS	4
Fig. 1.3	3 Schematic view of Cascaded absorption–VCRS	6
Fig. 1.4	4 Schematic of a simple aircraft refrigeration cycle	7
Fig. 1.5	5 Schematic of a regenerative GCRS	8
Fig. 1.6	6 Ejector refrigeration system [21]	9
Fig. 1.7	7 Schematic of a combined ejector based refrigeration cycle and VCRS	10
Fig. 1.8	8 Schematic of the combined ejector-VARS [33]	11
Fig. 1.9	9 Schematic of a thermoelectric refrigerator	12
Fig. 1.1	10 Standing wave based thermoacoustic refrigerator	13
Fig. 1.1	11 Schematic of Regeneration and refrigeration associated with	14
	a MH	
Fig. 1.1	12 Half effect cycle [49, 50]	16
Fig. 1.1	13 Double effect VARS (series configuration) [52]	18
Fig. 1.1	14 Double effect VARS (parallel configuration) [52]	19
Fig. 1.1	15 Double effect VARS (reverese parallel configuration) [52]	20
Fig. 1.1	16 Triple effect VARS (series configuration) [56]	23
Fig. 1.1	17 Triple effect VARS (parallel configuration) [56]	24
Fig. 1.1	18 Triple effect VARS (Reverse parallel configuration) [56]	26
Fig. 1.1	19 Triple effect VARS (Series configuration) [56]	27
Fig. 1.2	20 Triple effect VARS (Parallel configuration)	28
Fig. 1.2	21 Triple effect VARS (Reverse parallel configuration)	29
Fig. 3.1	Schematic of the single effect H ₂ O–LiCl VARS	100
Fig. 3.2	2 Variation of COP and exergy efficiency with T_E at two	113
	different condenser and absorber temperatures	
Fig. 3.3	Variation of total irreversibility with T_E at two different	115
	condenser and absorber temperatures	
Fig. 3.4	4 Variation of COP and exergy efficiency with T_G at two	117
	different condenser and absorber temperatures	

Fig. 3.5	Variation of total irreversibility with T_G at two different	122
	condenser and absorber temperatures	
Fig. 3.6	Irreversibility of different components of H2O-LiCl and	126
	H ₂ O-LiBrVARS at $T_E = 5^{\circ}$ C, $T_G = 66^{\circ}$ C, $T_C = 28^{\circ}$ C and T_A	
	=35°C	
Fig. 3.7	Exergy flow diagram of the single effect H ₂ O-LiCl system at	129
	T_G =66°C, T_C =28°C, T_A =34°C and T_E =9°C	
Fig. 3.8	Exergy flow diagram of the single effect H ₂ O-LiBr system	130
	at $T_G = 66^{\circ}$ C, $T_C = 28^{\circ}$ C, $T_A = 34^{\circ}$ C and $T_E = 9^{\circ}$ C	
Fig. 4.1a	Schematic of a double effect VARS (Series configuration)	137
Fig. 4.1b	P-T-X diagram of double effect VARS (Series	138
	configuration)	
Fig. 4.1c	Enthalpy-Concentration diagram (Series configuration)	139
Fig. 4.2a	Schematic of a double effect VARS (parallel configuration)	141
Fig. 4.2b	P-T-X diagram of double effect VARS (Parallel	142
	configuration)	
Fig. 4.2c	Enthalpy-Concentration diagram (Parallel configuration)	143
Fig. 4.3a	Schematic of a double effect VARS (reverse parallel configuration)	144
Fig. 4.3b	P-T-X diagram of double effect VARS (Reverse parallel configuration)	145
Fig. 4.3c	Enthalpy–Concentration diagram (Reverse Parallel configuration)	146
Fig. 4.4a	COP variation with simultaneous change in T_{HPG} and T_{LPG} for	159
	the series, parallel and reverse parallel configurations with	
	$T_{HPG} - T_{LPG}$ differences of (i) 34°C, 37°C and 39°C during	
	Case 1, (ii) 36°C, 38°C and 41°C during Case 2 (iii) 40°C,	
	41°C and 42°C during Case 3 and (iv) 39°C, 41°C and 42°C	
	during Case 4	
Fig. 4.4b	COP variation with T_{HPG} at fixed T_{LPG} for the series, parallel	160
	and reverse parallel configurations respectively [T_{LPG} fixed at	

xix

(i) 71°C, 69°C and 63°C during Case 1, (ii) 73°C, 71°C and 67°C during Case 2 (iii) 76°C, 75°C and 73°C during Case 3 (iv) 73°C, 72°C and 70°C during Case 4]

- Fig. 4.5 P_{HPG} variation with T_{HPG} at fixed T_{LPG} for the series, parallel 173 and reverse parallel configurations respectively [T_{LPG} fixed at (i) 71°C, 69°C and 63°C during Case 1, (ii) 73°C, 71°C and 67°C during Case 2 iii) 76°C, 75°C and 73°C during Case 3 (iv) 73°C, 72°C and 70°C during Case 4]
- Fig. 4.6 COP variation with T_{LPG} at fixed T_{HPG} for the series, parallel 174 and reverse parallel configurations respectively [T_{HPG} fixed at (i) 105°C, 106°C and 102°C during Case 1, (ii) 109°C, 109°C and 108°C during Case 2 (iii) 116°C, 116°C and 115°C during Case 3 (iv) 112°C, 113°C and 112°C during Case 4]
- Fig. 4.7 COP variation with distribution ratio (*D*) at fixed T_{HPG} and 178 T_{LPG} for the parallel and reverse parallel configurations respectively [(i) T_{HPG} fixed at 106°C and 102°C; T_{LPG} fixed at 69°C and 63°C during Case 1, (ii) T_{HPG} fixed at 109°C and 108°C; T_{LPG} fixed at 71°C and 67°C during Case 2, (iii) T_{HPG} fixed at 116°C and 115°C; T_{LPG} fixed at 75°C and 73°C during Case 3, (iv) T_{HPG} fixed at 113°C and T_{LPG} fixed at 72 for the parallel system during Case 4 (v) T_{HPG} fixed at 106°C and 104°C; T_{LPG} fixed at 66°C and 65°C during the additional case (Case 5: $T_C = T_A = 33°C$, $T_E = 5°C$)]
- Fig. 5.1a Exergy efficiency variation with simultaneous change in 197 T_{HPG} and T_{LPG} for the series, parallel and reverse parallel configurations with $T_{HPG} - T_{LPG}$ differences of (i) 34°C, 37°C and 39°C during Case 1, (ii) 36°C, 38°C and 41°C during Case 2 (iii) 40°C, 41°C and 42°C during Case 3 and (iv) 39°C, 41°C and 42°C during Case 4

- Fig. 5.1b Exergy efficiency variation with T_{HPG} at fixed T_{LPG} for the 198 series, parallel and reverse parallel configurations respectively [T_{LPG} fixed at (i) 71°C, 69°C and 63°C during Case 1, (ii) 73°C, 71°C and 67°C during Case 2 (iii) 76°C, 75°C and 73°C during Case 3 (iv) 73°C, 72°C and 70°C during Case 4]
- Fig. 5.2a Total irreversibility variation with simultaneous change in 202 T_{HPG} and T_{LPG} respectively for the series, parallel and reverse parallel configurations with $T_{HPG} - T_{LPG}$ differences of (i) 34°C, 37°C and 39°C during Case 1, (ii) 36°C, 38°C and 41°C during Case 2 (iii) 40°C, 41°C and 42°C during Case 3 and (iv) 39°C, 41°C and 42°C during Case 4
- Fig. 5.2b Total irreversibility variation with T_{HPG} at fixed T_{LPG} for the 203 series, parallel and reverse parallel configurations respectively [T_{LPG} fixed at (i) 71°C, 69°C and 63°C during Case 1, (ii) 73°C, 71°C and 67°C during Case 2 (iii) 76°C, 75°C and 73°C during Case 3 (iv) 73°C, 72°C and 70°C during Case 4]
- Fig. 5.3a Exergy efficiency variation with T_{LPG} at fixed T_{HPG} for the 214 series, parallel and reverse parallel configurations respectively [T_{HPG} fixed at (i) 105°C, 106°C and 102°C during Case 1, (ii) 109°C, 109°C and 108°C during Case 2 (iii) 116°C, 116°C and 115°C during Case 3 (iv) 112°C, 113°C and 112°C during Case 4]
- Fig. 5.3b Total irreversibility variation with T_{LPG} at fixed T_{HPG} for the 215 series, parallel and reverse parallel configurations respectively [T_{HPG} fixed at (i) 105°C, 106°C and 102°C during Case 1, (ii) 109°C, 109°C and 108°C during Case 2 (iii) 116°C, 116°C and 115°C during Case 3 (iv) 112°C, 113°C and 112°C during Case 4]
- Fig. 5.4a Exergy efficiency variation with distribution ratio (D) at

fixed T_{HPG} and T_{LPG} for the parallel and reverse parallel configurations respectively [(i) T_{HPG} fixed at 106°C and 102°C; T_{LPG} fixed at 69°C and 63°C during Case 1, (ii) T_{HPG} fixed at 109°C and 108°C; T_{LPG} fixed at 71°C and 67°C during Case 2, (iii) T_{HPG} fixed at 116°C and 115°C; T_{LPG} fixed at 75°C and 73°C during Case 3, (iv) T_{HPG} fixed at 113°C and T_{LPG} fixed at 72 for the parallel system during Case 4 (v) T_{HPG} fixed at 106°C and 104°C; T_{LPG} fixed at 66°C and 65°C during the additional case (Case 5: $T_C = T_A = 33$ °C, $T_E = 5$ °C)]

- Fig. 5.4b Total irreversibility variation with distribution ratio (*D*) at fixed T_{HPG} and T_{LPG} for the parallel and reverse parallel configurations respectively [(i) T_{HPG} fixed at 106°C and 102°C; T_{LPG} fixed at 69°C and 63°C during Case 1, (ii) T_{HPG} fixed at 109°C and 108°C; T_{LPG} fixed at 71°C and 67°C during Case 2, (iii) T_{HPG} fixed at 116°C and 115°C; T_{LPG} fixed at 75°C and 73°C during Case 3, (iv) T_{HPG} fixed at 113°C and T_{LPG} fixed at 72 for the parallel system during Case 4 (v) T_{HPG} fixed at 106°C and 104°C; T_{LPG} fixed at 66°C and 65°C during the additional case (Case 5: $T_C = T_A = 33$ °C, $T_E = 5$ °C)]
- Fig. 5.5a: Exergy flow diagram of the double effect series flow H₂O- 228 LiCl system at T_G =110°C, T_{LPG} =73°C, T_C =33°C, T_A =33°C and T_E =8°C
- Fig. 5.5b: Exergy flow diagram of the double effect series flow H₂O- 229 LiBr system at T_G =110°C, T_{LPG} =73°C, T_C =33°C, T_A =33°C and T_E =8°C
- Fig. 5.6a:Exergy flow diagram of the double effect parallel flow H2O-230LiCl system at $T_G = 108^{\circ}$ C, $T_{LPG} = 69^{\circ}$ C, $T_C = 33^{\circ}$ C, $T_A = 33^{\circ}$ C, $T_E = 8^{\circ}$ C and D = 0.50
- Fig. 5.6b: Exergy flow diagram of the double effect parallel flow H_2O- 231

LiBr system at $T_G = 108^{\circ}$ C, $T_{LPG} = 69^{\circ}$ C, $T_C = 33^{\circ}$ C, $T_A = 33^{\circ}$ C, $T_{\rm F} = 8^{\circ} \text{C} \text{ and } D = 0.50$ Fig. 5.7a: Exergy flow diagram of the double effect reverse parallel 232 flow H₂O-LiCl system at T_G =102°C, T_{LPG} =63°C, T_C =33°C, $T_A = 33^{\circ}$ C, $T_E = 8^{\circ}$ C and D = 0.50Fig. 5.7b: Exergy flow diagram of the double effect reverse parallel 233 flow H₂O–LiBr system at T_G =102°C, T_{LPG} =63°C, T_C =33°C, $T_A = 33^{\circ}$ C, $T_E = 8^{\circ}$ C and D = 0.50Fig. 6.1 Exchange of genes between two parent solutions 243 Fig. 6.2 Generation of new offspring 243 Fig. 6.3 244 Mutation Fig. 6.4 Flow Chart of Genetic Algorithm 246 Fig. 6.5 Variation of fitness value with number of generations during 250 optimization of the double effect series flow vapour absorption refrigeration system at $T_C = T_A = 33^{\circ}$ C and T_E =8°C with water-lithium chloride as solution pair. Fig. 6.6 The best three Pareto fronts in terms of (a) COP and total 253 irreversibility (b) COP and exergy efficiency and (c) exergy efficiency and total irreversibility for the double effect H₂O-LiCl series configuration with respect to system optimization during Case 1 at $T_C = T_A = 33^{\circ}$ C and $T_E = 8^{\circ}$ C The best three Pareto fronts in terms of (a) COP and total Fig. 6.7 254 irreversibility (b) COP and exergy efficiency and (c) exergy efficiency and total irreversibility for the double effect H₂O-LiBr series configuration with respect to system optimization during Case 1 at $T_C = T_A = 33^{\circ}$ C and $T_E = 8^{\circ}$ C Fig. 6.8 The best three Pareto fronts in terms of (a) COP and total 264 irreversibility (b) COP and exergy efficiency and (c) exergy efficiency and total irreversibility for the double effect H2O-LiCl parallel configuration with respect to system optimization during Case 1 at $T_C = T_A = 33^{\circ}$ C and $T_E = 8^{\circ}$ C

- Fig. 6.9 The best three Pareto fronts in terms of (a) COP and total 266 irreversibility (b) COP and exergy efficiency and (c) exergy efficiency and total irreversibility for the double effect H₂O– LiBr parallel configuration with respect to system optimization during Case 1 at $T_C = T_A = 33$ °C and $T_E = 8$ °C
- Fig. 6.10 The optimized COPs of the H₂O–LiCl and H₂O–LiBr 269 operated double effect series and parallel configurations during various test cases
- Fig. 6.11 The optimized exergy efficiencies of the H₂O–LiCl and 269 H₂O–LiBr operated double effect series and parallel configurations during various test cases
- Fig. 6.12 The optimized total irreversibility values of the H₂O–LiCl 270 and H₂O–LiBr operated double effect series and parallel configurations during various test cases
- Fig. 6.13 The irreversible losses occurring in the major VARS 270 components during Case 1 at the optimized operating conditions

Nomenclature

C_p	Specific heat (kJ kg ⁻¹ K ⁻¹)
D	Distribution Ratio (-)
Ėx	Exergy rate (kW)
$\dot{E}x_d$	Rate of Exergy destruction (kW)
h	Enthalpy (kJ kg ⁻¹)
İ	Irreversibility rate (kW)
'n	Mass flow rate (kg s ⁻¹)
\dot{m}_s	Steam generated (kg s ⁻¹)
\dot{m}_w	Water flow rate (kg s ^{-1})
Р	Pressure (kPa)
Ż	Heat load (kW)
S	Specific Entropy (kJ kg ⁻¹ K ⁻¹ or J mol ⁻¹ K ⁻¹)
Т	Temperature (K)
T_0	Reference Temperature (K)
Ŵ	Work transfer rate (kW)
Х	Solution Concentration (%)

Greek Letters

Ψ	Specific Exergy (kJ kg ⁻¹)
ρ	Density (kg mol ⁻¹)
η	Exergy Efficiency (%)

Subscripts

A	Absorber
С	Condenser
С	Carnot
ExV	Expansion Valve
G	Generator

HPG	High Pressure Generator
in	Inlet
LPG	Low Pressure Generator
out	Outlet
SP	Solution pump
r	Refrigerant
SS	Strong Solution
S	Steam
SHE	Solution Heat Exchanger
tot	Total
W	Water
WS	Weak Solution

Abbreviation

ASHRAE	American Society for Heating, Refrigeration and Air Conditioning
	Engineer
СОР	Coefficient of Performance
СР	Cross over probability
CR	Cross over ratio
DE	Differential evolution
ETC	Evacuated Tube Collector
EFPC	Evacuated flat plate Collector
EES	Engineering equation solver
HPA	High Pressure Absorber
FR	Flow ratio
GA	Genetic algorithm
GAMS	General algebraic modeling system
GC	Generator Condenser
HPC	High pressure condenser
HPG	High pressure
HRR	Heat recovery Ratio
LCA	Life cycle assessment
LPG	Low pressure

LTSHE	Low temperature side heat exchanger
NP	Population Size
NLP	Non Linear Programming
Р	Parallel
PF	Parato Font
PM	Parallel Mode
PTC	Parabolic Trough Collector
RP	Reverse Parallel
S	Series
SM	Serial Mode
SHE	Solution heat Exchanger
TRNSYS	Transient simulation system
VARS	Vapour absorption refrigeration system