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INTRODUCTION 

Transition metal ions with unpaired electrons exhibit a rich variety of spectroscopic 

phenomena. They serve as catalysts and as active site in metalloenzymes that are at the 

heart of most of the key biochemical processes such as respiration, photosynthesis or 

nitrogen fixation [1,2]. Electron paramagnetic resonance (EPR) spectroscopy provides 

information about the oxidation and spin states as well as the coordination geometry and 

the ligands around the transition-metal ions in their respective complexes. EPR is the 

leading magnetic technique in order to obtain geometrical and electronic information 

about these systems. It yields unique information about the nature of open-shell ground 

state and its dependence on the chemical environment. The more intense ligand–ligand 

(π→π
*
) band overshadows the d–d electronic transitions. This makes the spectroscopic 

data on the electronic properties due to the multiplet structure originating from d
n
 

configuration of the transition metal rather scarce. In this respect Electronic Spin-

Resonance (ESR) spectroscopy comes to rescue. 

Magnetic anisotropy arises in transition metal complexes with open-shell system. 

Magnetic anisotropy [3] is the directional dependence of a material's magnetic 

properties. The magnetic moment of magnetically anisotropic materials will tend to align 

with an axis which is an energetically favorable direction of spontaneous magnetization 

[4]. This shows how the magnetic properties depend on the direction of measuring the 

magnetization. It is the dependence of the internal energy on the direction of spontaneous 

magnetization. This means that the magnetic properties of the molecule have an oriental 

dependence. This implies that the response to an external magnetic field depends on the 

direction in the molecule along which the field is applied, e.g., g‐value anisotropy, hard/ 

easy axes of magnetization, etc. Theoretically calculated magnetochemical parameters 

can open the perspective of establishing a magnetostructural correlation for magnetic 

anisotropy that would allow chemists to tune and eventually control various magnetic 

parameters in transition metal complexes. 

Most transition metal free ions have an orbital angular momentum (except d
5
 high‐spin). 

Orbital angular momentum is generally pictured as a circular motion of electrons around 

the nucleus. In most complexes, the orbital angular momentum appears to have 

disappeared due to quenching of the orbital moment. Quenching is due to the crystal 
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field splitting of the d‐orbitals into in different ways in different symmetries. Figure 1.1 

depicts the crystal field splitting diagram. 

 

Octahedral 

 

Pentagonal bipyramidal 

 

Square antiprismatic 

 

Square planar  

 

Square pyramidal 

 

Tetrahedral 

Figure 1.1: Crystal field splitting diagram 

 

Transition metal complexes exhibit magnetism which are often paramagnetic, since they 

have partly occupied d orbitals, and thus possess unpaired electron spins. The 

paramagnetism of such species makes them amenable to the electron paramagnetic 

resonance (EPR) experiment, which has been one of the most successful tools in 

investigating their magnetic properties. From the point of view of coordination 

chemistry, octahedral d
4
–d

7
 transition metal complexes can be either low-spin (LS) or 

high-spin (HS). The former have the maximum number of paired electrons yielding spin 

ground states S = 0, 
 

 
, or 1 (respectively for d

6
, d

5
,d

7
 and d

4
), and the latter have the 

maximum number of unpaired electrons yielding S = 
 

 
, 2 or 

 

 
 (respectively for d

7
, d

4
,d

6
 

and d
5
). Magnetic anisotropy can appear when the ground state is at least a spin triplet 
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and the spatial symmetry of the molecule is not too high. The effect is mainly due to 

spin-orbit coupling. When all the spatial degrees of freedom are quenched, i.e., the 

ground state is not degenerate and well separated from the excited states, the property is 

accurately described within the spin Hamiltonian formalism. The resulting Zero Field 

Splitting (ZFS) parameters can be extracted from various experimental techniques like 

HF-EPR and also accurately from theoretical calculations. Besides ZFS, g-tensor or g-

anisotropy is another parameter that contributes to orbital momentum contribution. It is 

intrinsically a relativistic property, even for light-element compounds. 

A major class of transition metal complexes extensively applied for their magnetic 

studies and properties are single-molecule magnets (SMMs). In general, SMMs are 

constituted of several transition metals bearing nonzero local spin moment. They have 

been investigated by a large scientific community since the discovery of the peculiar 

magnetic behavior of the so-called Mn12 compound in 1991 [5˗7]. They have found 

potential applications in aspects of nanoscale electronics and atomic-scale storage 

devices as well as chemical catalysts and sensors. Interesting applications of these 

molecules have been envisaged, such as information storage or quantum computing, and 

the study of fundamental quantum effects, such as tunneling, coherence, and interference 

have become possible. Their remarkable properties are the exhibition of the zero-field 

splitting (ZFS) of the MS components of the ground spin state and g-anisotropy. Also the 

interaction of the open-shell electrons with the nucleus give rise to another phenomenon 

known as hyperfine coupling. 

From fundamental theory the g-tensor and D-tensor are important parts of any EPR 

spectrum. They exhibit details about the radical species present. These two parameters 

can provide wealth of information on the electronic and geometrical structure of 

molecules or solids with unpaired electrons. They allow us to enhance our understanding 

of electronic factors governing the observed spectra. The electronic g tensor is a 

fundamental quantity of impurity centres in solids which characterizes the magnitude and 

anisotropy of their magnetic moment in a given electronic state. Designing of single-

molecule magnets, which requires a large and negative axial ZFS (D parameter), 

represents an essential criterion for reaching their desired magnetic characteristics [7,8]. 

Important models have been developed to study the electronic g-tensor using qualitative 

or semi-quantitative theoretical treatments since the early days of EPR studies [9].The 
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electronic g-tensor is intrinsically a relativistic property, even for light-element 

compounds. The theory behind these two parameters were developed very early, but for 

realistic model, g-tensor and D-tensor calculations using accurate first-principle 

treatments were developed much later [10–12]. Also density functional theory (DFT) 

methods were developed for calculation of g-tensor and D-tensor. Therefore, these 

parameters can be determined straightforwardly from DFT [13] and explicitly correlated 

ab initio calculations [14,15]. These calculations can capture the major changes which 

are observed upon chemical or structural modification of the concerned radical species 

[16,17]. This aids to the interpretation of the experimental results. 

Besides transition metal complexes, transition metal clusters constitute important single-

molecule magnets (SMMs). These clusters which possess high-spin ground state and 

large negative axial zero-filed splitting have an intrinsic barrier for spin reversal. 

Consequently they have slow reversal of magnetization. This slow magnetic relaxation 

observed in low temperatures can be taken to be analogous to superparamagnetic 

nanoparticles below their blocking temperature. 

Theoretical methods such as QM (quantum mechanical), HF (Hartree-Fock), post HF 

and DFT (Density Functional Method) which allows for economical treatment of 

electron correlation, provides a strong collaboration between theory and experimental 

results of molecular properties and hence theoretical methods have been widely used for 

estimation of EPR parameters as well. There are many evidences where the QM methods 

have been comprehensively used for assessment of EPR parameters [18−23] and they 

establish a correlation between experimental and their corresponding EPR results. Also 

there are instances where DFT is being used to calculate magnetic parameters in organic 

radicals and transition metal complexes [24−28]. Theoretical studies can provide 

valuable structural insight into the EPR active species even if there appears no optimal 

quantitative correlation with the experimental values. 
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1.1 VARIOUS MAGNETIC PARAMETERS 

1.1.1 g-Tensor 

The electronic g-tensor is one of the most important parameters of electron paramagnetic 

resonance spectroscopy (EPR). It contains a wealth of information on the electronic and 

geometrical structure of molecules or solids with unpaired electrons. The g-tensor is a 

fundamental quantity of molecules and impurity centers in solids characterizing the 

magnitude and anisotropy of their magnetic moment in a given electronic state. In 

transition metal complexes it is of importance in catalysis and metalloenzymes.The 

electronic g-tensor carries subtle information about electronic structure and geometry of 

molecules which is essential in determining relation between electronic structure and 

chemical properties. Generally the electronic g-tensor is dominated by contributions 

from spin-orbit coupling. 

The g-tensor usually requires an adequate treatment of electron correlation. It is 

calculated as correction, Δg, to the free electron value. The formalism for calculation of 

g-tensor can be described as below: 

        , 

where „ ‟ stands for electronic g-tensor,    is the g-factor for free electron (2.0023) and 

   is the g-tensor shift. Up to the level of second-order perturbation theory, the g-shift 

consists of the relevant Breit-Pauli terms: 

                      

The first term is of first order and is due to the relativistic mass correction [29]. The 

second term corresponds to one-electron gauge-correction to the electronic Zeeman 

effect while the last term denotes one-electron spin-orbit corrections coupled with the 

Zeeman effect. It is to be studied which among the three terms dominate the total g-shift 

in a given species. The g tensor is anisotropic when the electron possesses both spin and 

orbital angular momentum. 

In most of the species the “paramagnetic” second-order spin-orbit/orbital Zeeman cross 

term,       , dominates (except for extremely small    -values). The g tensor is 

anisotropic when the electron possesses both spin and orbital angular momentum. The 
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phenomenological spin Hamiltonian       describes the interaction between a magnetic 

field and the electron spin: 

            

where   is the Bohr magneton,   is the magnetic flux density,   is the fictitious electron 

spin and g is the g-tensor. This matrix       can easily be diagonalised using the 

following unitary transformation: 

       

where 

U=[
   
           
           

] and    (  )  
  √   

     
 

The components of the g-tensor in the experimental spin Hamiltonian       are then 

easily obtained by calculating the corresponding components of the Zeeman 

Hamiltonian. ⟨    | ⃗  (      |    ⟩. The result for the three relevant Kramers 

doublet reads: 

|   〉                ;           

|   〉                       √           ;               

|   〉                      √           ;              

When explained in terms of angular momentum in a coordination environment the g-

factor is given by: 

    
 (   )  ( (   )   (   )

  (   )
 

where L and S are orbital angular momentum and spin angular momentum, respectively. 

For a free electron, g-value becomes 2 (S=1/2, L=0, J=1/2). For the free halogen atoms 

(ns
2
np

7
) in the gaseous phase g= 4/3 (L=1, S=1/2, J=3/2). These predictions fit well 

experimentally but in a chemical environment the g-values vary from the theoretically 

obtained ones [30]. If the orbital motion makes its full contribution to the magnetic 
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moment, then both the orbital angular momentum (L) and spin angular momentum(S) 

contribute independently. But in reality the orbital contribution is fully or partially 

quenched depending on the situation [31]. To have an orbital contribution to the 

magnetic moment, the following conditions must be satisfied: 

(i) Condition of degeneracy according to which all the d orbitals which are 

mutually transformable [32] through the symmetry operation must be 

degenerate. 

(ii) and secondly, the condition of mutual transformability through the symmetry 

rotation which states that the orbitals must be mutually transformable by 

rotation about some axis, 

                    

                 

(with rotation by 90º around the common axis ) 

Thus it is evident that since        and     in the „e‟ set are not mutually transformable 

because of their different shapes and hence this set fails to make any orbital contribution. 

Thirdly we have condition of spin according to which the orbitals must not contain 

electrons of similar spin. 

The first implementation of DFT for calculation of electronic g-tensor with the addition 

of hybrid functional was reported by Kaupp et al. [33]. They studied small main group 

radicals like H2O
+
, CO

+
, etc. and series of transition metal complexes like [Co(CO)4], 

[CrOF4]
‒ 

etc. The g-tensors of these species were compared with their experimental 

values using the local density approximation (VWN functional), the generalized gradient 

approximation (BP86 functional), as well as B3-type (B3PW91) and BH-type 

(BHPW91) hybrid functional. Though in case of transition metal complexes significant 

differences were observed when using different functional but main group radicals 

showed very little exact-exchange mixing. They had already established that LDA and 

GGA functionals underestimate the paramagnetic contributions to the g-tensor while 

using the half-and half functional BHPW91 one can recover 100% of the experimental g-

tensor components. For the transition metal complexes B3PW91 hybrid functionals 

exhibited most satisfactory performance. 
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Schreckenbach and Ziegler [34] in one study formulated the g-tensor and g-shift based 

on DFT along with the use of gauge-including atomic orbitals (GIAO). They compared 

their calculated results with experiment and HF and MRCI calculations of Lushington et 

al. [35,36]. Their method was found to give better result than the HF-based schemes 

while MRCI was found to be the best for some molecules but with greater computational 

time. SZ method, as it is called was found to give accurate result for various small first- 

and second-row radicals but it was less accurate when used for heavier elements.  

The electronic g-tensor of d
1
 transition metal complexes of V, Cr, Mo, W, Tc and Re was 

studied by Hrobárik et al. [37] using DFT. They assessed the importance of the higher-

order SOC by direct comparison of one-, two- and four-component calculations within 

the same computer program. They used an efficient matrix of Dirac-Kohn-Sham 

implementation with relativistic kinetic balance basis sets thereby applying four-

component DFT to g-tensor. 

Malkina coworkers [38] have shown the atomic mean-field approximation provides SOC 

in absolute agreement with the results obtained using explicit one- and two-electron spin-

orbit integrals. For systems containing heavy atoms they used a pseudopotential 

treatment where quasi-relativistic pseudopotentials are included in the Kohn-Sham 

calculation whereas appropriate spin-orbit pseudopotentials are used in the perturbational 

treatment of the g-tensors. This approach is shown to provide results in good agreement 

with the all-electron treatment, at moderate computational cost. Figure 1.2 shows the 

comparison of calculated and experimental g-shift values for first-row compounds by the 

authors. 

 

Figure 1.2: Comparison of calculated and experimental g-shift tensor components (ppm) 

for first-row compounds. 
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1.1.2 D-tensor 

The D-tensor or the Zero-Field Splitting (ZFS) for transition metal complexes is the 

fundamental quantity which arises when the transition metal ion has a total ground state 

spin S˃1/2 or with more than one unpaired electron [39,40]. This removes the state 

degeneracy of the system with S˃1/2 in absence of magnetic field.  

 

 

Figure 1.3: Energy level spacing for S=1 to 
 

 
 for D<0 

The general form of zero-field splitting can be written as: 

      ̂  ̂ 

As a consequence of molecular electronic structure and spin density distribution the 

degeneracy gets removed. For unpaired electron systems the axial ZFS or the D-tensor 

removes the microstate degeneracy and produces Kramer‟s doublet while the rhombic 

ZFS, i.e. the E-value splits the Kramer‟s doublets. It implies that the ZFS and the D-

tensor causes magnetic anisotropy. The energies of spin microstates in unit of D are 

given by the following equation: 
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  [√  

  
 (   )

 
] 

The ZFS has a strong influence on the electron spin energy levels and can thus be visible 

in EPR spectra, in particular at high magnetic field [2]. All the methods for estimating 

the ZFS make use of the spin Hamiltonian formulation, including the ZFS term. If a 

coordinate systemis chosen that diagonalizes D, HZFS can be rewritten as: 

      [  
   

 ⁄  (   )]   [  
    

 ] 

       
 ⁄ (       );    

 ⁄ (       ) 

where    ,     and     are the diagonal components of the ZFS tensor D in its principal 

axes xx, yy, and zz, respectively. However, for complexes with uniaxial symmetry, the 

rhombic term vanishes (|D|˃0, E=0). 

It is known that the total D-tensor     , or the ZFS has two contributions:[6] a) a first 

order term which involves the direct dipolar spin-spin (SS) interaction between pairs of 

electrons and (b) a second order term arising from the spin-orbit coupling (SOC) that 

introduces some angular momentum into the ground state (assumed orbitally 

nondegenerate) and which is being picked up by the spin of a second electron. Between 

the two contributions, the later contributes dominantly towards electronic g-tensor as 

well as towards D-tensor [41]. The      can be considered as the decomposed form of 

    and     . The major contribution being form the      part, we need to study the 

spin-orbit coupling part in details. In organic radical the D-tensor tends to be dominated 

by the direct dipolar spin-spin coupling (SS), and on the other hand, spin-orbit coupling 

(SOC) dominates in case of open-shell transition metal complexes of relevance in 

molecular magnetism [42]. In transition metal complexes, D-tensor relies largely on 

ligand field theory [41]. 

Though, the contribution from the     part was largely discarded, recently detailed 

calculations have been successfully applied for the prediction of the SS contribution to 

the ZFS in a variety of systems [43,44]. 

The interpretation of SOC contribution towards      is mainly carried out on the basis of 

ligand field theory (LFT) in the literature [45–47]. However, LFT arguments often used 
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to give a qualitative scheme of the involved interactions, but failed at the quantitative 

level. Therefore, simple arguments have been forwarded in this context. 

Many groups have reported the assessment of DFT-based spin-orbit coupling (SOC) 

approaches viz. Coupled-Perturbed (CP), Pederson-Khanna (PK) and Quasi-restricted 

Orbital (QRO) methods. Zein et al. [48] applied SOC approaches of PK and QRO for 

studying eighteen experimentally well-characterized four-, five- and six-coordinated 

complexes of the general formula [Mn(L)nL'2] where L' is Cl, Br, I, NCS or N3 and L is 

an oligodentate ligand and Mn being in +2 oxidation state. The PK method is found to be 

more successful than QRO. Also they showed spin-spin (SS) contribution to the axial D-

tensor is 30%. As we have seen the D-tensor can be decomposed to spin-spin and spin-

flip excited states. Their calculations exhibited that the d-d spin-flip (αβ) and ligand-to-

metal charge transfer excited states (ββ) dominate the SOC part of the total D-tensor. It 

was found that the prediction of the sign of the calculated axial D-tensor is difficult when 

 

 
    . 

Frank Neese has done pioneering work in the field of magnetism of transition metal 

species. In one work Frank Neese [49], derived straightforward response equations that 

are readily transferable to the SCF-HF or the DFT framework. It was showed that the 

main additional effort in such calculations arises from the solution of nine sets of 

nonstandard coupled-perturbed SCF equations. In the ORCA program package [50] 

developed by Neese et al. these equations have been implemented together with the 

SOMF representation of the SOC operator. The new approach has been tested on a series 

of diatomic molecules with accurately known D-tensor values and found that it corrects 

most of the shortcomings of previous DFT-based methods. The slope of the correlation 

line was found to be unity for the B3LYP and BLYP functions. 

The D-tensor values in some six- and five-coordinated Ni(II) complexes were carried out 

by Kubica et al. [51]. They used different levels of theory within the ORCA program 

package. High-end ab inito calculations (CASSCF and NEVPT) were compared with 

DFT methods. Results obtained with ab intio level are quite consistent with experimental 

data while DFT methods gave functional-dependent data. Figure 1.4 given by the authors 

shows the D-tensor as a function of geometry distortion in [Ni(H2O)6]
2+

 calculated using 

CASCF, QDPT-CASSCF, NEVPT2, QDPT-NEVPT2 and DFT-B3P. 
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Figure 1.4: The ZFS parameter D as a function of geometry distortion in of 

[Ni(H2O)6]
2+

, calculated using various computational methods. 

 

1.1.3 Hyperfine Coupling 

All these years the ligand hyperfine couplings in transition metal complexes has also 

emerged as a trending topic in magnetism. Van Lenthe et al. [52] and Munzarova and 

Kaupp [53−55] have done pioneering work in calculation of hyperfine coupling in 

transition metal complexes. It has been reported that there is striking resemblance 

between hypefine coupling and spin-spin couplings. This is accounted by the identical 

physical mechanisms that cause propagation of spin-polarization via the electronic 

structure of a molecule [56]. When an open-shell system forms, it leads to a different 

electronic structure unlike its closed-shell counterpart. The structure thus formed is 1 or 

2 bonds away from the center possessing the unpaired electrons [57]. Hence long range 

spin-spin couplings can be used for prediction and can study the values of hyperfine 

coupling constants. This approach is being used based on the Dirac vector model [58]. 

 The hyperfine coupling is constituted of three terms: (i) isotopic Fermi Contact term, (ii) 

the spin dipolar interaction and (iii) the spin-orbit coupling correction. The hyperfine 

coupling is dominated by the spin-orbit coupling contributions [59−61]. 

The EPR spin Hamiltonian describes the hyperfine coupling contribution as  
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     ∑ ∑       
      

    

 

Where w and w` are the Cartesian components,      is the nuclear spin vector of the 

nucleus N, and     represents the pseudospin operator of the complex or cluster or the 

species under study. Mathematically,   
    

  
    

   

         
 

Here E represents the energy of a molecule under the influence of a nuclear spin 

generated magnetic field, where the vector potential in Coulomb is denoted by        

  

  
 ; here    and    are the g-tensor of the concerned nucleus N and the Bohr magneton 

of the same, respectively. 

In the absence of spin-orbit coupling, the formula for the hyperfine coupling constant is 

  
    

        

  
∑    

( )
(     

   

  

      
   ) 

In this equation,    and    are the g-tensor and the Bohr magneton of an electron, 

respectively, m and n are the label atomic orbitals, and    
( )

 is the spin-density matrix. 

     
   and      

    are the Fermi-Contact and spin-dipolar integrals respectively which are 

defined by the explicit formulae as below 

     
    

      

 
∫   ( )  (  )  ( )   

and         
    ∫   ( )

       |  |     

|  | 
  ( )   

where       and    is a Gaussian basis function. 

In literature, it is evident that in most cases ab inito methods are more accurate in 

prediction of hyperfine coupling theoretically as compared to DFT methods. In most of 

the work in computation of hyperfine coupling, single-reference many-body perturbation 

and coupled-cluster methods are shown to provide results with benchmark accuracy 

[62−67]. When the wave function is described by a single Slater determinant more 
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satisfying close to accurate results are obtained. The complete active space self-

consistent field (CASSCF) and multiconfigurational interaction (MRCI) methods are 

being reported that appear to be computing the hyperfine coupling in more precise 

manner [68−71] on the other hand, density functional methods can be categorized as 

relativistic analogues as explanation for the scalar relativistic and spin-orbit effects in 

case of transition metal complexes [72−76]. DFT methods have also been reported to be 

used for obtaining benchmark results for prediction of hyperfine coupling constants 

[77−80]. 

Theoretically the hyperfine coupling constants are relatively difficult to calculate as 

compared to g-tensor and D-tensor because it requires the accurate description of core-

shell spin polarization without including spin contamination arising from overstated 

valence shell spin polarization. Besides this, the hypefine coupling constant calculation 

requires the inclusion of relativistic effects of both scalar (spin-free) as well as spin-orbit 

relativistic effects. These factors persuade the overestimation or the underestimation of 

hyperfine coupling phenomenon in transition metals of even 3d series [81]. Therefore, 

the HFCs are more widely approached by employing quantitative evaluation.  

 

1.2 MAGNETIC PROPERTIES IN METAL CLUSTERS: 

Since the discovery of Mn12 cluster [82] as a nanoscale magnet, many metal clusters are 

investigated to be used as single-molecule magnets. Functionalities like optical and 

magnetic properties, molecular trapping and thermal response have been exhibited by 

these clusters. The small size and their well dispersive property make them desirable for 

many applications in the field of magnetism. The reason that these types of nanoclusters 

are in high demand in this field is that they exhibit different chemical and physical 

properties as compared to the bulk phases. Metal clusters play a vital role in satisfying 

the ever increasing demand of high bit density of data storage. The main phenomenon 

that supports the stability of bits is magnetic anisoptropy. The bit size getting reduced 

requires higher magnetic anisotropy energy (MAE) per atom. This MAE would keep the 

magnetization of the metal clusters in specific direction against thermal fluctuations. The 

magnetic stability of metal clusters is explained by increase in orbital momentum and 

magnetic anisotropy energy due to lower atomic coordination number; and this exhibited 
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in X-ray magnetic circular dichroism (XMCD) [83]. Now a large series of such clusters 

are reported to exhibit magnetism. Slow magnetic relaxation in tetranuclear Fe(III) 

cluster was discussed by Barra et al. [84]. They evaluated the projection of single-dipole 

and dipolar contributions to the ZFS of the ground state. They calculated the D-tensors of 

three structurally independent Fe(III) centres from coordination geometry and 

spectroscopic data using overlap model. Waldmann et al. [85] studied magnetic 

anisotropy in cyclic octanuclear Fe(III) cluster. Magnetic anisotropy was calculated 

exactly to first order, based on a spin-Hamiltonian formalism and the consequent use of 

all symmetries. Its magnetic parameters were compared to those of several related 

hexanuclear ferric wheels. 
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1.3 COMPUTATIONAL METHODS 

1.3.1 Basis sets 

 

Mathematically basis set [86] is a collection of vectors which defines a 3D space where 

the problem to be solved. These are unit vectors ̂   ̂and  ̂ . In quantum chemistry, a basis 

set is a set of functions in order to create the molecular orbitals that are expanded as a 

linear combination with coefficients to be determined. Usually these functions are 

centered on atoms, but those centered in bonds or lone pairs have also been used. 

Quantum chemical calculations are typically performed within a finite setoff basis 

functions. These basis functions are usually not the exact atomic orbitals, even for the 

corresponding hydrogen-like atoms, due to approximations and simplifications of their 

analytic formulas.  

 

(a) Slater Type Orbitals 

Slater type orbitals (STOs) were used as basis functions due to their similarity with the 

eigen functions of the hydrogen atom. Their general definition is 

       (     )             
 (   ) 

with N as the normalization constant and   
 (   ) is the spherical harmonics. 

STOs can give direct physical interpretation and thus are naturally good basis for 

molecular orbitals. From a computational point of view the severe shortcoming is that 

most of the required integrals to be calculated in the SCF procedure needed in the course 

drastically decrease the speed of a computation. 

 

(b) Gaussian type orbitals (GTOs) 

STOs can be approximated as linear combinations of Gaussian orbitals. Gaussian type 

orbitals (GTOs) are mathematically defined as 

      
          

 (    ) (    ) (    )    (   ) 
 

 

where normalization factor R and α are called the center and the exponent of the 

Gaussian function, respectively. GTOs are not really orbitals but are simpler functions 
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frequently called Gaussian primitives. These Gaussian primitives are usually obtained 

from quantum calculations like Hartree-Fock or Hartree-Fock along with some 

correlated calculations. Typically, the exponents are varied until the lowest energy of the 

atom is obtained. For molecular calculations, these Gaussian primitives have to be 

contracted, i.e., certain linear combinations of them will be used as basis functions. Such 

a basis function will have fixed coefficients and exponents. The difference lies in that the 

variable r in the exponential function is squared. And hence an inaccuracy at the electron 

density in the nucleus is prevalent giving a marked influence on the results. Today, there 

are hundreds of basis sets composed of these GTOs. The smallest of these are called 

minimal basis sets and these are typically composed of the minimum number of basis 

functions that are required to represent all of the electrons on each atom. A minimum 

basis set is a single basis function used for each orbital. STO-nG, where n is an integer is 

the most common minimal basis set. This n value represents the number GTOs used to 

approximate STO for both core and valence orbitals. These usually give poor results 

insufficient for research quality publication but are much cheaper than their larger 

counterparts. Commonly used minimal basis sets of this type are: STO-3G, STO-4G and 

STO-6G. 

 

(c) Extended basis sets 

There are several different types of extended basis sets 

 Double-Zeta,Triple-Zeta, Quadrapole–Zeta 

 Split-valence 

 Polarized sets 

 Diffuse sets 

Double-Zeta,Triple-Zeta,Quadrapole-Zeta: The double-zeta basis set is important to us 

because it treats each orbital separately when the computational calculation is 

conducted.This gives a more accurate representation of each orbital. In order to do this, 

each atomic orbital is expressed as the sum of two Slater-type orbitals (STOs). The two 

equations are the same except for the value of (zeta). The zeta value accounts for how 

diffuse (large) the orbital is. The two STOs are then added in some proportion. The 

constant 'd' determines how much each STO will contribute towards the resulting orbital. 

Thus, the size of the atomic orbital can range anywhere between the value of either of the 

two STOs. For example, let's look at the following example of a 2s orbital:  
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   ( )     
   (     )      

   (     ) 

Here each STO represents a different sized orbital because of varying zeta values. The 

„d‟ stands for the percentage of the second STO adding in. Their linear combination then 

gives us the atomic orbital. Since each of the two equations is the same, the symmetry 

remains constant.The triple and quadruple-zeta basis sets work in the similar manner 

except use three and four Slater equations instead of two.  

Split-valence: Often much effort is required to calculate a double-zeta for every orbital. 

So many scientists simplify by calculating a double-zeta only for the valence orbital. 

Since the inner-shell electrons aren't that important to the calculation, they are described 

with a single Slater Orbital. This method is called a split-valence basis set. A few 

examples of common split-valence basis sets are 3-21G, 4-31G, and 6-31G. 

Polarized Sets: In the previous basis atomic orbitals are treated only as 's', 'p', 'd', 'f' etc. 

Although those basis sets are good approximations, a better approximation is taken into 

account for the fact that sometimes orbitals share qualities of 's' and 'p' orbitals or 'p' and 

'd', etc. and not necessarily have characteristics of only one or the other. As atoms are 

brought close together, there is a polarization in the charge distribution (the positive 

charge is drawn to one side while the negative charge is drawn to the other) which 

distorts the shape of the atomic orbitals. In this case, 's' orbitals begin to have a little of 

the 'p' flavor and 'p' orbitals begin to have a little of the 'd' flavor. One asterisk (*) at the 

end of a basis set denotes that polarization has been taken into account in the 'p' orbitals. 

In Figure 1.5 below shows the difference between the representation of the 'p' orbital for 

the 6-31G and the 6-31G* basis sets. The polarized basis set represents the orbital as 

more than just 'p', by adding a little 'd'. Two asterisks (**) depicts that polarization has 

taken into account the 's' orbitals besides the 'p' orbitals. 
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Original 'p' orbital 

 

 

Modified 'p' orbital 

 

Original 's' orbital 

 

Modified 's' orbital 

 

Figure 1.5: Pictorial representation of 6-31G, 6-31G* and 6-31G** basis sets. 

 

Diffuse sets: These Gaussians have very small exponents and decay slowly with distance 

from the nucleus. Diffuse Gaussians are usually of s and p type. Diffuse functions are 

necessary for interpretation of anions and weak bonds (e.g. hydrogen bonds) and are 

frequently used for calculations of properties like dipole moments, polarizability, etc. 

 

1.3.2 Functionals 

 

DFT calculations nowadays are based on the Kohn-Sham approach of which two 

theorems have been formulated by Hohenberg and Kohn in 1964. 

 

(a) Hohenberg– Kohn Theorem 

All the properties of a molecule in a ground state are determined by the ground state 

electron density  

       (     ) 

Like energy of ground state can be expressed as above. This means energy is expressed 

as a function of electron density. Since electron density is itself a function, function of a 

function is called as functional. It transforms function to a number. 
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(b) Kohn-Sham theorem 

It states that any trial electron density function will give an energy value higher than the 

true ground state energy. 

     (  ) 

where    stands for energy calculated from trial energy density function. and the trial 

energy density function must satisfy the condition of 

∫           

where n is the number of electrons in the molecule and        . 

 

Most commonly used GGA, meta-GGA and hybrid functionals available in ORCA are: 

 GGA = BLYP,BP86,PBE,OLYP 

 Meta- GGA= TPSS, rev TPSS,MO6-L 

 Hybrid-GGA= B3LYP, B3LYP/G,BHLYP,PBEO,B3PW91,O3LYP 

 Hybrid meta GGA= TPSSh, rev TPSSh, MO6,MO6-2X, PW6B95 

 Range seprated hybrids= LC-BLYHP, CAM-B3LYP,WB97, WB97X,WB97X-

D3 
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1.3.3 Quantum Mechanical Methods 

 

Quantum mechanical methods can be divided into ab initio method, density functional 

method and semi-empirical methods. Ab initio methods include Hartree-Fock (HF), 

Mӧller-Plesset perturbation theory (MP), Configuration Interaction (CI), Coupled Cluster 

(CC) method. 

 

1.3.3.1  Ab initio method 

The ab inito (Latin “from first principles”) methods are based on Schrödinger equation 

[87]. It is approximate solutions of the Schrödinger equation without appealing to fitting 

to experiment. This method gives a molecule‟s energy and wavefunction. The 

wavefunctions and energy levels are obtained by diagonalizing a Fock matrix and is 

represented by the equation: 

        

where the   matrix is an energy-elements matrix, the Fock matrix whose elements are 

integrals of Hij which are integrals involving  ̂ and basis function  . This equation 

shows that the diagonalization of   gives the coefficients or eigen vectors (the columns 

of   yield the wavefunctions of the molecular orbitals) and the energy levels or eigen 

values, i.e. the diagonal elements of  . The equation         comes from        

when   is approximated as a unit matrix (simple Hückel method) or when the original 

Fock matrix is transformed into   using an orthogonalizing matrix calculated from S. 

The algorithm assembles the Fock matrix H to do a simple or extended Hückel 

calculation. An ab inito calculation is done in this way and the crucial difference 

compared to the Hückel method is the evaluation of the matrix elements. The Fock 

matrix elements     are not calculated in simple Hückel method. They are set equal to 0 

or -1 according to simple rules based on atomic connectivity. While in EHM the     are 

calculated from the relative positions of the orbitals or basis functions. Also the 

ionization potentials of these orbitals in neither case is     calculated from first 

principles.    is explicitly denoted by the formula  

    ∫    ̂     
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In ab inito method the calculations     is calculated from the above equation by 

performing the integration using explicit mathematical expressions for the basis 

functions    and    and the Hamiltonian operator  ̂.  

 

The Hartree SCF method 

The Hartree-Fock calculation is the simplest kind of ab inito calculation. The problem 

that was addressed arises because of the fact that due to the electron-electron repulsion 

an exact solution of the Schrödinger equation is not possible with any atom or molecule 

with more than one electron. For electron one a one-electron Schrödinger equation is 

solved first where the electron-electron repulsion comes from electron one and an 

average, smeared out electrostatic field calculated from   ( )  ( )      ( ) due to 

other electrons in order to apply the Hartree process. The only moving particle in this 

equation is electron one. Solving this equation gives   ( ). And further solving for 

electron 2 etc the first cycle of calculation is completed as 

  =  ( )  ( )  ( )              ( ) 

Repetition of the cycle gives  

  =  ( )  ( )  ( )              ( ) 

The process is continued for k cycles till a wavefunction    is obtained. At this stage the 

field of  the kth cycle is essentially the same as cycle k-1. This means the it is consistent 

with the previous field. Therefore, this Hartree procedure is called the self-consistent 

field procedure. 

 

1.3.3.2  Density Functional Theory 

Density functional theory (DFT) is used to investigate the electronic structure 

(principally the ground state) of many-body system. With this theory, the properties of a 

many-electron system can be determined by using functionals which are functions of 

spatially dependent electron density.  

 (  )   ∫   ∫| (              )|                    

where,  (  ) determines the probability of finding any of the N electrons within the 

volume element dr1 but with arbitrary spin while the other (N-1) electrons have arbitrary 

positions and spin in the state presented by ѱ. (r) is a non-negative function of only 

three spatial variables in contrast to wave function (ѱ), which is a function of 4N 
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variables (3 spatial variables and 1 spin variable for each electron) for an N electron 

system. Moreover, unlike the wave-function, the electron density is an observable and 

can be measured experimentally, e.g. by X-ray diffraction. 

 

Variational Principle in DFT 

Second HK Theorem 

The functional that delivers the ground state energy of the system, if and only if the input 

density is the true ground state density.However, there lies a major challenge in DFT and 

H-K theorem as they do not tell anything regarding the exact form of such functional. 

 

Kohn-Sham equations and energy functional 

Kohn and Sham introduced a method based on the Hohenberg-Kohn theorem that helps 

one to minimise the functional E[ρ(r)] by overall densities containing N electrons. They 

separated ρ(r) into three parts so that    ( )]   

   ]      ]     ]       ] 

where,     is the exchange correlation energy term and     ] represents kinetic energy 

     ]  (   ]      ])  (     ]     ]) 

Next an approximate form for the functional that describes the dependence of the     on 

the electron density is then used to calculate    . This helps the KS equation to be solved 

giving an initial set of KS orbitals. This set of orbitals is then used to calculate an 

improved density .This procedure is repeated until the density and the exchange-

correlation energy satisfies a convergence criterion. 

Effective Core Potentials (ECP) 

These basis functions are useful for heavy elements (4th period onwards) that include 

relativistic effects. As the electrons near the very positive nucleus of a heavy element 

experience a larger relative attraction than in comparison to lighter elements, which 

causes the electrons to accelerate close to the speed of light. According to Einstein‟s 

theory of general relativity now the core orbitals of a heavy element are contracted 

relative to the corresponding orbitals in a lighter element. Therefore it is important to 
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choose a basis set that will run a molecule fast without compromising the desired level of 

accuracy. 

 

1.3.4  ORCA package 

The molecules were optimized using Gaussian 09 program, [88] DMol
3
 etc. and the 

magnetic properties are studied using ORCA program package [89]. 

The g-tensors, d tensors and hyperfine coupling constants were calculated using ORCA 

program package [89] of 2.9 and 3.0 version. A general purpose quantum chemistry 

package, ORCA can carry out Density Functional Theory as well as ab initio methods 

like Coupled Cluster method, Møller-Plesset perturbation theory etc. It can study large 

molecules and transition metal complexes and their spectroscopic properties. ORCA uses 

standard Gaussian basis functions and is parallelized hence reducing the time for 

calculation. For optimization, ORCA calculates equilibrium structures (minimum and 

transition states) using the quasi Newton method (an iterative method) with the well-

known BFGS update, the Powell or Bofill update. The optimization is carried out either 

in redundant internal coordinates (recommended) or Cartesian displacement coordinates. 

There are a number of standard basis sets for optimization that can be selected from 

simple „input‟ feature. Aldrich‟s basis sets like TZV and def-2 are being used for 

optimization calculations. ORCA provides a large range of hybrid functionals like BP86, 

B3LYP, PW1PW etc. 

The output gives information about the g tensor (relativistic mass correction, 

diamagnetic spin-orbit term, paramagnetic spin-orbit term (OZ/SOC), the isotropic g-

value and the orientation of the total tensor. It also gives the information containing 

contributions spin flip terms contributing towards the total D-tensor. Also ORCA can 

compute hyperfine coupling constants and its various components. 

1.3.4.1  Treatment of Spin-Orbit Coupling: 

For convenience, an effective reduced one-electron SOC operator,   
  ( ), with three 

spatial components μ=x, y , z is assumed. Previously, the parameterization by Koseki et 

al. [90–92] was used in the ORCA programs 
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  ( )  ∑  (   )  

 ( )

 

 

where   
 ( ) is the k

th 
component of the orbital angular momentum operator relative to 

centre A, and  (   ) is a suitable radial operator, i.e., 

 (   )  
  

 

  
   

|     | 
 

where   
   

 is a semiempirical nuclear charge for atom A at position   . The operator 

  
  

SO is treated by an accurate mean-field (SOMF) approximation to the full Breit-Pauli 

SOC operator. The SOMF approachhas been developed by Hess et al. [93]. SOMF 

introduces two further approximations: (a) the neglect of multicenter SOC terms and (b) 

the use of atomic self-consistent field orbitals and theiraveraged occupation numbers in 

place of the molecular charge densities. 

For the interpretation of the SOC contribution to the total ZFS values various approaches 

were brought forward, viz., Coupled-Perturbed (CP), Pederson-Khanna (PK) and Quasi-

Restricted Orbital (QRO). These simple treatments have been successfully applied to 

many large high-spin systems. Their mathematical formulation can be derived 

successfully. 

1.3.4.2  Quasi-Restricted Orbitals Approach: 

This simple approach seeks a connection to the many-electron treatment. The SOC 

operator is assumed to be an effective reduced one-electron operator (  
  ( )) treated by 

the spin-orbit mean-field (SOMF) approximation [94]. In such a case, the general 

treatment shows that for a system with ground-state spin S to the second-order-only 

excited states with total spin              contribute to the D-tensor. Excited 

states with  S=0 correspond to the same-spin excited states and those with       are 

referred to as spin-flip excited states [95]. Zein et al. have outlined a simple treatment to 

construct approximate spin eigen-functions from a spin-unrestricted DFT wavefunction 

[96]. This result was termed as Quasi-restricted Orbital (QRO) treatment since it is based 

on a set of “quasi-restricted” orbitals that are constructed from the spin-unrestricted 
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natural orbitals [97,98]. They nearly coincide withthe restricted open Kohn-Sham 

(ROKS) orbitals [99,100]. Their equation is: 

   
(   )

    
      

  
    

  
    

  
  

 

   
∑    

     
   

 

   
∑    
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∑    
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where                 doubly occupied QROs, t,u=singly occupied QROs, and 

a,b=virtual QROs. The first two terms in equation (1) correspond to the contribution of 

the same-spin excited states and the     term corresponds to the spin-flips in the singly 

occupied molecular orbitals (SOMOs) and     accounts for the states that arise from the 

shell-opening excitations [101]. 

 

1.3.4.3  Pederson-Khanna Approach (PK): 

Pederson and Khanna (PK) formulation is based on UKS treatments [102]. They used an 

uncoupled perturbation theory to develop an equation for calculating the spin-orbit 

coupling contribution to the       The      part of the      may then be expressed 

conveniently as follows: 
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1.3.4.4  Coupled-Perturbed (CP) approach: 

A more general approach for satisfactory SOC contribution to total ZFS is the coupled-

perturbed (CP) SCF theory [103,104]. This treatment is based on a single spin-

unrestricted determinant formed from HF or KS orbital. In this approach, the perturbed 

orbitals in the presence of an SOC perturbation are expanded as: 

  
     ( )  ∑       

  
  

 ( )

  

 ∑       

  
  

 
( )

  

  
     

( )

 ∑       

  
  

 ( )

  

 ∑       

  
  

 
( )

  

 

     
  

  
are the components of the mixing coefficients of the spin-up and spin-down 

orbitals. Frank Neese forwarded that the CP approach along with a hybrid DFT 

functional leads to a slope of the correlation line (plot of experimental vs. calculated D-

values) that is unity [105]. 

 

1.3.4.5   Spin-spin contribution: 

According to McWeeny and Mizuno formula [106] the     part of the total D-tensor was 

estimated on the basis of the ground state Slater determinant, as follows: 

   
(  )
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∑ ∑{   
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where           is the spin density matrix with    
  ∑    

    
 

   and c
σ
are the 

MO coefficient matrix of spin σ; α is the fine structure constant (~
 

   
 in atomic units); 

and μ,ν,κ,τ are the atomic basis functions. 
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