List of Tables	
----------------	--

Table	Description	Page No.
Table 1.1	Annual per capita electricity consumption of South East Asian	7
	and Sub Saharan African countries	
Table 1.2	Duration of electricity supply in some states in India	8
Table 1.3	Technologies for heat to electricity conversion	10
Table 1.4	Commercialized TE materials	14
Table 2.1	Review of the applications of TEG in cook stove	46
Table 3.1	Fuel bed Properties	69
Table 3.2	Flame properties	70
Table 3.3	Material comparison for heat collector plate	80
Table 3.4	Comparison of commercialized TEG modules	82
Table 3.5	Comparison of cooling technology for heat sink	83
Table 3.6	Selection of battery for charging	92
Table 4.1	Brief profile of DIkarijan village	103
Table 4.2	Measuring devices	106
Table 4.3	Population statistics of the selected rural cluster	109
Table 4.4	Energy consumption in cooking	110
Table 4.5	Annual energy use lighting (energy/capita)	112
Table 4.6	Schedule of TIFICS field experiments at households	113
Table 4.7	Physical and fuel property of feedstock collected from	115
	households	
Table 4.8	Issues faced during TIFICS operation	125
Table 4.9	Features valued by user	129
Table 5.1	Cook stove assumption for LCCM analysis	140
Table 5.2	Favorable features of cooking devices	142
Table 5.3	Firewood savings	144
Table 5.4	Kerosene savings	145
Table 5.5	Policy for TIFICS promotion	146
Table 5.6	TIFICS and government schemes	150

Figure	Description	Page No.
Fig. 1.1	Different versions of fixed clay stove (a) fixed clay cook	2
ГI <u>g</u> . 1.1		2
	stove with elevated platform, (b) cooking practice in three	
	stone fixed clay coated cook stove, (c) three stone clay	
	coated fixed cook stove	
Fig. 1.2	Pictorial view of a typical commercial TEG module	11
	showing different components	
Fig. 1.3	Variation of efficiency with different ZT	12
Fig. 1.4	Energy flow in a TEG module	15
Fig. 2.1	Research on TEG integrated biomass cook stove	37
Fig. 3.1	Schematic of TEG integration with fixed clay cook stove	61
Fig. 3.2	Procedure of development and performance testing of	63
	TIFICS	
Fig. 3.3	Sukhad stove	65
Fig. 3.4	One-dimensional heat conduction method	66
Fig. 3.5	Indicative layout of the stove inner wall with identified	67-68
	locations for temperature measurement: (a) top view showing	
	angles in degree from a reference plane and (b) front view	
	showing height in cm from the bed (c) location of	
	temperature measurement on the inner CC wall	
Fig. 3.6	Heat transfer inside combustion chamber	68
Fig. 3.7	Schematic of heat loss from CC outer wall	72
Fig. 3.8	TIFICS with matched load	76
Fig. 3.9	Temperature distribution of the combustion chamber inner	78
	wall	
Fig. 3.10	Location for mounting heat collector plate	80
Fig. 3.11	Temperature distribution of the aluminum hear collector	81
-	plate	
Fig. 3.12	Top view of the TEG assembly	84
Fig. 3.13	Side view of TEG assembly	85
0		

List of Figures

Fig. 3.14	Integration of TEG assembly with fixed clay stove	86
Fig. 3.15	Temperature of flame, ambient, TEG hot side and TEG cold	87
	side	
Fig. 3.16	Variation of output power, voltage and current w.r.t.	88
	temperature difference across TEG during TIFICS operation	
Fig. 3.17	Variation of output power, voltage and current w.r.t. time of	89
	TIFICS operation	
Fig. 3.18	Circuit for 3W bulb illumination	90
Fig. 3.19	Illumination of 3 W LED bulb	91
Fig. 3.20	Battery charging characteristics	93
Fig. 3.21	Graphical summary of Chapter 3	94
Fig. 4.1	Procedure of field testing of TIFICS	101
Fig. 4.2	Map showing the selected field area and Tezpur University	102
	(TU)	
Fig. 4.3	Architecture for assessment of energy use in cooking and	104
	lighting	
Fig. 4.4	Battery charging circuitry for illumination and appliance	105
	charging	
Fig. 4.5	Fixed clay made biomass cook stoves with design variations	110
	in Dikarijan	
Fig. 4.6	TIFICS installation at selected households	112
Fig. 4.7	Variation of Temperature difference across TEG module at	115
	households	
Fig. 4.8	TEG hot side temperature at each household during TIFICS	116
	operation	
Fig. 4.9	Ash deposition on heat collector plate at H4	117
Fig. 4.10	Variation of voltage, current and power with temperature	119
	difference at H1	
Fig. 4.11	Variation of voltage, current and power with temperature	119
	difference at H2	

Fig. 4.12	Variation of voltage, current and power with temperature	120
	difference at H3	
Fig. 4.13	Variation of voltage, current and power with temperature	120
	difference at H4	
Fig. 4.14	Ttemperature of TEG assembly from $13/2/2018$ (47 th day) to	121
	20/2/2018 (54 th day) of TIFICS at H2	
Fig. 4.15	Variation of power at each household during TIFICS	121
	operation	
Fig. 4.16	Electrical energy supply and demand (a) Cumulative	123
	electrical energy generation, (b) Cumulative electrical energy	
	consumption	
Fig. 4.17	Photographs of light illumination at households, (a) H2	124
	utilizing illumination in cooking work space from TIFICS,	
	(b) Illumination from TIFICS at H4	
Fig. 4.18	TEG module with thermal stress at H2	126
Fig. 4.19	Kerosene savings among households	128
Fig. 4.20	Changes in firewood consumption	129
Fig. 4.21	Graphical summary of the Chapter 4	131
Fig. 5.1	LCCM of cooking devices	142
Fig. 5.2	Sensitivity analysis LCCM with respect to increase in fuel	143
	cost	

Nomenclature

α	Seebeck coefficient (V/°C)
ρ	density of stove material (kg/m ³)
α_d	thermal diffusivity of the stove material $(m^{-2}s^{-1})$
σ	Stefan Boltzmann's constant (W/m ² ,K ⁴)
€ _{flame}	emissivity of flame
ϵ_{fb}	emissivity of fuel bed
$\epsilon_{stove wall}$	emissivity of combustion chamber outer wall
η_{stove}	Efficiency of stove (%)
ΔT	Temperature difference between hot and cold side of TEG module (°C)
A _{cc}	area of combustion chamber inner wall (m ²)
A _{flame}	area of the flame (m^2)
A_{fb}	area of fuel bed (m ²)
Ao	Outer wall combustion chamber area (m ²)
BE	Brayton Engine
CC	Combustion chamber
Cp	Specific heat of stove material (J/kg.K)
D _{cc}	Diameter of combustion chamber of stove (m)
Emeal	energy consumed in preparation of a meal (MJ)
F _{flame.cc}	view factor from flame to combustion chamber inner wall
F _{fb.cc}	View factor from fuel bed to combustion chamber inner wall
F_{cc_potB}	View factor from CC inner wall to pot bottom
F _{cost}	Cost of fuel per unit energy (US\$/MJ)
h	Convective heat transfer coefficient inside combustion chamber $(W/m^2.k)$
$\mathbf{h}_{\mathrm{amb}}$	convective heat transfer coefficient of ambient air (W/m ² .K)
	convective heat transfer coefficient of anotent an (w/m .K)
Ι	current (A)

kg	Thermal conductivity of flowing gas (W/m.K)
k _{stove}	thermal conductivity of stove material (W/m.K)
Κ	Thermal conductance (W/m.K)
K _d	decay coefficient (m ⁻¹)
L	Length (or height) of the outer wall (m)
LCCM	Levelized cost of cooking a meal (US\$)
LHV	Lower heating value of fuel (MJ/kg)
LPG	LPG cook stove
mg	air flux (kg/m ² .s)
Meals _{total}	total number of meals prepared with cook stove
NuL	Nusselt Number
OM _{stove}	Operation and maintenance cost (US\$)
P _{TEG}	Power output from TEG module (W)
Pr	Prandtl Number
Qconv.g	Convective heat transfer from flowing gas (W)
QC_TEG	Heat rejected from the cold side of TEG module (W)
Q_{cc_potB}	Heat transferred from combustion chamber inner wall to pot bottom (W)
Q_{H_TEG}	Heat input to hot side of TEG module (W)
Qflame.cc	Radiative heat transfer from flame to combustion chamber inner wall (W)
Qfb.cc	Radiative heat transfer from fuel bed to combustion chamber inner wall (W)
Q_{o_amb}	Heat transfer from outer combustion chamber wall to surrounding (W)
Qstored	Heat stored by stove body (W)
Ra _L	Rayleigh Number
r	discount rate (%)
R	Resistance (Ω)
S	Percentage weight of Sulphur in fuel (%)
T	
T_{amb}	Ambient air temperature (°C)

$T_{\rm f}$	Flame temperature (°C)
T_{fb}	Fuel bed temperature (°C)
T _{flame}	flame temperature (°C)
Tg	Flowing gas temperature inside stove combustion chamber (°C)
$T_{\rm H}$	TEG module hot side temperature (°C)
T _{ig}	Ignition temperature (°C)
$T_{\text{pot}B}$	Pot bottom temperature (°C)
$T_{w,i} \\$	Combustion chamber inner wall temperature (°C)
$T_{w,o}$	Combustion chamber outer wall temperature (°C)
RC	Rankine Cycle
SE	Stirling engine
TBCS	Traditional biomass cook stove
TEG	Thermoelectric Generator
TIFICS	TEG integrated fixed clay stove
V	voltage generated by TEG module (V)
Х	thickness of the flame (m)