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assessment of biomass gasifier operating performance 

Evaluation of performance of gasifier utilizing a variety of biomass feedstock is 

essential in planning of a biomass gasification based electricity generation system 

for a region. Performance evaluation is based on the estimation of output gas 

composition and calorific value of the output gas. The reactor design and operating 

parameters influence the gasifier performance. Mathematical modeling serves as an 

important route to study the gasifier behaviour in order to optimize its design and 

operation in comparison to physical experimentation which is both time consuming 

and uneconomical. For example, commissioning a gasifier at a given location 

requires performance evaluation based on the different feedstock available in the 

region. Experimentation utilizing the array of biomass puts time constraints on the 

planning process along with increased financial involvement. On the other hand, if 

we have a mathematical model of the system then we can easily find out how the 

system will perform in accordance with the characteristics of the available feedstock. 

Mathematical models give a realistic representation of the chemical and physical 

phenomena occurring inside the gasifier. Equilibrium modeling, kinetic modeling, 

computational fluid dynamic (CFD) modeling and artificial neural network (ANN) 

modeling are the some of the techniques used in biomass gasification study. ANN 

and Kinetic modeling has been considered for the present study. Choice of the 

techniques has been discussed in Chapter 2. The following sections discusses the 

development of ANN and Kinetic models of fixed bed downdraft gasifiers. 

4.1 Development of ANN models of biomass gasification (This Section is 

adapted from Author’s own publication [1]) 

In the present study an attempt has been made to develop a multi-layer perceptron 

(MLP) based ANN model of the biomass gasification process in a fixed bed 

downdraft gasifier. The objective of the study is to develop ANN model and utilize 

it in predicting the product gas composition in terms of percentage composition of 

the product gas species for variations in the operating parameters. Further, it is 

attempted to determine the relative influence of some specific operating parameters 

on output gas.  



Chapter 4 
 

PhD Thesis_TU_Dipal Baruah_2019 

 

80 

4.1.1 Topology of the ANNs 

An ANN based model for fixed bed downdraft type of gasifiers is developed to study 

gasification behaviour in terms of product gas composition. An ANN is an 

architecture consisting of a large number of neurons organized in different layers 

and the neurons of one layer are connected to those of another layer by means of 

weights and it can be trained to perform a particular task by making proper 

adjustment of its connecting weights, bias and architecture [2]. In this study, ANN 

models were developed in the MATLAB environment using the Neural Network 

Toolbox (nntool). Fig. 4.1 represents the architecture of the ANN models developed 

for each output (CH4, CO, CO2 and H2). Each ANN has one input layer with six 

variables viz. C (wt% dry basis), H (wt% dry basis), O (wt% dry basis), ash (wt% 

dry basis), MC (%), and reduction zone temperature, TR (°C) with one hidden layer 

and one output.  

 

Fig. 4.1 ANN architecture to predict the gas components for fixed bed downdraft gasifiers 

In the models, the activation function used in the hidden layers was a hyperbolic 

tangent sigmoid function (TANSIG). This transfer function results in an output that 
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lies in the range of (-1.0 to 1.0) and generally used for back propagation networks. 

The input-output relationship for this transfer function is given by Eq. 4.1. 

U𝑘  =   
ea(Vk)−e−a(Vk)

ea(Vk)+e−a(Vk)                 ---- 4.1 

where, Vk and Uk are the input and output of the kth neuron and ‘a’ represents the 

coefficient of transfer function. Plot of the hyperbolic tangent sigmoid function is 

shown in Fig. 4.2.   

 

Fig. 4.2 Tan-sigmoid transfer function 

The linear transfer function (PURELIN) was used in the output layer. The output of 

this transfer function is made equal to its input and it lies in the range of (-1.0 to 1.0). 

The input-output relationship of this transfer function is expressed by Eq. 4.2. Plot 

of the linear transfer function is shown in Fig. 4.3. 

𝑈𝑘 = 𝑉𝑘         ---- 4.2 

 
Fig. 4.3 Linear transfer function 

In order to find out the most appropriate or best solution, a large number of different 

ANN models were developed with different number of hidden layers and different 

number of neurons for each hidden layer. The optimum solution was selected by 
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minimizing the Mean Square Error (MSE). The best results were considered as one 

hidden layer with five neurons in the case of CH4 and CO, one hidden layer with 

four neurons in the case of CO2 and one hidden layer with three neurons in the case 

of H2. 

4.1.2 Data selection for the model 

An extensive literature review was conducted to obtain experimental data for 

biomass gasification under atmospheric pressure in downdraft fixed bed gasifiers. 

In order to maintain homogeneity in the different input variables considered for the 

development of the ANN based model, only experimental data pertaining to woody 

biomass and pellet gasification were considered. As results from large scale gasifiers 

(>100 kW) cannot be compared with results from small scale gasifiers, experimental 

data from small scale gasifiers only were incorporated in the development of the 

model. Table 4.1 lists out the experimental works utilised in development of the 

model.  

Table 4.1 Experimental data used in formulation of the ANN models 

Sl. 

No. 
Author(s) Feedstock Used 

Number of data 

sets used 

1 Antonopoulos et al. [3] Olive wood, miscanthus and cardoon 4 

2 Dogru [4] Hazelnut shells 3 

3 Erlich and Fransson [5]              Empty fruit brunch, Bagasse, Wood 5 

4 Gai and Dong [6] Corn straw pelletes 5 

5 Janajreh and Al Shrah [7] Wood chips 3 

6 Jaojaruek et al. [8] Eucalyptus wood 3 

7 Jordan and Akay [9] Fuel Cane Bagasse Pellet 3 

8 Kallis et al. [10] Miscanthus and bioethanol waste pellets 3 

9 Lapuerta et al.[11] Wood Chips 3 

10 Lv et al. [12] Pine wood blocks 3 

11 Melgar et al. [13] Rubber Wood 5 

12 Sharma [14,15] Kiker wood, Douglas Fir Bark 3 

13 Sheth and Babu [16] Sesame or rose wood 3 

14 Tinaut et al. [17] Pine Bark 3 

15 Van de steene et al. [18] Wood chips 5 

16 Varunkumar et al. [19] Wood 3 

17 Warnecke [20] Hazelnut shells 3 

18 Wei et al. [21] Hardwood chips blended with crude 

glycerol 

3 

The data set for the downdraft fixed bed gasifiers contain data from 63 different 

experimental runs [3-21] for various feedstock. Feedstock characteristics viz. 

moisture (MC), ash, C, H and O content along with reduction temperature (TR) were 
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considered to be the input variables in the formulation of the ANN models. Fixed 

carbon (FC) and volatile matter (VM) as stated by Brown et al. [22] based on the 

previous works of van Krevelen [23] and Jenkins et al. [24] are considered as 

dependent variables because the FC ratio is proportional to both the H/C and O/C 

ratios. Thus, FC and VM were excluded from the input variables. Nitrogen and 

sulphur content were also not considered as they are assumed to have little influence 

in the production of gas species viz. CO, CO2, H2 and CH4. Table 2 lists the 

characteristics of the input and output variables obtained from the experimental data 

published in standard literature. 

Table 4.2 Characteristics of input and output variables in the ANN models  

Input Variables to the ANN's Range 

C (wt% dry basis) 43.83 - 53.4 

H (wt% dry basis) 5.42 - 7.18 

O (wt% dry basis) 37.24 - 45.83 

Ash (wt% dry basis) 4.25 - 9.48 

Moisture Content (%) 4.20 - 14.70 

Reduction Temperature (°C) 600 - 1206 

Output Variables for the ANN's   

CO content (%) 10.83 - 24.00 

CH4 content (%) 2.00 - 6.91 

H2 content (%) 9.30 - 19.00 

CO2 content (%) 10.02 - 23.93 

4.1.3 Training, validation and prediction ability of the models 

In order to check the robustness, validation and prediction ability of the models, the 

database was divided into two parts as training (70%) and validation-testing (30%) 

sub-sets. The training function used in the models were based on the TRAINLM 

function which updates the weight and bias values according to Levenberg-

Marquardt optimization. This function is often the fastest backpropagation 

algorithm. Also, the Gradient descent with momentum weight and bias learning 

function (LEARNGDM) was used to minimise the errors. This function calculates 

the weight change for a given neuron from the neuron's input and error, the weight 

(or bias), learning rate, and momentum constant, according to gradient descent with 

momentum backpropagation. Training and validation-test subsets were randomly 

selected from the available database. Details of the ANN models are summarised in 

Table 4.3. 
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Table 4.3 Details of ANN models 

Sl. 

No. 
Particulars Specifications 

1 Network type  Feed Forward Backpropagation 

2 
Training function or Training 

algorithm 

Levenberg-Marquardt backpropagation 

(TRAINLM) 

3 Adaption learning function 
Gradient Descent with Momentum Weight 

and Bias (LEARNGDM) 

4 Performance function Mean Square Error (MSE) 

5 Transfer function Hyperbolic Tangent Sigmoid (TRANSIG) 

6 Data division  Random (Dividerand) 

7 Number of input layer unit 6 

8 Number of output layer unit 1 

9 Number of hidden layer 1 

10 Number of hidden layer neuron 5 each for CH4 and CO, 4 for CO2 & 3 for H2 

11 Number of epoch (Learning cycle) 1000 iterations 

The prediction ability of the ANNs were statistically appraised by root mean square 

error (RMSE) and absolute fraction of variance (R2) which were calculated with the 

experimental values and networks predictions using equations 4.3 and 4.4, 

respectively. 

𝑅𝑀𝑆𝐸 =  ((
1

𝑝
) ∑ |𝑇𝑗 − 𝑂𝑗|2

𝑗 )

1

2

…………                          ---- 4.3 

𝑅2 = 1 − (
∑ (𝑇𝑗−𝑂𝑗)2

𝑗

∑ (𝑂𝑗)2
𝑗

)……………        ---- 4.4 

where, p is the number of samples, Tj is the target (actual) value and Oj is the output 

(predicted) value. 

4.1.4 Relative influence of input variables on model outputs 

It is desirable to have an understanding of the influence of different input variables 

on the outputs of the model. Such knowledge would help in specifying optimum 

values of input variables for optimizing the performance of the gasifier. Influence of 

the input variables on the outputs was evaluated with the help of Garson equation 

which is based on neural net weight matrix [2]. Garson [2] proposed an equation that 

is based on the partitioning of connection weights. In the equation the numerator 
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describes the sums of absolute products of weights for each input and the 

denominator represents the sum of all weights feeding into hidden unit, taking the 

absolute values. The Garson equation, adapted to the present ANN topology is given 

in equation 4.5.  

𝐼𝑖 =

∑ ((
|𝐼𝑊𝑗,𝑖|

∑ |𝐼𝑊𝑗,𝑖|𝑖=6
𝑖=1

).|𝐿𝑊𝑗,𝑖|)
𝑗=𝑛
𝑗=1

∑ {∑ ((
|𝐼𝑊𝑗,𝑖|

∑ |𝐼𝑊𝑗,𝑖|𝑖=6
𝑖=1

).|𝐿𝑊𝑗,𝑖|)
𝑗=𝑛
𝑗=1

}𝑖=6
𝑖=1

……………      ---- 4.5 

where, i is the input variables, j is the hidden layer neurons, Ii is the relative influence 

of the ith input variable on the output variable, IWj,i is the weight to jth neuron of 

hidden layer from ith input variable, LWj,i  is the weight to output layer from jth neuron 

of hidden layer and n is the number of neurons (5 for CH4 and CO, 4 for CO2 and 3 

for H2). After computing the relative influence of the input variables on the output 

of each of the models, the input variables were ranked in descending order of 

magnitude. A comparative study of the variable ranking was then carried out. 

4.1.5 Model output 

Four neural networks with eight inputs, ten neurons in the hidden layer and one 

output each, were found to be efficient in predicting producer gas composition. The 

parameters (IWj,i, LW1,j, b1j, b2) of the best fit for each of the four ANN developed 

are shown in Appendix-I.  

The simulated and experimental values of each output CO, CO2, H2 and CH4 were 

compared satisfactorily through a linear regression model as shown in Fig. 4.4. It 

can be observed that R2 values are higher than 0.99 in the cases of CH4 and CO 

models and higher than 0.98 in the case of CO2 and H2 model. Further, the RMSE 

was found to be 0.0688 in the case of CO whereas it was 0.0523, 0.0915 and 0.0873 

in the case of CH4, H2 and CO2 respectively. After computing the limits for the 

statistical test of intercept and slope [25], the ANNs passed the test with 99.2% of 

confidence level. This test guarantees that whole ANN model, containing four 

ANNs, has a satisfactory level of confidence. Similar results were also reported by 

Puig-Arnavat et al. [26] for ANN models of fluidised bed gasifiers. 
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Fig. 4.4 Comparison between experimental and predicted data by the ANN models  

The developed models were also compared with experimental results [27] outside 

the data set. The experimental results however had input values within the range of 

the input variables used in the development of the models. A comparative plot of the 

predicted and experimental result in shown in Fig. 4.5. Model results show good 

conformity with the experimental results with an average relative error of 2.65%. 

 

Fig. 4.5 Comparison between modelled data and experimental data. 

The influence of the variables on the output prediction was calculated using the 

Garson’s equation. Fig. 4.6 depicts the influence of input variables on each of the 
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output for the developed ANNs. Table 4.4 summarises the ranking of the variables 

in output prediction of the developed ANNs.  

Table 4.4 Ranking of variables in output prediction for the ANN models 

Rank CO prediction CH4 prediction H2 prediction CO2 prediction 

1 TR Ash TR C 

2 H TR O TR 

3 C C H MC 

4 Ash H MC H 

5 O MC C Ash 

6 MC O Ash O 

Percentage of influence of biomass composition (C, H and O) on end gas 

composition varies with the type of product gas. Further, TR was the most important 

variable in CO and H2 prediction while it was the second most important variable in 

CH4 and CO2 prediction.  

Reduction zone temperature was found to be the most influential variable in 

conformation to the fact that increase in temperature leads to a noticeable increase 

in gas yield [28]. However, reactor temperature is significantly affected by MC of 

biomass due to heat required for evaporation of moisture [29]. MC was found to 

have a comparatively similar influence (9.24-11.09%) in the case of CO, CH4 and 

H2 while it had a relatively higher influence (17.08%) in the case of CO2. H content 

was found to be the 2nd most influential variable in case of CO while it ranked 3rd in 

the case of H2 and 4th in the case of CH4 and CO2 prediction. Ash content and C 

content were the most influential variable in the case of CH4 and CO2 prediction 

respectively. Ash content, however, showed relatively lower influence in the case of 

CO, H2 and CO2 where it ranked 4th, 6th and 5th respectively. Although higher ash 

content can lead to serious agglomeration, fouling, and corrosion in gasifiers, it is 

capable of influencing the gasification process as is evident from the results. 

However, the exact influencing phenomenon of ash on the gasification process may 

be a subject of further research. It may, however, be commented that each of the 

variables have a strong influence on the outputs with variations in the range of 8% 

to 31%. 
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Fig. 4.6 Influence (relative %) of input variables on the different outputs of the ANN models. 

The results show how the percentage composition of the major four gas species in 

producer gas can be successfully predicted by applying a neural network with one 

hidden neurons in the hidden layer and using backpropagation algorithm. The 

models are applicable for a wide variety of feedstock. However, expansion of the 

database with data from experimental runs for other varieties of feedstock becomes 

desirable to further increase the applicability of the models. The results also depict 

the relative importance of different operating parameters on the composition of the 

product gas species. The models are expected to have practical application in 

screening potential feedstock for biomass energy extension programmes based on 

gasification technology. However, in order to supplement the planning of a biomass 

gasification based electricity generation for a region, information of gasifier 

performance using more varieties of feedstock may be required.  Keeping this in 

view, a kinetic model was also developed. The development of the model is 

discussed in the following section. 
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4.2 Development of Kinetic model of biomass gasification 

In the gasification process, as the temperature increases, there is progressive 

domination of the thermal decomposition of biomass feedstock yielding char and 

volatiles. When these combustible products come in contact with oxygen in the air 

they get ignited. This provides the exothermic reactions to enhance further pyrolysis 

and the pyrolysis products are thermally cracked into lower molecular weight 

components [30]. In the present analysis, pyrolysis and oxidation of pyrolysis 

products in restricted air supply are described in a separate region denoted the pyro-

oxidation zone. As the volatiles start depleting, the oxidation process start receding 

and the flames die down. This leads to char reduction with glowing surface [30]. The 

char reduction reactions are described separately in the char reduction zone. Thus, 

the model is developed in two stages. The first stage deals with the pyro-oxidation 

zone and the second stage with the char-reduction zone. 

4.2.1 Initial conditions 

The reduction zone model requires the concentration of gas species as an input 

parameter. This is obtained by describing the drying, pyrolysis and oxidation process 

simultaneously in pyro-oxidation zone. Char is assumed as pure carbon as the 

hydrogen and oxygen content decreases sharply with increase in temperature [31]. 

The pyro-oxidation process can be represented by a single reaction using Eq. 4.6. 

C6HHBOOB + 𝑤
˙
H2O + 𝑦

˙
O2 + 3.76𝑦

˙
N2 = 𝑛

˙

COCO + 𝑛
˙

CO2
CO2 + 𝑛

˙

H2
H2 + 𝑛

˙

H2OH2O +

𝑛
˙

CH4
CH4 + 𝑛

˙

CC(char) + 𝑛
˙

N2
                ----4.6 

C6HHBOOB is the chemical formula of dry biomass in which HB and OB is obtained 

from proximate analysis. Char yield is obtained from ultimate analysis (non-

equilibrium product). �̇�, �̇� and �̇�𝑖 denote the molar flow rates of - moisture in 

feedstock, oxygen in the atmospheric air and products. Now, for given values of air–

fuel ratio or equivalence ratio, biomass composition and moisture content, the 

quantity of product gases viz. CO, CO2, H2, H2O, N2 and char can be estimated based 

on the water–gas shift reaction and the atomic balances of Eq. 4.6. This estimation 

yields char as a non-equilibrium product. The quantity of the product gases estimated 

along with reaction temperature serves as initial condition of the reactants in the char 

reduction zone.  
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4.2.2 Reduction reactions 

Four chemical reactions (CR1–CR4) are used to describe the reduction reaction 

zone.  Prediction of the compositions of species viz., CO, CO2, H2, H2O, CH4, N2 

and charcoal or char is required. It is assumed that the char is consumed gradually 

in complete absence of oxygen due to char–gas reactions and gas–gas reactions as 

described by following chemical reactions. 

CR1: Boudouard reaction: C + CO2 ↔ 2CO                   ----4.7 

CR2: Water–gas (primary) reaction: C + H2O ↔ CO + H2                ----4.8 

CR3: Methanation reaction: C + 2H2 ↔ CH4                      ----4.9 

CR4: Steam reforming reaction: CH4 + H2O ↔ CO + 3H2                              ----4.10                

Ideal behaviour of all gaseous products are assumed. However, N2 which although 

considered to be inert, dilutes the final energy density of gas. As the reactions (CR1–

CR4) proceed, the temperature of char bed drops. This is due to nature of the 

reduction reaction of the char bed with the products of combustion. These reactions 

are generally heterogeneous endothermic.  This causes a decrease in the char bed 

temperature. The reduction reactions (CR1–CR4) are considered for the modeling. 

The formulation of the Kinetic model for char reduction zone is described below. 

4.2.3 Kinetic rate model of char reduction zone 

The kinetic rate model is based on modeling approaches suggested by Sharma [32], 

Wang and Kinoshita [33]and Giltrap et al [34]. The reactions (CR1–CR4) are 

considered to describe the kinetic model of char reduction reactions. The apparent 

rate constants for each reaction are adopted from Giltrap et al [34]. The reactions are 

allowed to proceed up to the point where concentration of the reactants approach 

their equilibrium values. The reaction rates are then determined based on the 

deviation of the concentration of the reactant from the equilibrium values [33]. The 

reaction rates of each of the reactions is given by Eq. 4.11 – 4.14 respectively. 

𝑟1 = 𝐶RF𝑘1 (𝜒CO2
−

𝜒CO
2

𝐾eq,1
)        ----4.11 

𝑟2 = 𝐶RF𝑘2 (𝜒HO2
−

𝜒CO𝜒H2

𝐾eq,2
)                   ----4.12 
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𝑟3 = 𝐶RF𝑘3 (𝜒H2

2 −
𝜒CH4

𝐾eq,3
)        ----4.13 

𝑟4 = 𝐶RF𝑘4 (𝜒H2

3 𝜒CO −
𝜒H2O𝜒CH4

𝐾eq,4
)       ----4.14 

where kj is the reaction rate of the jth reaction which can be expressed using a 

Arrhenius-type temperature dependence given by Eq. 4.15. 

 𝑘𝑗 = 𝐴𝑗𝑒𝑥𝑝 (
−𝐸𝑗

𝑅u𝑇
)          ----4.15 

where Aj is a pre-exponential factor and Ej is the activation energy for reactions j = 

1–4 . The values of Aj and Ej is adopted from Wang and Kinoshita [33] and presented 

in Table 4.5. CRF is the char reactivity factor. In the present analysis, a linearly 

varying CRF has been used to incorporate the active sites present on char surface 

given by Eq. 4.16. 

 𝐶RF = 4.0012(10𝑧) − 3.0012       ----4.16 

where z is the displacement in the downward direction by the particle. 

Table 4.5 Rate constant parameters of char reduction reactions 

Reaction no. (j) Aj [33] Ej (kJ/mol) [33] 

1 3.616×101  77.39 

2 1.517×104  121.62 

3 4.189×10-3  19.21 

4 7.301×10-2  36.15 

The char reduction zone can be divided into a number of control volumes axially. 

For the analysis, it is assumed that the net mass flow rate at entrance and exit of each 

control volume does not vary with time i.e. the local mass balance is steady in each 

control volume. This allows for the balance between the production of gas or species 

and consumption of char even though the mass balance of each species in each 

control volume is of unsteady or transient nature. The net rate of production of the 

gas or species can now be estimated in terms of the above reaction rates. The net 

production rate of each species can be used to compute outflow species 

concentration for known inflow concentration of each species and volume of each 

control volume as given by Eq. 4.17. 
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𝑛
˙

𝑖,out = 𝑛
˙

𝑖,in + 𝑉CV,𝑘Rt𝑖                                            ----4.17 

where 𝑛
˙

𝑖 represents the molar flow rate of the species i,  VCV,k is the volume of the kth 

control volume and Rti is the net production rate of species i in the control volume. 

Subscripts in and out represent the inflow and outflow plane flow rates, respectively. 

4.2.4 Temperature simulation through energy balance 

The temperature of the char bed is predicted based on an energy balance equation. 

The energy balance is based on the work of Sharma [32]. The equation takes into 

account the inflows and outflows of heat in a control volume due to flow of gases 

and feedstock. It also accounts for the heat transfer between adjacent control 

volumes due to conduction and radiation and the rate of endothermic heat 

absorption. The control volume considered in the analysis is shown in Fig. 4.6. The 

energy balance equation is given by Eq. 4.18. 

∑ 𝑚𝑖ℎ𝑖react + (−𝑘eff𝐴𝛻𝑇)in − 𝑄
˙

loss,𝑘 − 𝑄
˙

reac,𝑘 = ∑ 𝑚𝑖ℎ𝑖prod + (−𝑘eff𝐴𝛻𝑇)out  

           ----4.18 

ℎ𝑖 = ∫ 𝐶𝑝𝑖
d𝑇

𝑇

𝑇𝐴
         ----4.19 

where hi is the sensible enthalpy change, which is based on char and combustion 

products at various stages of combustion; and keff is effective thermal conductivity 

of the char bed filled with gas mixture (based on Sharma’s model). The bed porosity 

in biomass gasifiers varies from 0.5 at the top to 0.3 at the bottom [35]. An implicit 

function defining the variation in the bed porosity could not be determined. 

Therefore, an average bed porosity of 0.4 is assumed for the analysis. Char 

emissivity of 0.75 is used as reported by Ragland et al. [36]. The thermal interaction 

in adjacent upper and lower control volume (Fig. 4.7) is then estimated.  𝑄
˙

loss,𝑘 is 

the rate of heat loss from kth control volume, which is estimated based on a resistance 

network [32]. 

 𝑄
˙

reac,𝑘 represents the rate of endothermic heat absorption occurring in the kth control 

volume. This absorption rate can be based on the enthalpy of formation of the 

reactants and products given by Eq. 4.20. 
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Fig. 4.7 Control volume used for heat transfer analysis  
(Author’s representation based on Sharma [32])  

 𝑄
˙

reac,𝑘 = ∑ 𝑚
˙

𝑖ℎ𝑓,𝑖
0

react

− ∑ 𝑚
˙

𝑖ℎ𝑓,𝑖
0

prod

                       ----4.20 

where, heat of formation of each constitute can be known from Turns [37]. 

The specific heat (kJ/kg K) and thermal conductivity (W/m K) of the char is based 

on the works of Ragland et al [36] and given by Eq. 4.21 and 4.22. 

𝐶𝑝char
= 1.39 + 0.00036𝑇             ----4.21 

𝑘char = 0.67𝑆char − 0.071          ----4.22 

where, Schar is the specific gravity of char. 

The specific heats and thermal conductivity of gas mixture are then determined using  

Eq. 4.23 and 4.24 [38]. 

𝐶𝑝gas-mixture
= ∑ 𝑌𝑖𝐶𝑝𝑖

gases

          ----4.23 

𝑘mixture =
∑ 𝜒𝑖𝑘𝑖

𝑖

𝑖=1
 (mw𝑖)0.333

∑ 𝜒𝑖
𝑖

𝑖=1
 (mw𝑖)0.333

         ----4.24 

For determination of specific heat, the analysis adopts a polynomial equation fit 

given by Eq. 4.25 [39].  

𝐶𝑝𝑖
= 𝑎𝑖 + 𝑏𝑖𝑇 + 𝑐𝑖𝑇

2 + 𝑑𝑖𝑇
3 + 𝑒𝑖𝑇

4         ----4.25 

Also, thermal conductivity is determined based on a polynomial curve fit given by 

Eq. 4.26 [40]. 

𝑘𝑖 = 𝐴𝑖 + 𝐵𝑖𝑇 + 𝐶𝑖𝑇
2 + 𝐷𝑖𝑇

3      ----4.26 

4.2.5 Simulation and validation of the model 

Simulations were performed to predict dry gas composition using the kinetic model 

for different feedstock. The information of inflow reactants to reduction model were 

obtained from upstream pyro-oxidation module based on the characteristics of the 
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feedstock. Values of air–fuel ratio or equivalence ratio, gas flow rate and moisture 

content of feedstock are required as input to the model. These values are obtained 

based on the feedstock characteristics and gasifier operating conditions. The 

simulation predicted the values of gas composition. 

 

Fig. 4.8 Setup 1: 10 kW downdraft gasifier at University of Nottingham, UK  

 

Fig. 4.9 Setup 2: 4 kW downdraft gasifier at Tezpur University, India 
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The theoretical predictions for gas composition were compared with the 

experimental data for validation. Two experimental setups were utilized for 

experimentation purpose. The first setup is of a 10 kW (Electrical) downdraft 

gasifier available at the Sutton Bonington campus of the University of Nottingham, 

UK as shown in Fig. 4.8. The second setup is that of a 4 kW (Thermal) downdraft 

gasifier available at the Department of Energy, Tezpur University, shown in Fig. 4.9. 

Locally available biomass were used as feedstock in the experimental facilities. 

Willow, Cedar and Eucalyptus were used as feedstock in the first setup whereas Gul 

Mohar and Dhaincha were used in the second setup. The characteristics of the 

biomass feedstock used for experimentation are summarized in Table 4.6. 

Table 4.6 Characteristics of feedstock used for experimentation 

Fuel Moisture 

content 

(%) 

Volatile 

matter 

(%) 

Fixed 

carbon 

(%) 

Ash 

(%) 

Carbon 

(%) 

Hydrogen 

(%) 

Nitrogen 

(%) 

Oxygen 

(%) 

Willow* 10.95 64.38 19.03 5.64 50.36 6.74 1.12 41.64 

Cedar* 9.92 67.79 17.57 4.73 53.30 6.20 0.10 40.40 

Eucalyptus* 9.96 67.61 16.00 6.43 49.78 5.78 0.14 44.21 

Gul Mohar** 13.33 61.01 13.08 10.93 43.08 5.63 1.18 50.11 

Dhaincha** 13.58 85.63 12.53 1.84 45.240 6.060 0.560 46.300 

 * Experimentation in Setup 1 

** Experimentation in Setup 2 

The modelled values were compared with the experimental results. The comparison 

of the modelled values and the experimental values for different feedstock are shown 

in Fig. 4.10 – 4.14.  

 

Fig. 4.10 Comparison of modelled and experimental gas composition using Willow 
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Fig. 4.11 Comparison of modelled and experimental gas composition using Cedar 

 
Fig. 4.12 Comparison of modelled and experimental gas composition using Eucalyptus 

 

Fig. 4.13 Comparison of modelled and experimental gas composition using Gul Mohar 
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Fig. 4.14 Comparison of modelled and experimental gas composition using Dhaincha 

The average relative error in the model prediction was considered as the validation 

criteria. The estimated average relative error in the model predictions are presented 

in Table 4.7. 

Table 4.7 Average relative error in Kinetic model prediction (%) 

Feedstock CO CO2 CH4 H2 

Willow 6.33 -0.47 -1.58 -3.44 

Cedar -5.17 -6.71 -1.45 4.45 

Eucalyptus -0.44 -6.85 -2.94 0.11 

Gul Mohar -4.23 2.29 -5.72 -4.43 

Dhaincha -5.97 -4.38 -0.57 7.61 

It is observed that the model under-predicts the CO, CO2 and CH4 composition in 

almost every case with a maximum error of nearly 6%, 7% and 3% respectively. In 

the case of H2 prediction there is mixed variation with a maximum error of 7.6% in 
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4.2.6 Prediction of critical char bed length 

The degree of char conversion has a strong influence on the energy balance [41]. 

Hence, for a given feedstock and operating conditions, there exists an optimal degree 

of char conversion which results in the maximum process efficiency. The length of 

the char bed at which all the char gets consumed is known as the critical char bed 

length (CCBL). CCBL is an important parameter, the knowledge of which is 

expected to be helpful in determining the size of a gasifier. An additional benefit of 

the model is its ability to predict the CCBL. The CCBL for varying ratings of the 

gasifier using different feedstock (Willow, Cedar and Eucalyptus) was predicted 

using the model. For the simulation, equivalence ratio, gas flow rate, moisture 

content and biomass composition were fixed for different ratings of the gasifier. An 

equivalence ratio of 1.3 was considered for each case. The gas flow rate was fixed 

at 0.25 m3/min at 10 kW and increased in the ratio of corresponding increase in the 

gasifier rating. Moisture content and biomass composition were based on the 

characterisation of the feedstock. The results of the simulation are shown in Table 

4.8. It may be observed that there is no significant variation in the predicted critical 

char bed length for a given rating of the gasifier using different feedstock. The results 

are expected to be useful helpful in determining the size of the reactor of a gasifier 

for a given rating. However, physical validation is required before generalising the 

results.  Further research in this aspect is required to augment the prediction ability 

of the model. 

Table 4.8 Prediction of critical char bed length 

Power 

rating (kW) 

Modelled critical char bed length (m) 

Willow Cedar Eucalyptus 

10 0.15 0.15 0.15 

20 0.18 0.18 0.19 

30 0.21 0.20 0.22 

40 0.24 0.23 0.25 
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4.3 Summary 

The necessity of modeling techniques for biomass gasification is augmented by the 

unavailability of experimental data based on different biomass feedstock for 

different ratings of the gasifier. The development of ANN and Kinetic model of fixed 

bed downdraft gasifier has been discussed. The developed models are expected to 

act as a generalised platform to predict gasification performance for a range of 

feedstock. The models are also expected to support the framework of a decision 

support system (DSS) for biomass gasification based energy generation. The 

development and utilization of a DSS for gasification based decentralised electricity 

generation is presented in the next Chapter. 
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