TABLE OF CONTENT

Content		Page No.
Acknowledgement		i-ii
Abstract		iii-v
List of Tables		vi-vii
List of Figures		viii-ix
List of Abbreviations	List of Abbreviations and Symbols	
Chapter 1: Introdu	ction	1-24
1.1	Concept of cook stove and its evolution	2-4
1.2	Features of improved biomass cook stoves	4-8
1.3	Initiatives for promotion of improved biomass cook	8-11
	stoves	
1.4	Test protocols for biomass cook stoves	11-13
1.5	Prediction of performance using Simulation	13
1.6	Relevance of multi-functional biomass cook stove	14-15
	under changing techno- socio-economic scenario	
1.7	Need for present research	15
1.8	Objectives of research	15-16
1.9	Organization of the thesis	16-18
References		19-24
Chapter 2: Literature Review		25-47
2.1	Introduction	26
2.2	Socio-economic factors influencing improved biomass	26-30
	cook stove design and implementation	
2.3	Impact of design improvements on performance of	30-33
	biomass cook stove	

2.4	Use of simulation and modeling techniques in	33-35
	improving biomass cook stove designs	
2.5	Waste heat utilization in biomass cook stove for	35-39
	multifunctional activities	
2.6	Summary	39
References		40-47
Chapter 3: Heat	transfer modeling of improved biomass cook stove	48-71
3.1	Introduction	49
3.2	Assumptions for steady state heat transfer modeling	49-51
3.3	Heat transfer components	51-62
3.3.1	Modeling ignition front velocity, burn rate and power	52-53
	delivery	
3.3.2	Heat transfer analysis of fuel bed and combustion	53-55
	chamber	
3.3.3	Heat transfer analysis of flame	55-57
3.3.4	Heat transfer analysis of combustion chamber	57-58
3.3.5	Modeling output parameters	59-60
3.3.6	Model implementation and validation	60-62
3.4	Results and discussions	62-68
3.4.1	Flame temperature and power delivery of stove	62
3.4.2	Heat transfer analysis of fuel bed	62-63
3.4.3	Heat transfer analysis of flame	64-65
3.4.4	Heat transfer analysis of combustion chamber	65
3.4.5	Heat transfer analysis of pot	65-66
3.4.6	Distribution of thermal energy components within	66-67
	biomass cook stove	
3.4.7	Performance analysis and validation	67-68
3.5	Summary	68
References		69-71

Chapter 4: Multit	functional biomass fuelled stove with provision of waste	72-113
heat recovery		
4.1	Introduction	73
4.2	Methodology	73-81
4.2.1	Multifunctional improved biomass fuelled stove:	73-76
	concept and layout design	
4.2.2	Development of multifunctional biomass fuelled stove	76-79
4.2.3	Methodology of design parameters	79-81
4.3	Steady state heat transfer modeling of multifunctional	81-98
	biomass fuelled stove	
4.3.1	Heat received by air while passing through combustion	83-85
	chamber	
4.3.2	Heat transferred from the fuel bed	85-86
4.3.3	Heat transferred from flame	86-87
4.3.4	Heat transfer from combustion chamber	88
4.3.5	Flue gas heat extraction and air pre-heating	88-94
4.3.6	Performance of the stove	94-95
4.3.7	Experimental test methodology	95-98
4.3.8	Error and uncertainty analysis	98
4.4	Results and discussions	99-108
4.4.1	Steady state heat transfer analysis	99-102
4.4.2	Experimental performance test results of the developed	102-107
	stove	
4.4.2.1	Bureau of Indian Standards test results	104-106
4.4.2.2	Water Boiling Test results	106-107
4.4.3	Comparative performance analysis	108
4.5	Summary	108-110
References		111-113

Chapter 5: Plan	for MBFS technology transfer	114-129
5.1	Introduction	115-116
5.2	Comparative performance assessment	116-122
5.2.1	Comparison with Bureau of Indian Standards certified	116-119
	cook stove models	
5.2.2	Comparison with WBT tested biomass cook stoves	119-122
5.3	Indian cooking energy scenario	123
5.4	Economic analysis	124-125
5.4.1	Cost components	124-125
5.4.2	Selling price and revenue generation	125
5.5	Analyzing the project viability	126-127
5.6	Summary	127
References		128-129
Chapter 6: Summary and conclusions		130-133
6.1	Background	131
6.2	Steady state heat transfer modeling of biomass cook	131-132
	stoves	
6.3	Development of a multipurpose improved cook stove	132
6.4	Planning technology transfer of Multifunctional	132-133
	Biomass Fuelled Stove	
6.5	Conclusion	133
6.6	Future works	133

Appendix

List of Publications