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3.1 Introduction

Hyperspectral remote sensing images are characterized by huge spectral infor-

mation, which makes them more powerful than panchromatic and multi-spectral

images for discrimination among different land-cover objects [189]. While classifi-

cation of pixels of an HSI, the surrounding pixels can provide useful information be-

cause of the homogeneous nature of objects. Thus, fusion of spectral and spatial in-

formation improves the classification results of HSI [55, 62, 110, 171, 172, 220, 247].

Morphological profiles (MPs) and attribute profiles (APs) have proved their ability

to fuse the spectral and spatial information [14, 55, 58, 63, 82, 159]. Their effec-

tiveness in analysis of remote sensing images makes them deserving candidates for

consideration in classification of HSI [95].

MP for a gray-scale image is built by repeated use of geodesic opening and

geodesic closing on the image with a structuring element (SE) of an increasing size

[13, 14, 206, 227]. Thus, MP is a collection of filtered images along with the original

image. In order to construct mathematical morphology based spectral-spatial
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profile for HSI, MP is created for each of its component image in reduced dimension

leading to an extended morphological profile (EMP) [14, 82]. Ample number of

works in the literature have used EMP based spectral-spatial information [11,

13, 181, 188, 227]. Although, MPs are powerful tool to represent spectral-spatial

information but are not free from limitations because of the fixed shape of SE,

imability to filter based on gray-level properties of connected components and

computational burden. These limitations were overcome in [56], where in place of

conventional SE based MP, APs are built using attribute filters (AFs) [21].

AP for a gray-scale image is obtained by a sequence of AF operations

performed on it. The following characteristics of AFs overcome the limitations

of MPs. First, they allowed variable length neighborhood to consider spatial

information. Second, they create a max-tree only once on which multiple filter

operations can be performed by pruning according to filter parameters. This makes

the construction of APs computationally efficient. And finally, since the connected

components of the image are represented as nodes of constructed max-tree, the

connected components can be easily filtered based on any gray-level property. In

case of HSI, analogous to EMP, extended attribute profile (EAP) is constructed

by concatenating the APs constructed for each image in reduced dimension of the

original HSI [55]. APs allow the flexibility of using any measure as an attribute,

which can be computed on gray-values of a connected component in an image

[197]. Some examples of attribute are area, standard deviation, moment of inertia,

diagonal of bounding box, etc. [197]. One can construct multiple EAPs for an HSI

considering different attributes and if we stack the constructed EAPs together, it

will lead to extended multi attribute profile (EMAP) [55, 58, 63, 79, 210]. The

construction of AP, EAP and EMAP are described in Section 1.2.3.

Although, EMAP has proved itself to be effective in analysis of HSI, se-

lecting filter parameters for constructing profiles is difficult. One solution to this is

to construct the profile using all the filter parameters sampled in very small inter-

vals. Such profiles are termed as entire extended multi attribute profile (EEMAP)

[183], which has its own limitations in terms of very large dimensionality and high

redundancy. As the dimensionality increases, relatively we need to increase the

number of training samples required for training a specific classifier [88]. This

rapid increase in the number of training samples required for density estimation

introduces curse of dimensionality [12], which leads to the Hughes phenomenon

in classification [115]. Furthermore, it also affects the computational complexity

of the model. A challenging yet effective way to deal with these, is to reduce the

dimension of EEMAP [103, 112]. The dimensionality reduction of EEMAP can

64



3.1. Introduction

be done by adopting a feature selection technique that select optimal features in

APs. To this end, a supervised approach is presented in [183]. This method uses

GAs to select an optimal subset of feature from the EEMAP by maximizing the

classification accuracy. In our knowledge no unsupervised attempt is made for

this purpose.

This chapter presents an unsupervised feature selection technique for

spectral-spatial classification of HSIs. In order to consider spectral-spatial fea-

ture for HSI classification, the proposed technique first constructs an EEMAP by

taking into account variety of spatial information along with spectral features. For

this, separate EAP s are constructed considering three different attributes namely,

area, standard deviation and moment of inertia. The filter parameters correspond-

ing to each attribute are selected from a wide range in reasonably small intervals.

Finally, by concatenating these EAP s an EEMAP is constructed. Although, the

EEMAP constructed by the proposed method contain variety of spatial informa-

tion, it has very high dimensionality with ample redundancy that increases the

computational cost and also may introduce curse of dimensionality problem. To

mitigate these problems, in this chapter an unsupervised feature selection tech-

nique is presented that selects an optimal subset of feature from the constructed

EEMAP for the classification of HSI. The proposed technique first generates a dis-

similarity matrix to measure the dissimilarity between each pair of filtered images

(features) in EEMAP using mutual information (MI). Then, to select an optimal

subset of feature from EEMAP, GAs are exploited by defining a novel objective

function based on the generated dissimilarity matrix. Note that the generation

of dissimilarity matrix by the proposed technique is unsupervised in nature that

makes the whole feature selection process unsupervised. The subset of the filtered

images selected by the proposed technique is finally used for classification of HSI.

To demonstrate the effectiveness of proposed technique, experiments are

conducted on four real hyperspectral data sets described in Appendix A using

SVM classifier. The experimental results show the robustness of the proposed

technique in terms of classification accuracy and computational time.

The remaining part of the chapter is organized as follows. The Proposed

method is presented in Section 3.2. Section 3.3 presents experimental results

obtained on the considered data sets. Finally, Section 3.4 concludes the chapter

with some future scopes.
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3.2 Proposed method

The proposed technique aims at improving the classification results of HSI by

incorporating spatial information in the form of attribute profile. The overall ar-

chitecture of proposed method is shown in Fig. 3-1. It has three main steps.

In first step, an EEMAP is constructed which provides rich spectral-spatial in-

formation but at the same time increases the dimension substantially. In second

step, a dissimilarity matrix is constructed by computing the distance among all

the pairs of filtered images using normalized mutual information. In the third

step, an optimal subset of features is selected from the constructed profile in an

unsupervised way by using GAs with a novel fitness function designed based on

the dissimilarity matrix. Finally, the selected features in the EEMAP are con-

sidered for classification of HSI. The detail of each step is given in the following

subsections.

HSI

EEMAP constructed con-
sidering area, standard
deviation and moment
of inertia as attributes

Computation of
dissimilarity matrix
for EEMAP based

on normalized
mutual information

Execution of GAs
based proposed un-
supervised feature
selection technique

Samples having
selected subset of fea-
ture from the EEMAP

Spectral-spatial clas-
sification of the HSI

Figure 3-1: Block diagram of the proposed architecture.

3.2.1 Construction of entire extended multi attribute pro-

file (EEMAP)

In order to incorporate variety of spatial information along with spectral infor-

mation an EEMAP is constructed corresponding to an HSI. Construction of the

EEMAP starts from dimensionality reduction of the original HSI. In this work

the dimension of the original HSI is reduced by selecting l PCs with highest vari-
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ance. For each selected PC, an AP is constructed using Eq. 1.25 considering filter

parameters from a wide range, sampled in reasonably small interval. These con-

structed APs are concatenated to form one EAP . Fig. 1-8 shows the construction

of an EAP. Considering multiple attributes namely area, standard deviation and

moment of inertia, corresponding EAPs are constructed using Eq. (1.26). Basics

on construction of EAPs is given in Section 1.2.3. The details of the constructed

EAP s for this work are given below.

Area profile (EAPa) is constructed for an HSI by considering area as an attribute

while applying AFs on PCs. Area is measured in terms of number of pixels in

the connected component of the image. In area filtering the connected compo-

nents having greater area than the specified threshold value are preserved and the

connected components with smaller area are merged with their local background

component. By varying the values of the threshold in a wide range, a large number

of filtered images are constructed and stacked to form an AP. AP constructed for

each PC are concatenated to form an EAPa.

Standard deviation profile (EAPs) is constructed by considering standard devia-

tion of gray-values in a connected component of the image. The standard deviation

represents the homogeneity of the connected component. The connected compo-

nents with higher standard deviation are preserved and those with lower standard

deviation are merged with local background. A sequence of standard deviation

thresholds are selected from a wide range to construct AP for each PC leading to

another large set of filtered images representing EAPs.

Moment of inertia profile (EAPi) is another spectral-spatial profile constructed by

considering the attribute moment of inertia. Again for this attribute, the thresh-

old values are varied in small interval between 0 and 1 for each PC leading to large

profile representing EAPi.

Finally, the constructed EAP s are concatenated to form an EMAP using

Eq. 1.27. Fig. 1-9 shows the construction of an EMAP. Since during the con-

struction of each EAP , the filter parameter values are sampled densely from a

wide range to incorporate maximum spatial information. Hence, the constructed

EMAP is called EEMAP.

Although the constructed EEMAP has sufficient spectral-spatial informa-

tion but because of its large dimensionality and existence of many redundant

features, the curse of dimensionality and computation burden become a major

issue for classification of HSI using the EEMAP. An effective method to handle

these problems is to develop a feature selection technique that selects an optimal

subset of filtered image from the constructed EEMAP for classification purpose.

67



Chapter 3. An unsupervised technique for optimal feature selection in
attribute profiles for spectral-spatial classification of hyperspectral images

In this work an unsupervised feature selection technique using GAs is developed.

The proposed technique first generates a dissimilarity matrix that measures the

dissimilarity between all the pairs of filtered images in EEMAP. Then to select

an optimal subset of feature in EEMAP, GAs are exploited by defining a novel

objective function based on the generated dissimilarity matrix.

3.2.2 Generation of dissimilarity matrix

The dissimilarity matrix is generated to measure the dissimilarity between all the

pairs of filtered images in EEMAP. In the proposed work, normalized mutual

information is used to measure the independence between two filtered images

in EEMAP. The concept is based on information theory [52]. The information

content of one filtered image Ii in EEMAP can be measured in terms of entropy

as follows:

He(Ii) = −
∑
g∈Gv

P (g)log(P (g)) (3.1)

where Gv is the set of distinct gray-values in the image Ii and P (g) represents

mass probability. Mutual information (MI) for two images Ii and Ij represents

the correlation between them and can be computed as:

MI(Ii, Ij) =
∑

gx∈Gvi

∑
gy∈Gvj

P (gx, gy)log

(
P (gx, gy)

P (gx)P (gy)

)
(3.2)

where Gvi and Gvj are the set of distinct gray-levels in image Ii and Ij, respec-

tively. P (gx, gy) represents joint probability mass function. Mutual information

is a non-negative value. MI(Ii, Ij) = 0 indicates two images Ii and Ij are to-

tally independent and don’t have any common information. The two images Ii

and Ij share common information for higher values of MI(Ii, Ij). As the value of

MI increases, the correlation between two images increases. MI can increase till

minimum of {He(Ii), He(Ij)}.

If the information content (i.e. entropy) of the two images are small, in

that case, even if they are highly correlated, the obtained MI will remain small.

Thus, for a fair comparison in terms of similarity, MI should be normalized.

Normalized mutual information (NMI) is obtained as follows [160].

NMI(Ii, Ij) =
2×MI(Ii, Ij)

He(Ii) +He(Ij)
(3.3)

NMI computed in Eq. (3.3) represents similarity between a pair of filtered images.
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The dissimilarity between the pair of filtered images can be computed using Eq.

3.4 [160]:

DNMI(Ii, Ij) =

(
1−

√
NMI(Ii, Ij)

)2

(3.4)

In this work, a dissimilarity matrix is generated by considering all the

pairs of filtered images in EEMAP. If d is the number of features (filtered images)

in EEMAP, the size of the dissimilarity matrix will be d× d. Next, based on the

generated dissimilarity matrix, GAs are exploited to select informative features in

the EEMAP for HSI classification.

3.2.3 Feature selection using GAs

GAs are optimization tool, motivated from natural evolutionary process [99, 179].

In [209], GAs are successfully used for feature selection. Feature selection problem

can be considered as an optimization problem where the task of the optimizer

is to select an optimal subset of feature by optimizing a criterion. In order to

take into account sufficient spatial information, the EEMAP constructed by the

proposed technique contain huge number of features (filtered images) and many

of them are redundant. To reduce the dimensionality of the constructed EEMAP,

GAs are used to select a subset of feature in EEMAP that are independent and

equally informative as the original features. The details of the proposed GAs

based technique is given below:

Chromosome representation: A chromosome is a binary vector representing the

index of a subset of filtered images in EEMAP. If one index is represented by b

bits then size of the chromosome representing m filtered images is b×m.

Population initialization: GAs generate multiple chromosomes randomly and are

kept together in a group called population. The size of population is the number

of chromosomes in the population.

Fitness evaluation: The computation of fitness value of the chromosomes in pop-

ulation is one of the most important component of the GAs. The function that is

used to compute the fitness value of a chromosome is called fitness function. In

this work, a novel fitness function is proposed with help of the generated dissimi-

larity matrix that provides the goodness of a set of filtered images represented by

a chromosome. In greater details, let the EEMAP constructed by the proposed

technique contains filtered images {I1, I2, ..., Id } and a chromosome in the popu-
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lation represents the m filtered images in EEMAP as (o1, o2, ..., om), where o1, o2,

..., om are the index of the filtered images in the EEMAP. To compute the fitness

value of the chromosome, clustering of the filtered images in EEMAP is performed

by considering Io1 , Io2 , ..., Iom as cluster representatives. An image in EEMAP

is assigned to a cluster if the cluster’s representative and the image itself have

lowest dissimilarity value as compared to the other cluster representatives. Let

Clo1 , Clo2 , ..., Clom be the clusters formed by considering Io1 , Io2 , ..., Iom as cluster

representatives, respectively. The fitness function of a chromosome is defined as:

f(Io1 , Io2 , ..., Iom) =


1
m

m∑
i=1

 1

|Cloi |
∑

Ij∈Cloi

DNMI(Ioi , Ij)


1

m−1

m∑
i=1

 min
j 6=i

j∈1,2,...,m

{DNMI(Ioi , Ioj)}



 (3.5)

where |Cloi | represents the number of images belong to the cluster Cloi . The

fitness function defined in Eq. (3.5) can be explained as:

f(Io1 , Io2 , ..., Iom) =

(
average of average intra-cluster distance

average of minimum inter-cluster distance

)
(3.6)

The average intra-cluster distance signifies how compact one cluster is. In

numerator, the average of average intra-cluster distance represents the compact-

ness of all the clusters formed on EEMAP considering the filtered images of the

chromosome as cluster representatives. Minimizing this value one can select com-

pact clusters. On the other hand, inter-cluster distance is the distance between

two nearest cluster representatives. In denominator, the average of minimum

inter-cluster distance is computed by taking average of the minimum inter-cluster

distance computed for each cluster representative. One can select diverse cluster

representatives by maximizing this value. Thus, minimization of fitness function

in Eq. (3.5) helps us to select an optimal subset of filtered images in the EEMAP.

Selection: After the fitness evaluation of each chromosome, the fittest chromo-

somes are selected and kept for next generation. The stochastic uniform selection

strategy is adopted here.

Crossover: Similar to natural evolutionary process, new generation of child chro-
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mosomes are generated based on the information exchange between parent chro-

mosomes selected as fittest in previous iteration. The crossover is performed with

a probability represented by crossover factor.

Mutation: Bits of a chromosome are flipped with certain probability and it is

called mutation. This operation is performed on all the chromosomes present in

the current generation.

Termination: The above steps are repeated until they converge to a stable situa-

tion.

Once the process terminates, the subset of filtered images represented by

the fittest chromosome in the population is considered as optimal subset of filtered

images in the EEMAP. Note that the fitness function defined in Eq. (3.5) is com-

pletely based on the dissimilarity matrix which is generated in an unsupervised

way. Thus, the proposed spectral-spatial feature selection technique is unsuper-

vised in nature. Moreover, since the fitness value of a chromosome is computed

based on the dissimilarity matrix, once the dissimilarity matrix is generated, GAs

takes less time to converge.

3.3 Experimental results

3.3.1 Design of experiments

The experiments are conducted on four real hyperspectral data sets described in

Appendix A. In order to generate spectral-spatial features for HSI classification,

first the EAPs considering the attributes area, moment of inertia and standard

deviation are constructed. The EAPs are constructed by considering only the first

five PCs of the hyperspectral data set. In the experiments, for all the considered

data sets, the filter parameter values for the three attributes are varied as follows:

1. area: [1 9 25 49 81 121 169 225 289]

2. moment of inertia: [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

3. standard deviation: [2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5]

From the above configuration one can see that the construction of EAP

based on the area attribute (denoted as EAPa) uses 9 threshold values. Since AP
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for each PC is constructed by applying 9 thinning and 9 thickening operations

leading to generate 19 filtered images (including PC itself) for single PC. Thus,

EAPa constructed with 5 PCs has 95 filtered images to reflect spectral-spatial

information. Similarly, the constructed EAPs based on the moment of inertia

attribute (denoted as EAPi) and the standard deviation attribute (denoted as

EAPs) contain 95 filtered images each. After generating the EAPs, an EEMAP

with above mentioned three attributes is constructed by considering all the fil-

tered images in EAPa, EAPi, and EAPs with no repetition of PCs. Thus, the

constructed EEMAP contain 275 (i.e. 95 × 3 − 10) filtered images to represents

spectral-spatial information of a hyperspectral data set. The profiles are generated

using the tool available in [55].

The proposed technique exploits GAs to select optimal subset of filtered

images from the constructed spectral-spatial profiles. In the present experiment

for all the data sets the population size of GAs is taken as 40. Stochastic selection

strategy is used to select fittest chromosomes from the mating pool. The crossover

and mutation probability is set as 0.8 and 0.01, respectively.

In order to show the effectiveness of the proposed technique the classifica-

tion results obtained by the selected subset of feature are compared with the results

obtained using full feature space. Moreover, it is also compared with GAs based

supervised feature selection technique (referred as Supervised-GAs) presented in

[183]. In contrast to the proposed unsupervised technique, the Supervised-GAs

technique selects an optimal subset of feature in EEMAP by defining the fitness

function of GAs in a supervised manner.

In this work one-against-all SVM classifier with radial basis function

(RBF) is used for performing classification task. The SVM parameters {σ,C}
(i.e., the spread of RBF kernel and the regularization parameter) are obtained

by applying grid search with 5-fold cross-validation. In this experiment, for all

the considered data sets 30% of the available labeled samples from each class are

randomly selected to train the SVM classifier and the rest 70% are used for testing

purpose.

The subset of feature selected by the different techniques may vary from

one run to another. To reduce this random effect for all the considered data sets

the average classification accuracies obtained by 10 runs are used for comparison.

The proposed technique is implemented in Maltab (R2015a). The LIBSVM library

[38] is used to implement SVM classifier.
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3.3.2 Results: KSC data set

In order to assess the effectiveness of the proposed technique, first experiment is

carried out using the hyperspectral KSC data set (described in Appendix A.1).

Table 3.1 reports the average class-wise accuracy, average overall accuracy (OA),

its standard deviation (std) and average kappa accuracy (kappa) obtained for ten

runs. To show the importance of the spectral-spatial features generated by the

different attribute profiles of the proposed technique, the classification results ob-

tained by using only spectral features (i.e., 176 features) and the classification

results obtained using the spectral-spatial features generated by EAPa, EAPi,

EAPs and EEMAP are reported in Table 3.1. From the table one can see that the

spectral-spatial features generated by the different APs provided better results

in every respect than using only spectral features for the KSC data set. Con-

sidering 176 spectral bands of the KSC data set the OA is obtained as 84.70%.

Whereas, the OA obtained using the spectral-spatial features generated by EAPa,

EAPi, EAPs and EEMAP is 96.36%, 97.65%, 98.21% and 98.70%, respectively.

From the table one can also observed that among the three constructed EAPs,

the EAPs provides higher OA. Thus for the KSC data set, the standard devia-

tion attribute provides better spatial information than the area and the moment

of inertia attributes. Since the EEMAP is constructed by considering all the

three attributes, it provides best classification result. Furthermore, to asses the

effectiveness of the proposed feature selection technique the dimensionality of the

constructed EEMAP is reduced from 275 to 60 and the dimensionality of all the

three constructed EAPs are reduced from 95 to 40 by using the proposed GA

based feature selection technique. The detailed classification results obtained for

this reduced feature space are reported in Table 3.1. From this table one can

see that the OA obtained by considering all the features in EAPa, EAPi, EAPs

and EEMAP is 96.36%, 97.65%, 98.21% and 98.70%, respectively. Whereas, the

OA obtained for a subset of feature in EAPa, EAPi, EAPs and EEMAP selected

by the proposed technique is 95.08%, 97.23%, 96.97% and 98.07%, respectively.

The classification results obtained in the reduced feature space is similar to the

results obtained in full feature space. Finally, the performance of the proposed

technique is compared with the existing Supervised-GAs technique. The results

reported in Table 3.1 show that the subset of feature in EEMAP selected by the

proposed unsupervised technique have similar discriminative power to the subset

of feature in EEMAP selected by the Supervised-GAs technique. This shows the

potential of the proposed feature selection technique. For visual analysis, Fig. 3-2

shows the classification maps generated for each of the spectral-spatial profiles in

its full feature-space and in the subspace selected by the proposed method. The
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(a) EAPa Full (b) EAPa Proposed (c) EAPi Full

(d) EAPi Proposed (e) EAPs Full (f) EAPs Proposed

(g) EEMAP Full (h) EEMAP Proposed (i) Supervised GAs

Figure 3-2: Classification maps of the best results obtained for KSC data set
considering full feature space and the reduced feature space.

classification maps obtained in reduced subspace is not much different than those

obtained in the full feature space. This confirms the effectiveness of the proposed

method.

3.3.3 Results: University of Pavia data set

Second experiment is carried out using the hyperspectral University of Pavia data

set (described in Appendix A.2). Table 3.2 reports the average class-wise accuracy,

average overall accuracy (OA), its standard deviation (std) and average kappa

accuracy (kappa) obtained for ten runs. From this table one can see that the clas-

sification results obtained using the spectral-spatial features generated by EAPa,

EAPi, EAPs and EEMAP are much better than the classification results obtained

by using only spectral features. In greater detail, considering 103 spectral bands

of the University of Pavia data set the OA is obtained as 95.28%. Whereas, the
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Chapter 3. An unsupervised technique for optimal feature selection in
attribute profiles for spectral-spatial classification of hyperspectral images

OA obtained using the spectral-spatial features generated by EAPa, EAPi, EAPs

and EEMAP is 97.63%, 99.69%, 99.69% and 99.91%, respectively. This shows the

importance of the spatial-spectral features generated in the proposed technique.

From the table one can also observe that among the three constructed EAP s, the

EAPi and the EAPs provides better OA than EAPa. Thus, for University of Pavia

data set, the standard deviation and the moment of inertia are better attributes

for taking into account the spatial information. Since the EEMAP is constructed

by considering all the three attributes, it provides best classification result. To

assess the effectiveness of the proposed GA based feature selection technique the

classification results obtained using the subset of feature selected by the proposed

technique are also reported in Table 3.2. From the results one can see that the

OA obtained by considering all the features in EAPa, EAPi, EAPs and EEMAP

is 97.63%, 99.69%, 99.69% and 99.91%, respectively. Whereas, the OA obtained

for a subset of feature in EAPa, EAPi, EAPs and EEMAP selected by the pro-

posed technique is 96.36%, 98.95%, 99.69% and 99.52%, respectively. Analogous

to first experiment, in this experiment, the classification results obtained in the

reduced feature space is also similar to the results obtained in full feature space.

Finally, the performance of the proposed technique is compared with the existing

Supervised-GAs technique. The results reported in Table 3.2 show that the sub-

set of feature in EEMAP selected by the proposed unsupervised technique have

similar discriminative power in comparison to the subset of feature in EEMAP

selected by the Supervised-GAs technique. This again shows the effectiveness of

the proposed feature selection technique for the University of Pavia data set. For

visual analysis the classification maps obtained for all the EAP s in full feature

space and reduced feature space is shown in Fig. 3-3. The classification maps ob-

tained in reduced feature space are quite similar to those obtained in full feature

space as well as to those obtained by the state-of-the-art Supervised-GAs. This

again confirms the effectiveness of the proposed method.

3.3.4 Results: Indian Pines data set

For validating the effectiveness of the proposed technique, the third experiment

is carried out using hyperspectral Indian Pines data set (described in Appendix

A.3). Table 3.3 reports the classification result obtained for ten runs. To show the

importance of spectral-spatial features generated by the different attribute pro-

files used in the proposed technique, the classification results obtained using only

spectral features (i.e., 185 features) and the classification results obtained using

the spectral-spatial feature generated by EAPa, EAPi, EAPs and EEMAP are
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Chapter 3. An unsupervised technique for optimal feature selection in
attribute profiles for spectral-spatial classification of hyperspectral images

(a) EAPa Full (b) EAPa Proposed (c) EAPi Full

(d) EAPi Proposed (e) EAPs Full (f) EAPs Proposed

(g) EEMAP Full (h) EEMAP Proposed (i) Supervised GAs

Figure 3-3: Classification maps of the best results obtained for University of
Pavia data set considering full feature space and the reduced feature space.
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3.3. Experimental results

reported in Table 3.3. From this table one can see that the OA obtained for In-

dian Pines data set with 185 spectral bands is 91.03%. Whereas, the OA obtained

for the spectral-spatial features generated by EAPa, EAPi, EAPs and EEMAP is

96.64%, 96.42%, 97.18% and 97.93%, respectively. Thus, approximately 5% of OA

is increased by using the spectral-spatial feature generated by the different APs in-

stead of using only spectral feature. From the table one can also see that for Indian

Pines data set, among the three attributes used to construct EAPs, the standard

deviation attribute incorporated better spatial information than the area and the

moment of inertia attributes. Like other two data sets for this data set also, the

EEMAP which is constructed by considering all the three attributes provided best

classification result. Finally to assess the effectiveness of the proposed GA based

feature selection technique, the classification results obtained in the reduced fea-

ture space is also reported in Table 3.3. From the table one can see that the OA

obtained in full feature space for EAPa, EAPi, EAPs and EEMAP is 96.64%,

96.42%, 97.18% and 97.93%, respectively. Whereas, the OA obtained in reduced

feature space (using proposed technique) of EAPa, EAPi, EAPs and EEMAP is

95.71%, 93.20%, 96.10% and 97.51%, respectively. Maintaining the consistency

from earlier experiments, the classification results obtained in the reduced feature

space is similar to the results obtained in full feature space. Moreover, the perfor-

mance of the proposed technique is compared with the existing Supervised-GAs

technique. The results reported in Table 3.3 show that the subset of feature in

EEMAP selected by the proposed unsupervised technique have similar discrimi-

native power to the subset of feature in EEMAP selected by the Supervised-GAs

technique. Furthermore, The classification maps are shown in Fig 3-4 obtained

for all the EAP s in full and reduced feature space. The maps obtained in re-

duced feature space and the full feature space are similar. This established the

robustness of proposed feature selection technique.

3.3.5 Results: University of Houston data set

For validating the effectiveness of the proposed technique, the fourth experiment

is carried out using University of Houston data set (described in Appendix A.4).

The classification results obtained using only spectral features (i.e., 144 features)

and the classification results obtained using the spectral-spatial feature generated

by EAPa, EAPi, EAPs and EEMAP are reported in Table 3.4 after 10 runs of

the experiments. The results demonstrate that for this data set also the proposed

method successfully reduced the dimension maintaining the information content.

For the EEMAP with 275 features, the OA is 98.79%, whereas the OA obtained for
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3.3. Experimental results

(a) EAPa Full (b) EAPa Proposed (c) EAPi Full

(d) EAPi Proposed (e) EAPs Full (f) EAPs Proposed

(g) EEMAP Full (h) EEMAP Proposed (i) Supervised GAs

Figure 3-4: Classification maps of the best results obtained for the Indian Pines
data set considering full feature space and the reduced feature space.

profile after feature selection using the proposed method is 98.07%. Similarly, for

other spectral-spatial profiles also, the classification results obtained in the reduced

feature space is similar to the results obtained in full feature space. Moreover, the

OA obtained for proposed method and the Supervised-GAs technique are also

similar. This shows that the proposed unsupervised method is as effective as the

Supervised-GAs. Furthermore, The classification maps are shown in Fig. 3-5

obtained for all the EAP s in full and reduced feature space. The maps obtained

in reduced feature space and the full feature space are similar. This established

the robustness of proposed feature selection technique.
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3.3. Experimental results

(a) EAPa Full

(b) EAPa Proposed

(c) EAPi Full

(d) EAPi Proposed

(e) EAPs Full

(f) EAPs Proposed

(g) EEMAP Full

(h) EEMAP Proposed

(i) Supervised GAs

Figure 3-5: Classification maps of the best results obtained for the University of
Houston data set considering full feature space and the reduced feature space.
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3.3.6 Results: computational time

The fifth experiment deals with the computational time required by the proposed

technique using the same experimental setting as described in Section 3.3.1. All

the experiments are carried out on a PC (Intel(R) Core(TM) i5-6500 CPU @

3.20 GHz with 4 GB RAM). In this experiment, the computational time taken

by the proposed technique is divided into two parts DM and FS. DM represents

the average computational time taken by the proposed technique to generate the

dissimilarity matrix of the constructed EEMAP. FS represents the average com-

putational time taken by the GAs to select optimal subset of feature in EEMAP

using the generated dissimilarity matrix. Table 3.5 reported the values of DM and

FS for the four considered data sets. From the table one can see that the values

of DM are quite higher than the values of FS. The values of DM can further be

reduced by generating the dissimilarity matrix using less number of samples. Ta-

ble 3.5 shows the average overall accuracy (OA) and the computational time (in

seconds) taken to generate the dissimilarity matrix using 100%, 20% and 10% of

the samples. From the table one can see that the OA obtained by the proposed

technique does not change significantly when the dissimilarity matrix is generated

using 100%, 20% and 10% of the samples but significantly reduced the values of

DM. Thus, the computational time required to generate the dissimilarity matrix

can be significantly reduced by using a subset of samples instead of considering all

the samples. Since the proposed technique exploits dissimilarity matrix to select

optimal subset of feature, the value of FS does not depend on the number of sam-

ples. From the experimental results in Table 3.5 one can see that the proposed

technique takes few minutes to select an optimal subset of feature in EEMAP.

According to our knowledge, there is no unsupervised feature selection

technique existing in remote sensing literature that select optimal spectral-spatial

features from the generated EEMAP. To further assess the effectiveness of the pro-

posed technique, the computational time taken by it is compared with the time

taken by the existing Supervised-GAs technique. Table 3.5 also reports the com-

putational time taken by the Supervised-GAs technique. From the table one can

see that the computation time taken by the Supervised-GAs is much higher than

the proposed technique. For example the time taken by Supervised-GAs technique

for the KSC, the University of Pavia, the Indian Pines and the University of Hous-

ton data set is 1.6 hours, 58 hours, 16 hours and 10 hours, respectively. Whereas,

the proposed technique takes few minutes for the same. Since, in Supervised-GAs

the fitness function of GAs are defined by considering the classification accuracy

of the classifier. The classification task need to be performed at every iteration
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of GAs to compute the fitness value of a chromosome in the population, which

is highly computational demanding. In contrast, the proposed technique is not

only unsupervised in nature it also reduced the computational time significantly

by defining the fitness function of GAs using dissimilarity matrix.

Table 3.5: Details of average computational time (in seconds) required by the
proposed and the Supervised-GAs techniques for different hyperspectral data sets

Data
Proposed Supervised

-GAs
sets % of

OA
Execution Time Execution

samples DM FS Time(Sec)

KSC
100 98.07 5304.5
20 98.03 1922.6 82.0 5846
10 97.93 1352.7

University of
Pavia

100 99.52 3787.3
20 99.52 1605.3 68.0 211235
10 99.49 1269.3

Indian
Pines

100 97.51 1121.6
20 97.37 1039.3 80.3 59102
10 97.14 798.8

University of
Houston

100 98.02 13539
20 97.89 3135 84.3 37187
10 97.74 1914

3.3.7 Results: curse of dimensionality

The last experiment is carried out to see the importance of the feature selection

technique in order to mitigate the curse of dimensionality problem. As stated in

section 3.1, for constant number of training samples the density estimation of pat-

terns suffer as the dimensionality increases. This phenomenon is referred as the

curse of dimensionality [12], which leads to the Hughes phenomenon in classifica-

tion [115]. A challenging yet effective strategy to deal with curse of dimensionality

is to reduce the dimension of the patterns [103, 112]. The curse of dimensionality

problem is not visible in the results shown in the first, second, third and fourth ex-

periments. This could have happened because of the adequate number of samples

being used to train the classifier or the dimensionality of the generated samples

are not high enough. In order to see the curse of dimensionality effect, in this ex-

periment for the Indian Pines data set, an EEMAP is constructed considering the

three attributes namely, area, moment of inertia and standard deviation on the

first 10 PCs of the original HSI. The filter parameter values are sampled in much

smaller intervals from a wide range for each attribute. The filter parameter values
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for the area attribute are 12, 22,..., 172 which lead to 17 thinning and 17 thicken-

ing operation. For the standard deviation attribute the filter parameter values are

sampled in the range [2.5 25] with step-size of 1, leading to 22 thinning and 22

thickening operations. For the moment of inertia attribute the filter parameter

values are sampled in the range [1 9] with step-size of 0.5, leading to 17 thinning

and 17 thickening operations. With this configuration on 10 PCs of Indian Pines

data set, the constructed EEMAP has a dimension of 1150. To train the SVM

classifier, 5 labeled samples of each class are randomly selected from the EEMAP.

Fig. 3-6 shows the average classification accuracy versus the number of features

selected in EEMAP using the proposed unsupervised feature selection method.

From the figure, one can see that first the classification accuracy improves by in-

creasing the number of features till 200 and then decreases consistently. Similar

behavior is also observed for other data sets. Thus, when dealing with high di-

mensional data with limited available labeled samples feature selection plays an

important role to mitigate the curse of dimensionality problem.

Figure 3-6: Average classification accuracy obtained using different number of
features selected in the EEMAP for the Indian Pines data set.

3.4 Discussion and conclusion

In this chapter, we have proposed a method for improving the classification results

of HSI by incorporating spatial information using attribute profiles in its optimal

feature space. For fusing spectral and spatial information a large EEMAP is con-

structed for the HSI considering filter parameter values sampled in very small

interval from a wide range. Although, the EEMAP constructed by the proposed

method contain variety of spatial information, it has very high dimensionality with

ample redundancy that increases the computational cost and also may introduce
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curse of dimensionality problem. To mitigate these problems here an unsupervised

feature selection technique is presented that selects an optimal subset of feature

from the constructed EEMAP for spectral-spatial classification of HSI. The pro-

posed technique first generates a dissimilarity matrix to measure the dissimilarity

between pair of filtered images in EEMAP using mutual information. Then, to

select an optimal subset of feature from the EEMAP, GAs are exploited by defin-

ing a novel objective function based on the generated dissimilarity matrix. The

selected subset of features are considered for classification of the HSI. An exper-

iment demonstrates the importance of feature selection from a large EEMAP to

avoid curse of dimensionality problem.

Experimental results obtained for the four real hyperspectral remote sens-

ing data sets show the robustness of the proposed method in terms of computa-

tional time and classification accuracies. In the experiments, the proposed unsu-

pervised feature selection technique is applied on each of the generated spectral-

spatial profiles and the results demonstrate that the selected subset of filtered

images provided almost similar classification results to those obtained by consid-

ering full profile. Moreover, the proposed technique is compared with the existing

Supervised-GAs technique. This comparison not only shows the effectiveness of

the proposed technique in term of classification accuracy, it also shows that the

proposed technique takes significantly less amount of computational time than the

existing one.
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