LIST OF TABLES

Table No.	Description	Page No.
Table 1.1	Comparative status of some common features of different	3
	types of cook stove	
Table 1.2	MNRE standards for performance of improved cook stove	5
Table 1.3	Ongoing cook stove initiatives in various countries	10-11
Table 1.4	Test protocols and their salient features	11-12
Table 2.1	Review of literatures on effects of improved cooking stoves on	27-30
	socio-economic upliftment and factors affecting stove design	
Table 2.2	Review of literatures on impact of design improvements on	31-33
	performance of biomass cook stove	
Table 2.3	Review of literatures on use of simulation and modeling	34-35
	techniques in improving biomass cook stove designs	
Table 2.4	Review of literatures on waste heat utilization in biomass cook	36-39
	stove for multifunctional activities	
Table 3.1	Heat transfer components inside the stove	50-51
Table 3.2	Constants of heat capacity equation for gas species	54
Table 3.3	Steady state input values to the model	60-61
Table 3.4	Steady state fuel bed and flame conditions for steady state heat	62
	transfer modeling	
Table 3.5	Steady state heat transfer model validation	67
Table 4.1	Concept development and implementation strategy	74-75
Table 4.2	Delineated thermal energy components of a Multifunctional	82-83
	Biomass Fueled Stove	
Table 4.3	List of instruments	97-98
Table 4.4	Average results of Water Boiling Test	107
Table 5.1	BIS approved forced draft models	116-117
Table 5.2	Stove considered for WBT test results comparison	119-120

Table No.	Description	Page No.
Table 5.3	Cost components and assumptions	125

LIST OF FIGURES

Figure No.	Description	Page No.
Fig.1.1	Evolution of cook stoves	2
Fig.1.2	Classification of improved biomass stoves	6
Fig.3.1	Schematic diagram of stove operation showing different heat	51
	transfer components	31
Fig.3.2	Heat transfer analysis of heat of combustion	66
Fig.3.3	Share of each component on heat of combustion	
Fig.4.1	Multifunctional biomass fuelled stove (a) Front view (b) Top	77
	view, parts as shown in Table E.1 of Appendix E	77
Fig.4.2	Assembly inside upper chamber (a) Flue gas heat extractors (b)	
	Flue gas flow path inside flue gas heat extractors with parts	78
	listed in Table E.1 of Appendix E	
Fig.4.3	Assembly inside upper chamber (a) Air pre-heaters (radial flow	
	air pre-heater: right side, and parallel flow air pre-heater: left	70
	side) (b) Pre-heated air flow path inside air pre-heaters with	78
	parts listed in Table E.1 of Appendix E	
Fig.4.4	Heat transfer components of Multifunctional Biomass Fueled	92
	Stove	82
Fig.4.5	Steady state heat transfer analysis of Multifunctional biomass	00
	fuelled stove	99
Fig.4.6	Comparative analysis of useful heat contribution during	
	multiple pots and single pot test using SHTM for 4.5 kW	102
	Multifunctional biomass fuelled stove	
Fig.4.7	Prototype of Multifunctional biomass fueled stove	102-103
Fig.4.8	Dimensions of Multifunctional biomass fueled stove (a) front	102
	view (b) top view (All dimensions are in mm)	103
Fig.4.9	Variation in efficiency (E) and air flow rate (AF) with changes	105

Figure No.	Description	Page No.
	in water content for tests with (UC) and without (WUC) using	
	upper chamber according to BIS test protocol	
Fig.4.10	Variation in standard deviation (SD), standard error (SE) and	
	fractional uncertainty (FU) with changes in water content with	106
	(UC) and without (WUC) using Upper Chamber according to	100
	BIS test protocol	
Fig. 4.11	Variation in standard deviation, standard error and fractional	107
	uncertainty with changes in phases during WBT test	107
Fig. 4.12	Experimental performance test results of multifunctional	108
	biomass fuelled stove	100
Fig.5.1	Comparative analysis between Forced Draft Domestic Cook	117
	stoves and MBFS	117
Fig.5.2.	Comparative analysis between Forced Draft Commercial Cook	118
	stoves and MBFS	110
Fig.5.3	Comparative analysis of WBT cold start results between low	121
	power stoves and MBFS	121
Fig.5.4	Comparative analysis of WBT cold start results between high	121
	power stoves and MBFS	121
Fig.5.5	Comparative analysis of WBT hot start results between low	121
	power stoves and MBFS	121
Fig.5.6	Comparative analysis of WBT hot start results between high	122
	power stoves and MBFS	122
Fig. 5.7	Comparative analysis of WBT simmering phase results	122
	between domestic stoves and MBFS	122
Fig. 5.8	Comparative analysis of WBT simmering phase results	122
	between high power stoves and MBFS	122
Fig. 5.9	Variation of NPV factor with variation in time	126
Fig. 5.10	Variation in NPV of Yearly Cash Flow with variation in time	126

LIST OF ABBREVIATIONS AND SYMBOLS

List of abbreviations

Abbreviations	Descriptions
BIS	Bureau of Indian Standards
MBFS	Multifunctional Biomass Fuelled Stove
PAH	Parallel Flow Air Preheater
PHE	Parallel Flow Flue Gas Heat Extractor
RAH	Radial Flow Air Preheater
SHE	Spiral Flow Flue Gas Heat Extractor
SHTM	Steady State Heat Transfer Model
WBT	Water Boiling Test

List of symbols

Symbols	Descriptions
\boldsymbol{A}	Area
a	Carbon in fuel, Air
В	Breadth, Length of PHE or PAH
b	Hydrogen in fuel
c	Nitrogen in fuel
C	Carbon
C_p	Specific heat
$C_{s,f}$	Constant depending on combination of pot material and fluid
D	Diameter
d	Oxygen in fuel
D_h	Hydraulic diameter
exp	Exponential
F	View factor, Carbon dioxide in flue gas
f	Friction factor
g	Acceleration due to gravity
h	Convective heat transfer coefficient
h_{fg}	Heat of vaporization
H	Hydrogen, Height
I	Nitrogen in flue gas
K_R	Radiation coefficient
k	Thermal conductivity
L	Length, Flow path length, Fin height, Lost
M	Mass flow rate
m	Mass
ṁ	Burn rate
n	Number of moles, Coefficients depending on combination of
	water and pot material, Number
N	Nitrogen, Fins, Data values

Nu Nusselt number

NCV Net calorific value

O Oxygen

o Opacity coefficient

P Perimeter

p Pitch

Pr Prandtl number

Q Heat

Q" Energy per unit volume

 $Q_B^{"}$ Heat flux

 q_{ig} Heat flux at ignition front

r Radius

Reynold's number

Re_c Critical Reynolds number

 R_t Resistance

Standard deviation

Temperaturet Thickness

 T_e Excess temperature

U Overall heat transfer coefficient

V VelocityW Width

 w_{ig} Ignition front velocity

x Thickness, Excess air percentage, Data

 y_m Moisture content

Greek Symbols

Symbols Descriptions

 ψ Excess air

 ε Bed void, Emissivity

 ρ Density

∞ Ambient, Initial

 σ Stefan Boltzmann constant, Standard error

 μ Dynamic viscosity

 λ Latent heat of vaporization

 β Aspect ratio Efficiency

 θ Log mean temperature difference

△ Difference

Superscripts

Symbols Descriptions

k Flame opacity coefficient

n Constant depending on combination of pot material and fluid

o Flame opacity coefficient

x Flame thickness

Subscripts

Symbols Descriptions

a Air, Component

an Annular space

b Breadthwise, Bulk, Base, Boiling, component

bcc Fuel bed to combustion chamber

bp Fuel bed to pot bottom

bx Bed to excess air c Cross-sectional

cc Combustion chamber

co Connector channel

comcondConductionconvConvectionevapEvaporated

f Flame, Fuel, Fin, Fluid

fb Fuel bed

fc Fixed carbon

fg Flue gas
fp Flow path

fr Flame on annular ring

ft Flame top

fuel Fuel

g Air flux, gapHE Heat extractors

i Initial, Gas component, Internal, Inlet

ig Ignition

l Liquid, Lengthwise

lb Lower bed*max* Maximum

mc Moisture content

min Minimum

n Number of components

o Outer, Overall, Outlet

oc Outer cover

p Pot, Particles, Plate

pa_fb Primary air through fuel bed

pb Pot bottom r Annular ring Radiation

RAH Radial flow air pre-heater

RD Rectangular duct

s Supplied, Surface, Spacing

sat Saturated

SHE Spiral Heat Extractor

t Turns, Total, Array area

tb Top bed

th Theoretical

total Total

U Utilized

UC Upper chamber

v Vapor

vol Volatiles

w Water, Wall

x Excess air

1 to 31 Position, Components