LIST OF TABLES

Table No.	Title	Page No.
1.1	Emission factors of fossil fuels for electricity generation	05
1.2	Share of renewables in global electricity generation (TWh) during 2012-2017	06
2.1	Equilibrium model in the study of downdraft gasifiers	27
2.2	Equilibrium model in the study of fluidised bed gasifiers	32
2.3	Equilibrium model in the study of some specific gasifier designs	34
2.4	Kinetic model in the study of specific gasifiers designs	38
2.5	CFD and ANN models in the study of biomass gasifiers	41
3.1	Procedures used for proximate analysis of biomass feedstock	64
3.2	Procedures used for ultimate analysis of biomass feedstock	65
3.3 (a)	Characterization of locally available woody biomass	69
3.3 (b)	Characterization of locally available biomass-residue	70
3.3 (c)	Characterization of locally available semi-woody biomass	71
4.1	Experimental data used in formulation of the ANN models	82
4.2	Characteristics of input and output variables in the ANN models	83
4.3	Details of ANN models	84
4.4	Ranking of variables in output prediction for the ANN models	87
4.5	Rate constant parameters of reduction reactions	91
4.6	Characteristics of feedstock used for experimentation	95
4.7	Average relative error in Kinetic model prediction (%)	97
4.8	Prediction of critical char bed length	98
5.1	Variations and Decisions possible with the DSS for different scenarios	107
5.2	Input and Output parameters of the DSS	109
5.3	CEPCI values for different years	113
5.4	Capital cost of items	114
5.5	Values of input parameters for economic analysis	117
5.6	Potential electricity demand of Jhawani village	119
5.7	Details of remote sensing images	120
5.8	Share of land use classes	121
5.9	Residue production ratio of different agro-residues	122
5.10	Biomass feedstock availability in Jhawani village	123

LIST OF FIGURES

Figure No.	Title	Page No.
1.1	Share of population with access to electricity in 2017 (%)	02
1.2	Percentage of population with access to electricity in different regions of the	
1.2	world	03
1.3	Global off-grid renewable capacity 2008-2017	04
1.4	Share of renewable in total electricity output in 2017 (%)	07
1.5	Year wise biomass based electricity generation from different sources worldwide	08
3.1	Emissions from different sources of electricity generation	67
3.2	Range of variations in the biomass characteristics	71
4.1	ANN architecture to predict the four main producer gas components for fixed bed downdraft gasifiers	80
4.2	Tan-sigmoid transfer function	81
4.3	Linear transfer function	81
4.4	Comparison between experimental and predicted data by the ANN models	86
4.5	Comparison between modelled data and experimental data	86
4.6	Influence (relative %) of input variables on the different outputs of the ANN	
	models	88
4.7	Control volume used for heat transfer analysis	93
4.8	Setup 1: 10 kW downdraft gasifier at University of Nottingham, UK	94
4.9	Setup 2: 4 kW downdraft gasifier at Tezpur University, India	94
4.10	Comparison of modelled and experimental gas composition using Willow	95
4.11	Comparison of modelled and experimental gas composition using Cedar	96
4.12	Comparison of modelled and experimental gas composition using Eucalyptus	96
4.13	Comparison of modelled and experimental gas composition using Gul Mohar	96
4.14	Comparison of modelled and experimental gas composition using Dhaincha	97
5.1	Uncertainties associated with a biomass gasification based electricity	105
5.2	generation system Conceptualized framework of the DSS	105 107
5.3	Architecture of the DSS	108
5.4	User interface of developed DSS	108
5.5	Data flow structure of the DSS	110
5.6	Conceptualized biomass gasification based electricity generation system	111
5.7	Jhawani village in Bihaguri development block of Sonitpur District of	110
5.8	Assam, India Land use and land cover of Jhawani village	118 121
5.9	Variation of LCOE (₹/kWh) under different configurations	124
5.10	Variation of LCOE (₹/kWh) with different generation systems	125
5.11	LCOE at different ratings and configurations using Dhaincha and Rice husk	123
	pellet	126
5.11	Influence of techno-economic parameters on LCOE using Dhaincha as feedstock	127
5.12	Influence of techno-economic parameters on LCOE using Rice Husk Pellet	14/
	as feedstock	128

LIST OF ABBREVIATIONS

A 1-1	E-11 E
Abbreviation	Full Form
AC	Annualized Cost
ANN	Artificial Neural Networking
ARB	Agro-Residue Biomass
ASTM	American Society for Testing and Materials
AUHDSS	Aberdeen University Harvesting Decision Support System
BEAM	Bio-Energy Assessment Model
BFB	Bubbling Fluidized Bed Gasifier
BITES	Integrated Biomass to Electricity Model
CCBL	Critical Char Bed Length
CDSS	Coppice Decision Support System
CFB	Circulating Fluidized Bed Gasifier
CFD	Computational Fluid Dynamics
CGE	Cold Gas Efficiency
CHDSS	Coppice Harvesting Decision Support System
CR	Chemical Reaction
CRF	Char Reactivity Factor
DEG	Decentralized Electricity Generation
DFP	Dual Fuel Electricity Generator
DISCOM	Distribution Company
DOE	Department of Energy
DPM	Discrete Phase Method
DSS	Decision Support System
ED	Electricity Distribution
ER	Equivalence Ratio
FBG	Fluidized Bed Gasifier
FC	Fixed Carbon
FPL	Feedstock Processing Loose Biomass
FPW	Feedstock Processing Woody and Semi-woody Biomass
GHG	Greenhouse Gas
GIS	Geographical Information System
HHV	Higher Heating Value
ICE	Internal Combustion Engine
IEA	International Energy Agency
INDC	Intended Nationally Determined Contributions
IoT	Internet of Things
IRENA	International Renewable Energy Agency
LCOE	Levelised Cost of Electricity
LEARNGDM	Gradient descent with momentum weight and bias learning function
LHV	Lower Heating Value

MC Moistur	
	re Content
MILP Mixed	Integer Linear Programming
MINLP Mixed	Integer Non-Linear Programming
MLP Multi-la	ayer Perceptron
MSG Mild St	eel Gasifier
NDC National	ally Determined Contributions
NREL Nationa	al Renewable Energy Laboratory
NRSC Nationa	al Remote Sensing Centre
ORC Organic	c Rankine Cycle
PGP 100% F	Producer Gas Electricity Generator
PURELIN Linear	transfer function
RMSE Root M	ean Square Error
RPO Renewa	able Energy Purchase Obligation
SBR Steam t	o Biomass Ratio
SDG Sustain	able Development Goal
SMD Sauter I	Mean Diameter
SOR Steam t	o Oxygen Ratio
SPV Solar P	hotovoltaic
SSG Stainles	ss Steel Gasifier
T&D Transm	ission and Distribution
TANSIG Tangen	t Sigmoid function
TRAINLM Levenb	erg-Marquardt Training function
UNDP United	Nations Development Programme
UNFCCC United	Nations Framework Convention on Climate Change
VM Volatile	e Matter