
Chapter 2

A spectral-spatial multi-criteria

active learning technique for

hyperspectral image classification

2.1 Introduction

Hyperspectral images are characterized by hundreds of bands acquired in con-

tiguous spectral ranges and narrow spectrum intervals. They represent a very

rich information source for a precise characterization and recognition of objects

on the ground. In the past decades researchers devoted great attention to the

classification of hyperspectral images for numerous applications [34]. Due to the

existence of a large number of bands, classification of HSI requires a sufficiently

large number of training (labelled) samples in order to mitigate curse of dimen-

sionality (or Hughes phenomenon) [115]. However, in most of the hyperspectral

applications, the numbers of available labelled samples is scarce and very costly

to collect. To address such a problem, dimensionality reduction of HSIs is widely

used in the literature [27, 41, 111, 142, 160, 180, 204, 251]. Dimensionality re-

duction decreases the dimension of hyperspectral data with the help of feature

selection (extraction) techniques that select (extract) only informative features

which preserve discriminative properties of the data.

Although dimensionality reduction mitigates the curse of dimensionality

problem, the classification results still rely on the quality of the available labelled

samples. Due to the usually complex statistical distributions of the patterns be-

longing to different classes, informative labelled samples (i.e., the non-redundant
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samples which can distinguish among different classes) are essential to train the

classifier. Two recent approaches to HSI classification using limited labelled sam-

ples are semisupervised learning and active learning. Semisupervised learning

incorporates both the labelled and unlabelled data into the training phase of a

classifier to obtain better decision boundaries [28, 33, 37, 148, 154, 235]. In con-

trast, active learning (AL) is a paradigm to reduce the labeling effort and optimize

the performance of a classifier by including only most informative patterns (which

have highest training information for supervised learning) into the training set.

AL techniques are usually based on iterative algorithms. At each iteration, one or

multiple most informative unlabelled patterns are chosen for manual labeling and

the classification model is retrained with the additional labelled samples. The step

of training and the step of assigning labels are iterated alternately until a stable

classification result is obtained, i.e., the classification accuracy does not increase

further by increasing the number of training samples. Accordingly, the classifier is

trained only with the most informative samples, thus reducing the labeling cost.

In the literature many studies have shown that AL is a promising approach for

classification of HSI with limited labelled samples [229, 236].

The main component of an AL procedure is to design a query function

to select the most informative patterns from an unlabelled pool U for labeling.

Depending on the number of samples to be selected at each iteration, two kinds of

AL methods exist in the literature: 1) those that select the single most informative

sample at each iteration, and 2) those that select a batch of informative samples at

each iteration. To avoid retraining the classifier for each new labelled sample added

to the training set, batch mode AL methods are preferred in the remote sensing

community. AL has been widely studied in the pattern recognition literature

[2, 48, 107, 113, 177, 226, 248]. In the recent years, several AL techniques have

been proposed for classification of multispectral and hyperspectral remote sensing

images [66–69, 72, 140, 164, 174–176, 178, 190, 216, 217, 227]. Mitra et al. [164]

presented an AL technique by adopting a one-against-all (OAA) architecture of

binary support vector machine (SVM) classifiers. They select batch of uncertain

samples, one from each binary SVM, by considering the one that is closest to the

discriminating hyperplane. In [190], an AL technique is presented that exploits the

maximum-likelihood classifier and the Kullback-Leibler divergence. It selects the

unlabelled sample that maximizes the information gain between the aposteriori

probability distribution estimated from the current training set and the training

set obtained by including that sample. In [227], two batch mode active learning

techniques are proposed for classification of remote sensing images. The first one

extends the SVM margin sampling method by selecting the samples that are closest
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to the separating hyperplane and associated with different closest support vectors.

The second method is based on a committee of classifiers. The samples that have

maximum disagreement among the committee of learners are selected. In [67],

Demir et al. investigated several SVM-based batch mode AL techniques for the

classification of remote sensing images. In [176], a batch mode AL technique based

on multiple uncertainty for SVM classifiers is presented. Few cluster assumption

based AL techniques are presented in [72, 175, 178]. A cost-sensitive AL method

for the classification of remote sensing images is presented in [68] and extended

in [69]. This method also includes a cost associated with the accessibility of the

unlabelled samples in the query function. An AL technique based on a Gaussian

process classifier for hyperspectral image analysis is presented in [216]. All the

above-mentioned AL methods only exploit spectral information. There are few

techniques existing in the literature that exploit spectral and spatial information

to achieve improved classification results [140, 174, 217, 246, 250].

As mentioned before feature selection (or extraction) plays an important

role for HSI classification with limited labelled samples. Moreover, in practice,

pixels are spatially related due to the homogeneous spatial distribution of land

covers. It is highly probable that two adjacent pixels belong to the same class.

Thus, information captured in neighboring locations may provide useful supple-

mentary knowledge for analysis of a pixel. Therefore, spectral information with

the support of spatial information can effectively reduce the uncertainty of class

assignment and help to find the most informative samples.

In this chapter we propose a novel AL technique for the classification of HSI

with limited labelled samples. The proposed technique is divided into two phases.

Considering the importance of dimensionality reduction and spatial information

for the analysis of HSIs, Phase I extracts the features corresponding to each pixel

of HSI using both spectral and spatial information. To this end, first principal

components analysis (PCA) is used to reduce the dimensionality of HSI; then,

extended morphological profiles (EMP) are constructed. The patterns (samples)

in EMP are used as input to the Phase II. Phase II performs the classification

task with a small number of labelled samples. To this end, a multi-criteria batch

mode AL technique is proposed by defining a novel query function that exploits

the properties of the k-means clustering, the K-nearest neighbors algorithm, the

SVM classifier, and the genetic algorithms (GAs). The method first partitions

the unlabelled pool U generated by Phase I into a large number of clusters using

the k-means clustering algorithms. Then by exploiting the properties of the k-

means clustering and the K-nearest neighbors algorithms, for each x ∈ U the
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density of the region in which the pattern x belongs is computed. This density is

used to incorporate the cluster assumption1 criterion in the query function. The

proposed technique also incorporates uncertainty and diversity criteria to select the

informative samples at each iteration of AL. The uncertainty criterion is defined by

exploiting SVM classifier and the diversity criterion is defined by maximizing the

nearest neighbor distances of the selected samples. In the proposed AL technique,

at each iteration the SVM classifier is trained with the available labelled samples.

After training, m most uncertain samples are selected. Then, a batch of h (h < m)

informative samples are chosen from the m selected samples for manual labeling

by optimizing the uncertainty, diversity and cluster assumption criteria with GAs.

To assess the effectiveness of the proposed method we compared it with four other

batch mode AL techniques and a spectral-spatial AL technique existing in the

literature using four hyperspectral remote sensing data sets.

The rest of this chapter is organized as follows. The proposed active learn-

ing technique is presented in Section 2.2. Section 2.3 presents the experimental

results obtained on the considered data sets. Finally, Section 2.4 draws the con-

clusion of this chapter.

2.2 Proposed technique

In this chapter we propose a technique for classification of HSIs with limited

labelled samples. The proposed technique is divided into two phases. Phase

I generates the patterns corresponding to each pixel of the HSIs by extracting

spectral-spatial features. Phase II performs the classification task by exploiting

a novel AL technique. Fig. 2-1 shows the block diagram of the proposed frame-

work. The detailed steps of the proposed technique are given in next subsequent

subsections.

2.2.1 Phase I: spectral-spatial feature extraction

The classification of an HSI, when a limited number of labelled samples are avail-

able, is a challenging task due to the curse of dimensionality problem. Moreover,

due to the existence of large number of redundant bands, the distributions of

different classes in the original feature space are complex and do not follow the

1The cluster assumption says that the boundaries separating the classes should be present in
a low density area of the feature space.[193].
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Figure 2-1: Block diagram of the proposed framework.
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cluster assumption property, i.e. the interclass differences between classes are not

significant. Thus, cluster assumption criterion may fail to play a significant role

for identifying informative samples. Both problems can be solved by reducing

the dimensionality of the HSI data by selecting (or extracting) only discriminative

features. When a small number of discriminative features are considered, the class

distributions might be much simpler and result in more significant interclass dif-

ferences. Thus, finding the informative unlabelled samples in the reduced feature

space is much easier than the original feature space. Moreover, a small number of

informative labelled samples may be good enough to train a classifier. In the pro-

posed technique we reduce the dimensionality of HSIs by extracting informative

features with the help of principal component analysis.

Principal component analysis

PCA is an orthogonal transformation technique widely used in feature extraction

and data compression [182]. It transforms a set of patterns in a d-dimensional orig-

inal feature space into a new feature space having the same dimension where the

transformed features are called principal components (PCs). The transformation

is defined in such a way that the first PC has the largest possible variance of the

patterns, and each succeeding component in turn has the highest variance possible

under the constraint to be orthogonal to the preceding components. Thus, PCA

orders the PCs according to the variance of the patterns. It is used to reduce di-

mensionality of the data by keeping first few PCs. In our work, the dimensionality

of HSIs are reduced by keeping only the first l PCs that retain more than 99% of

information and discard the rest. More details on PCA is given in Section 1.2.1

The spectral features extracted by PCA are not enough to distinguish

classes in HSIs. In many HSIs, pixels are spatially correlated due to the homo-

geneous spatial distribution of land covers. Information captured in neighboring

pixels may provide useful supplementary knowledge for the analysis of a pixel.

Therefore, spectral information along with spatial information can reduced the

uncertainty level of the patterns and help the AL process to select more infor-

mative samples for labelling. In this work, EMP are used to incorporate spatial

information into the extracted spectral features.
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Extended morphological profiles

Mathematical morphology has been successfully applied to images [14, 114, 143,

205]. In the first phase of the proposed method, the dimensionality of HSI is

reduced by using PCA and selecting first l PCs. Then, an extended morphological

profiles (EMP) is constructed for a hyperspectral image H by using Eq. 1.22

to integrate its spectral and spatial information. The details on morphological

operators and construction of an EMP is discussed in Section 1.2.3.

In this phase, morphological opening and closing by reconstruction filters

are applied using t different SE on the l PCs extracted out of d dimensional H and

2 × t filtered images are generated for each PC. These filtered images generated

for each PC are concatenated along with the original PC to form an EMP with

l(2t+1) images containing rich spectral-spatial information to represent the pixels

of HSIs. Thus, the patterns corresponding to the pixels of HSI are modeled with

l(2t+ 1) spectral-spatial features.

2.2.2 Phase II: proposed active learning technique for clas-

sification of HSIs

After integrating spectral-spatial information for the classification process, the

feature vectors generated in Phase I are used as input to Phase II. In this phase, a

novel batch mode AL technique is proposed for classification of HSI with limited

labelled samples. In order to select the most informative samples for labeling, the

query function of the proposed AL technique is designed based on uncertainty,

diversity and cluster assumption criteria. The uncertainty criterion is defined by

exploiting SVM classifier. The diversity criterion is defined by maximizing the

nearest neighbor distances of the selected samples. The cluster assumption crite-

rion is defined by using the properties of k-means clustering and nearest neighbor

algorithms. Finally, GAs are exploited to select batch of most informative samples

by optimizing these criteria. The detail of the proposed technique is given below.

Uncertainty criterion

In this work a one-against-all (OAA) SVM architecture, which involves c binary

SVMs (one for each information class), is adopted to define uncertainty criterion

as well as to perform the classification task [162]. The uncertainty criterion aims
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at selecting the samples that have the lowest classification confidence among the

unlabelled samples. To this end, at each iteration of AL, c binary SVM classi-

fiers are trained with the available labelled samples. After training, c functional

distances fi(x), i = 1, 2, ..., c are obtained, that correspond to the c decision hyper-

planes. Then, the classification confidence CC(x) of each unlabelled sample x ∈ U
is associate with its uncertainty measure. The samples which have lower classifi-

cation confidence are considered more uncertain. In the literature, two alternative

strategies are used for computing the classification confidence. Marginal sampling

(MS) is the first strategy, in which the CC of each unlabelled sample is computed

by considering the smallest distance among the c decision hyperplanes [164]. The

second strategy, which is also used in this work, is based on the multi-class label

uncertainty (MCLU) [67]. MCLU computes the CC of each unlabelled sample

x ∈ U by considering the difference between the first and second largest distance

values to the hyperplanes using Eq. 1.12.

Thus, in the MCLU strategy, the classification confidence is assessed based

on the two most likely classes to which the test pattern belongs. If the value of

CC(x) is high, it means that the model has high confidence in assigning the

sample x into the class corresponding to the maximum distance. On the contrary,

if CC(x) is small, the classifier model has low confidence in assigning the sample

x to any of the class.

Diversity criterion

The samples selected using the uncertainty criterion may have high redundancy.

The diversity criterion plays an important role to reduce this redundancy. It selects

the samples from the already selected uncertain samples which are diverse from

each other. The diversity criteria based on angle, closest support vector, clustering

etc. are widely used in the AL literature [23, 67, 227]. In this work a simple

criterion that maximizes the distance between the sample and its nearest sample

is used to select diverse samples. Let x1, x2, ..., xm be themmost uncertain samples

selected from U using the MCLU criterion defined above. Now the optimization

of the following criterion is used to select h (h < m) diverse samples from the

selected m samples:

max


h∑
i=1

min
i 6=j

j=1,...,m

{d(xi, xj)}

 (2.1)
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where d(xi, xj) is the euclidean distance between the samples xi and xj. The h

samples selected using Eq. (2.1) are diverse from each other since the criterion

maximize the distance between each sample with its nearest sample.

Cluster assumption criterion

The cluster assumption property states that the boundaries separating the classes

should be present in a low density area of the feature space. Thus, the patterns

belonging to the low density regions of the feature space are the most informative

for a classifier. The density of a region to which a specific pattern belongs can

be computed by taking the average distance from its K-nearest neighbor patterns.

Such a way to compute the density for each unlabelled pattern is impractical and

cumbersome. In this work we exploit the properties of k-means clustering to solve

this problem.

Clustering is an unsupervised learning for grouping a set of patterns in

such a way that samples in the same group (called a cluster) are more similar to

each other than to those in other groups. k-means clustering aims to partition

the patterns into k clusters in which each samples belongs to the cluster with the

nearest mean, serving as a representative (prototype) of the cluster [76]. In our

method, before iterative AL process is started, unlabelled patterns are partitioned

into a large number of clusters and the prototype of each cluster is derived by using

the k-means algorithm. Let Cl1, Cl2, ..., Clk and µ1, µ2, ..., µk be the k clusters and

their corresponding representatives obtained by the k-means algorithm. Now the

density of the region in which a cluster Cli belongs can be computed as follows:

den(Cli) =
1

K

∑
xi∈K−NN(µi)

d(µi, xi) (2.2)

where K − NN(µi) represents the K neighbor patterns that are nearest to the

cluster representative µi. After finding the density of all clusters, the density of a

region where a pattern xj belongs, denoted as den(xj), is computed as:

den(xj) = den(Cli),where xj ∈ Cli (2.3)

According to the cluster assumption, the patterns having higher den(xj)

values have higher probability to be in a low-density region in the feature space as

compared to the patterns having lower den(xj) values. Thus, the density computed

42



2.2. Proposed technique

by Eq. 2.3 can be used to evaluate the cluster assumption property in the AL

query.

Selecting informative samples using GAs

In this section a query strategy for AL based on the above-defined criteria is

presented by exploiting GAs [99]. At each iteration of AL, first the m samples

from U that have the lowest classification confidence computed using Eq. 1.12 are

selected. After that, the h (h < m) most informative samples from the selected

m uncertain samples are chosen by optimizing uncertainty, diversity and cluster

assumption criteria using GAs. The basic steps of GAs to select h informative

samples are described below.

Representation of chromosome: Each chromosome represents the h samples by

a sequence of binary numbers. If a sample is represented by s bits, the length

of a chromosome representing h samples will be h × s bits. The first s bits of

the chromosome represent the first sample, the next s bits represent the second

sample, and so on.

Initialization of the Population: A collection of chromosomes is called population.

The number of chromosomes belonging to a population defines the size of the

population. A population is formed by generating a set of chromosomes. Each

chromosome in the population is initialized randomly to represent h samples.

Fitness computation: Design of an appropriate fitness function is the most impor-

tant and challenging task of GAs, since the chromosomes of the population contain

useful solutions by optimizing their fitness value. The fitness function F (.) is also

known as objective function. In this work, the fitness function of the GA that

compute the fitness values of the chromosomes is defined as follows:

F (x1, x2, ..., xh) =

1

h

h∑
i=1

CC(xi)−
1

h


h∑

i=1

min
i6=j

j=1,...,m

{d(xi, xj)}

− 1

h

h∑
i=1

den(xi) + Pen (2.4)

Here h (h < m) informative samples are chosen from the m uncertain samples

(obtained by using the uncertainty criterion defined in Eq. 1.12) by minimizing

the objective function. The first, second and third terms of the above objective

function compute the average classification confidence (using the uncertainty cri-

terion defined in Eq. 1.12), the average minimum neighbor distance (using the

diversity criterion defined in Eq. 2.1) and the average density (using the cluster
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assumption criterion defined in Eq. 2.3) of the h samples represented by a chro-

mosome, respectively. If a sample appear multiple times in a chromosome, the

parameter Pen has a positive constant value as a penalty, otherwise it is zero.

The smaller value of the first term and the larger values of second and third terms

provide smaller values of the objective function. Thus minimizing the objective

function defined in (2.4) a GA results in the selection of the most informative

samples to be labelled for AL.

Selection: The selection process selects chromosomes from the mating pool di-

rected by the survival of the fittest concept of natural genetic systems. Here the

’stochastic uniform’ selection strategy is adopted.

Crossover: Crossover generates two child chromosomes by interchanging informa-

tion between two parent chromosomes. Given a chromosome of length h × s, a

crossover point is randomly generated in the range [1, s× h− 1].

Mutation: With a fixed probability, each chromosome undergoes mutation. Given

a chromosome in the population, the value at a bit position (or gene) is flipped in

mutation.

Termination criterion: The processes of fitness value computation for each chro-

mosome in the population, selection, crossover, and mutation are executed for a

maximum number of iterations or the number of iteration until the average fitness

value of the population becomes stable.

After termination criterion is satisfied, the chromosome in the population

that has the best fitness value is considered and the h samples that belong to that

chromosome are selected as informative samples for the AL. Algorithm 3 provides

the details of the proposed AL technique.

2.3 Experimental Results

2.3.1 Design of experiments

In order to show the potential of the proposed technique all the four hyperspec-

tral data sets described in Appendix A are used for experiments. Moreover, to

assess the effectiveness of the proposed method, it is compared with four batch

mode state-of-the-art AL methods existing in the literature: i) the entropy query-

by-bagging (EQB) [227]; ii) the marginal sampling with angle based diversity
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Algorithm 2 Proposed active learning technique

Phase I

1: Apply PCA to HSI and select first l PCs.
2: Obtain MP of l component images generated for the l PCs.
3: Generate EMP of the HSI by concatenating all the MPs obtained in the pre-

vious step.
4: Obtain the patterns (samples) associated with the pixels of HSI with its EMP

features.

Phase II

1: Apply k-means clustering algorithm to the samples generated by Phase I to
obtain k clusters and their representatives.

2: Compute the density of each cluster using Eq. 2.2 and then for each x ∈ U
compute the local density of the region of the feature space in the neighborhood
of x by using Eq. 2.3.

3: repeat
4: Train binary SVMs in the OAA architecture with the available training

samples and compute the classification confidence of each unlabelled sample
x ∈ U by using Eq. 1.12.

5: Select the m (m < k) samples from U that have the lowest classification
confidence.

6: Exploit GAs to select a batch of h (h < m) informative samples from m
by minimizing the objective function defined in (2.4).

7: Assign labels to the h selected samples and include them into the training
set.

8: until the stoping criterion is satisfied.

(MS-ABD) [23]; iii) the cluster assumption with histogram thresholding (CAHT)

[176]; and iv) the multiclass label uncertainty with enhanced cluster based diver-

sity (MCLU-ECBD) [67]. The MS-ABD, the CAHT, and the MCLU-ECBD first

selectm (m > h) most uncertain samples from U by exploiting MS, CA and MCLU

criteria, respectively. Then, by adopting different diversity criteria (the MS-ABD

uses angle based diversity criterion, while the CAHT and the MCLU-ECBD use

the kernel k-means clustering based diversity criterion) batches of h (h >= 1) in-

formative samples from the selected m samples are chosen for labeling at each iter-

ation of AL. In our experiments the value of m is fixed to 3h for a fair comparison

among the different techniques. The EQB technique employs bagging for form-

ing a committee of classifier and considers the maximum disagreement between

them to directly select the h most uncertain samples. Note that all the above-

mentioned AL methods consider only spectral features as input. The proposed

technique generated spectral-spatial features which are used as input to the AL

process. In order to show the potential of the features generated by the proposed

technique, the spectral-spatial features generated by our technique are also used

as input to the above mentioned AL methods, referring to them as: i) SP-EQB; ii)
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SP-MS-ABD; iii) SP-CAHT; and iv) SP-MCLU-ECBD. Furthermore, to validate

the effectiveness of the proposed technique, it is also compared with an existing

spectral-spatial information based state-of-the-art AL technique referred as MPM-

LBP-BT technique [140]. The MPM-LBP-BT AL technique exploits spectral and

spatial information by exploiting maximum a posteriori marginal (MPM) solution

and loopy belief propagation. Then a breaking ties (BT) uncertainty criterion is

used for query selection.

As explained in Section 2.2 the proposed technique reduces the dimension-

ality of the hyperspectral data by using PCA. In this experiment, the dimension-

ality of all the considered data sets are reduced by fixing the value of l to 10 (i.e.,

only the first 10 PCs are considered and the remaining ones are discarded). To

incorporate spatial information in the reduced dimension, an EMP with two open-

ing and two closing leading to a stack of 50 features (5 for each PC) is computed to

generate the patterns associated to the pixels of the HSI by considering disk-shape

SE of radius 5 and 10. Thus, each pixel of the hyperspectral image that is used as

an input to our active learning is represented with 50 features containing spectral

as well as spatial information.

To compute the density of the patterns in a specific region of the feature

space, the proposed technique first partitions the feature space into a large number

of clusters by using k-means clustering. Then the density of each cluster is com-

puted by the K-nearest neighbors algorithm. In the experiments, for all the data

sets, the values of k for k-means and K for K-nearest neighbors algorithms are set

to 500 and 10, respectively. The proposed technique also exploits GAs to select

most informative samples. In our experiments for all the data sets the population

size of GAs is taken as 20. Stochastic selection strategy is used to select fittest

chromosomes from the mating pool. The crossover and mutation probabilities are

set to 0.8 and 0.01 respectively.

All the AL techniques presented in this chapter have been implemented in

Matlab (R2015a). OAA SVM with radial basis function (RBF) kernels has been

implemented by using the LIBSVM library [38]. The SVM parameters {C, σ} (the

regularization parameter and the spread of the RBF kernel) for all the data sets

are derived by applying a grid search with a five-fold cross-validation technique.

During the active learning iterations these values were kept same for simplicity.
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2.3.2 Results: KSC data set

The first experiment is carried out to compare the performance of the proposed

technique with the literature methods using the KSC data set (see Appendix A.1).

For this experiment, a total of T = 5211 labelled samples (see Table A.1) were

considered as a test set TS. First, only 39 samples (three samples from each class)

were randomly selected from T as initial training set L, and the remaining 5172

were stored in the unlabelled pool U . 20 samples were selected from U at each

iteration of AL for labeling and the process was iterated 19 times resulting in 419

samples in the training set L. The active learning process was repeated for 10

trials with different initial labelled samples for reducing the random effect on the

results.

Figure 2-2: Average classification accuracy over ten runs versus the number of
training samples provided by the different methods (KSC data set).

Fig. 2-2 shows the average overall classification accuracies provided by

the different methods versus the number of labelled samples included into the

training set for the KSC data set. From this figure one can see that the EQB,

the MS-ABD, the CAHT, and the MCLU-ECBD methods produced significantly

higher classification accuracy when they use the spectral-spatial information based

patterns included in the proposed technique as input instead of the patterns gen-

erated by considering only spectral bands. If the input patterns are generated by

EMPs, these AL methods increase their accuracy by about 5%. This shows the

importance of the spatial information for achieving better classification results. It
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is worth noting that as at the initial stage of AL the SVM decision hyperplane is

far from the optimal hyperplane, the cluster assumption criterion of the proposed

technique does not play significant role to select informative samples. As a result,

at the initial iterations the proposed technique did not provide better results than

the SP-MS-ABD technique. Nonetheless, after few iterations, the proposed tech-

nique outperformed all the existing AL techniques. Moreover, from the figure one

can also see that the proposed technique always produced better results than the

existing spectral-spatial information based state-of-the-art MPM-LBP-BT tech-

nique.

Table 2.1: Average overall classification accuracy (OA), its standard deviation (s)
and kappa accuracy obtained on ten runs for different training data sizes (KSC
Data Set)

Methods |L| = 239 |L| = 339 |L| = 419
OA s kappa OA s kappa OA s kappa

SP-EQB 94.93 1.15 .943 97.59 0.63 .973 98.59 0.45 .985
SP-MS-ABD 97.70 0.42 .974 98.59 0.45 .984 98.98 0.42 .989
SP-CAHT 97.16 0.39 .968 98.59 0.27 .984 99.20 0.13 .991

SP-MCLU-ECBD 98.29 0.40 .981 99.39 0.20 .993 99.63 0.12 .996
MPM-LBP-BT 97.55 1.18 .973 98.41 1.25 .982 99.58 0.26 .995

Proposed 98.30 0.19 .981 99.53 0.10 .995 99.71 0.03 .997

To assess the effectiveness of the proposed AL method, Table 2.1 shows the

average overall classification accuracy (%), its standard deviation and the average

kappa accuracies obtained by different AL techniques on ten runs with different

numbers of training samples. From this table one can see that the proposed AL

technique results in better classification accuracy than the other existing AL tech-

niques. In particular, it is observed that the standard deviation of the proposed

approach is always smaller than those of the other techniques. For example,

considering 419 labelled samples, the proposed technique resulted in an overall

accuracy of 99.71% with a standard deviation of 0.03. Whereas, among the lit-

erature methods, the highest overall accuracy produced by the SP-MCLU-ECBD

technique was 99.63% with standard deviation of 0.12. This confirms the better

stability of the proposed method versus the choice of the initial training samples.

It is worth noting that, the better results provided by the proposed technique

are due to its capability to select the informative samples not only considering

uncertainty and diversity criteria but also using the cluster assumption criterion.

Table 2.2 shows the average class-wise accuracies (%) obtained by different AL

techniques after completing 19 iterations (i.e., 419 samples in the training set L).

From the table, one can see that for most of the classes the classification accura-

cies obtained by the proposed technique is either better or very close to the best
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Table 2.2: Class wise average classification accuracies (%) obtained on ten runs
(KSC Data Set)

Methods SP SP-MS SP SP-MCLU MPM Proposed
EQB ABD CAHT ECBD LBP-BT

|L| =419
Scrub 99.98 99.96 99.92 100 100 100

Willow swamp 93.42 99.30 97.12 99.75 100 99.88
Cabbage palm hammock 98.83 99.53 99.22 99.96 100 99.92

Cabbage palm/Oak hammock 95.52 98.77 97.78 99.16 95.51 99.09
Slash pine 96.40 95.22 94.41 94.84 99.00 95.16

Oak/Broadleaaf hammock 99.61 99.96 99.13 100 100 100
Hardwood swamp 96.38 98.19 95.33 98.29 100 99.15
Graminoid marsh 99.84 99.95 99.68 100 100 100
Spartina marsh 99.94 99.90 99.85 99.98 99.70 99.96
Cattaial marsh 98.07 95.84 98.76 98.94 99.47 99.36

Salt marsh 99.64 99.52 99.88 99.93 100 99.88
Mud flats 98.21 96.98 99.62 99.64 98.51 99.92

Water 99.18 99.75 99.87 100 100 100

OA 99.59 98.98 99.20 99.63 99.58 99.71

accuracy obtained by the literature methods. This shows that the integration of

dimensionality reduction, spectral-spatial feature generation and the new query

function of the AL method makes the proposed technique more robust not only to

achieve higher classification accuracy but also to the quality of the initial training

samples. For qualitative analysis Fig. 2-3 shows the classification maps obtained

by the different AL techniques where the map obtained for the proposed method

is more regularized.

2.3.3 Results: University of Pavia data set

In order to assess the effectiveness of the proposed technique, the second exper-

iment is carried out considering the University of Pavia data set (see Appendix

A.2). For this experiment, T = 42776 labelled samples (see Table A.2) were con-

sidered as a test set TS. First only 27 samples (three samples from each class) were

randomly selected from T as training set L, and the remaining 42749 were stored

in the unlabelled pool U . At each iteration of AL 20 samples were selected from

U for labeling and the process was iterated 19 times resulting in 407 samples in

the final training set L. Also in this one the active learning process was repeated

for 10 trials with different initial labelled samples for reducing the random effect

on the results
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Figure 2-3: Classification maps provided by different approaches with 419 la-
belled samples on the KSC data set.

Fig. 2-4 shows the average overall classification accuracies provided by

the different methods versus the number of samples included into the training set.

Similarly to the KSC data set, from this figure one can see that the classification

results of the EQB, the MS-ABD, the CAHT, and the MCLU-ECBD significantly

improved when considering as input the spectral-spatial information based pat-

terns generated by the EMP included in the proposed technique. The increase

in classification accuracy is of at least 7%. This again shows the importance of

the spatial information for achieving better classification results. Furthermore,

from the figure one can see that for the University of Pavia data set, among the

six spectral-spatial AL techniques, the MPM-LBP-BT technique provides worst

classification results.

Table 2.3: Average overall classification accuracy (OA), its standard deviation
(s) and kappa accuracy obtained on ten runs for different training data sizes
(University of Pavia Data Set)

Methods |L| = 227 |L| = 327 |L| = 407
OA s kappa OA s kappa OA s kappa

SP-EQB 83.07 4.64 .785 88.25 4.95 .849 89.92 3.65 .870
SP-MS-ABD 97.97 0.39 .973 99.04 0.25 .987 99.40 0.10 .992
SP-CAHT 96.05 0.99 .948 97.82 0.43 .971 98.79 0.32 .984

SP-MCLU-ECBD 97.91 0.51 .972 99.17 0.38 .989 99.53 0.19 .994
MPM-LBP-BT 94.94 2.15 0.931 97.77 0.51 0.970 98.36 0.74 0.978

Proposed 98.24 0.46 .977 99.32 0.14 .991 99.66 0.04 .995
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Figure 2-4: Average classification accuracy over ten runs versus the number of
training samples provided by the different methods (University of Pavia data set).

Table 2.3 shows the average overall classification accuracy (%), its stan-

dard deviation and the average kappa accuracies obtained by different AL tech-

niques on ten runs with different number of training samples. From this table

one can see that the proposed AL technique produces better classification accu-

racy than the other existing AL techniques. For example, considering 407 labelled

samples, the proposed technique resulted in an overall accuracy of 99.66% with

standard deviation 0.04. Whereas, among the literature methods, the highest

overall accuracy produced by the SP-MCLU-ECBD technique is 99.53% with stan-

dard deviation 0.19. The smaller standard deviation confirms the better stability

of the proposed method versus the choice of the initial training samples. Table 2.4

shows the average class-wise accuracies (%) obtained by different AL techniques

after completing 19 iterations (i.e., 407 samples in the training set L). From the

table, one can see that the class-wise average classification accuracies obtained by

the proposed method are either better or comparable to the best results obtained

by the literature methods. This shows the effectiveness of the proposed technique.

Fig. 2-5 shows the classification maps obtained by the different AL techniques for

visual analysis.
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Table 2.4: Class wise average classification accuracies (%) obtained on ten runs (
University of Pavia Data Set)

Methods SP SP-MS SP SP-MCLU MPM Proposed
EQB ABD CAHT ECBD LBP-BT

|L| =407
Asphalt 99.21 99.19 99.07 99.56 99.30 99.51

Meadows 83.69 99.81 99.12 99.82 99.66 99.86
Gravel 84.87 98.17 96.66 98.17 89.87 98.82
Trees 99.04 99.32 98.61 99.38 98.67 99.56

Metal Sheets 96.73 99.85 99.93 99.96 92.43 99.94
Soil 86.70 98.78 97.92 99.32 99.53 99.68

Bitumen 96.59 99.26 97.89 99.01 94.95 99.17
Bricks 97.16 99.11 98.76 99.19 96.05 99.24

Shadows 99.07 99.88 99.90 99.90 99.68 99.90

OA 89.92 99.40 98.79 99.53 98.36 99.66

2.3.4 Results: Indian Pines data set

In order to assess the effectiveness of the proposed technique, the third experiment

is carried out considering the Indian Pines data set (see Appendix A.3). A total

of T = 10249 labelled samples (see Table A.3) are considered as a test set TS.

For this experiment, first only 48 samples (three samples from each class) are

randomly selected from T as training set L, and the remaining 10201 are stored

in the unlabelled pool U . At each iteration of AL, 20 samples are selected from

U for labeling and the process is iterated 45 times resulting in 948 samples in the

training set L. Also in this case, the active learning process is repeated for 10 runs

with different initial labelled samples.

Fig. 2-6 shows the average overall classification accuracies provided by

Figure 2-5: Classification maps provided by different approaches with 407 la-
belled samples on the University of Pavia data set.
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Figure 2-6: Average classification accuracy over ten runs versus the number of
training samples provided by the different methods (Indian Pines data set).

the different methods versus the number of samples included into the training set

for Indian Pines data set. Also on this data set the classification accuracies of

the EQB, the MS-ABD, the CAHT, and the MCLU-ECBD significantly improved

(at least of 8%) when considering as input the spectral-spatial information based

patterns generated by EMP. This again shows the effectiveness of spectral-spatial

features generated by Phase I of the proposed technique. From the figure one can

also see that at the initial iterations of the AL process the proposed technique

provided better results than the existing MPM-LBP-BT technique.

Table 2.5: Average overall classification accuracy (OA), its standard deviation (s)
and kappa accuracy obtained on ten runs for different training data sizes (Indian
Pines Data Set)

Methods |L| = 768 |L| = 868 |L| = 948
OA s kappa OA s kappa OA s kappa

SP-EQB 96.89 0.51 .965 97.75 0.26 .974 98.12 0.32 .978
SP-MS-ABD 98.32 0.16 .981 98.70 0.12 .985 98.94 0.14 .988
SP-CAHT 97.62 0.35 .973 98.07 0.31 .978 98.41 0.21 .982

SP-MCLU-ECBD 98.99 0.17 .989 99.21 0.20 .991 99.32 0.19 .992
MPM-LBP-BT 99.64 0.17 .995 99.75 0.09 .997 99.82 0.03 .998

Proposed 99.13 0.11 .989 99.34 0.05 .992 99.44 0.02 .993

Table 2.5 shows the average overall classification accuracy (%), its stan-

dard deviation and the average kappa accuracies obtained by different AL tech-

niques with different number of labelled samples. From this table one can see that

the proposed AL method produces second highest classification accuracy with
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lower standard deviations among the considered AL techniques. Although, for

Indian Pines data set the MPM-LBP-BT technique resulted in the highest accu-

racy, it produced worst results for the KSC and the University of Pavia data sets.

Table 2.6 shows the average class-wise accuracies (%) obtained by different AL

techniques after completing 45 iterations (i.e., 948 samples in the training set L).

From this table one can see that the class-wise average classification accuracies

obtained by the proposed method are very close to the best results obtained by

the literature methods. This again confirms the effectiveness of the proposed AL

technique. For visual analysis Fig. 2-7 shows the classification maps obtained by

the different AL techniques.

Table 2.6: Class wise average classification accuracies (%) obtained on ten runs
(Indian Pines Data Set)

Methods SP SP-MS SP SP-MCLU MPM Proposed
EQB ABD CAHT ECBD LBP-BT

|L| =948
Alfalfa 100 98.48 98.91 99.35 100 100

Corn-notill 92.87 97.58 95.87 98.84 100 98.87
Corn-min 99.04 99.34 99.02 99.72 100 99.61

Corn 96.67 99.32 97.76 99.96 100 99.96
Grass/Pasture 99.05 99.77 99.48 99.96 100 100
Grass/Trees 99.93 99.93 99.96 100 100 99.99

Grass/Pasture-mowed 97.86 97.14 97.14 97.14 100 97.14
Way-windrowed 99.56 100 99.98 100 100 100

Oats 100 100 100 100 100 100
Soybeans-notill 94.89 96.62 96.04 97.41 98.58 97.90
Soybeans-min 99.58 99.10 98.74 99.24 99.96 99.27
Soybean-clean 99.17 99.07 97.98 99.38 100 99.56

Wheat 99.85 99.95 99.80 100 100 100
Woods 99.87 99.91 99.89 99.91 99.92 99.93

Bldg-Grass-Tree-Drives 99.90 99.84 99.66 99.97 100 99.97
Stone-steel towers 99.68 98.28 98.39 99.68 97.40 99.14

OA 98.12 98.94 98.41 99.32 99.82 99.44

2.3.5 Results: University of Houston data set

In order to assess the effectiveness of the proposed technique, the fourth experi-

ment is carried out on the University of Houston data set (see Appendix A.4). A

total of T = 15029 labelled samples (see Table A.4) are considered as a test set

TS. For this experiment, first only 45 samples (three samples from each class) are

randomly selected from T as training set L, and the remaining 14984 are stored

in the unlabelled pool U . At each iteration of AL, 20 samples are selected from
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Figure 2-7: Classification maps provided by different approaches with 948 la-
belled samples on the Indian Pines data set.

U for labeling and the process is iterated 45 times resulting in 945 samples in the

training set L. Also in this case, the active learning process is repeated for 10 runs

with different initial labelled samples.

Fig. 2-8 shows the average overall classification accuracies provided by the

different methods versus the number of samples included into the training set for

University of Houston data set. Also on this data set the classification accuracies of

the EQB, the MS-ABD, the CAHT, and the MCLU-ECBD significantly improved

(at least of 4%) when considering as input the spectral-spatial information based

patterns generated by EMP. This again shows the effectiveness of spectral-spatial

features generated by Phase I of the proposed technique. From the figure one

can also see that the proposed technique provided better results than the existing

MPM-LBP-BT technique.

Table 2.7 shows the average overall classification accuracy (%), its stan-

dard deviation and the average kappa accuracies obtained by different AL tech-

niques with different number of labelled samples. From this table one can see

that the proposed AL method produces highest classification accuracy among the

considered AL techniques. Table 2.8 shows the average class-wise accuracies (%)
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Figure 2-8: Average classification accuracy over ten runs versus the number of
training samples provided by the different methods (University of Houston data
set).

Table 2.7: Average overall classification accuracy (OA), its standard deviation
(s) and kappa accuracy obtained on ten runs for different training data sizes
(University of Houston Data Set)

Methods |L| = 765 |L| = 865 |L| = 945
OA s kappa OA s kappa OA s kappa

SP-EQB 91.93 1.38 0.913 93.33 1.16 0.928 94.19 1.00 0.937
SP-MS-ABD 96.84 0.61 0.966 97.15 0.67 0.969 97.63 0.64 0.974
SP-CAHT 97.19 0.26 0.970 97.57 0.24 0.974 97.90 0.12 0.977

SP-MCLU-ECBD 97.72 0.78 0.975 98.15 0.53 0.980 98.38 0.41 0.983
MPM-LBP-BT 97.24 0.48 0.970 97.44 0.39 0.972 97.57 0.37 0.974

Proposed 98.04 0.44 0.979 98.48 0.35 0.984 98.67 0.34 0.986

obtained by different AL techniques after completing 45 iterations (i.e., 945 sam-

ples in the training set L). From this table one can see that the class-wise average

classification accuracies obtained by the proposed method are consistently good

for all the classes. This again confirms the effectiveness of the proposed AL tech-

nique. For visual analysis Fig. 2-9 shows the classification maps obtained by the

different AL techniques.
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Figure 2-9: Classification maps provided by different approaches with 945 la-
belled samples on the University of Houston data set.
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Table 2.8: Class wise average classification accuracies (%) obtained on ten runs
(University of Houston Data Set)

Methods SP SP-MS SP SP-MCLU MPM Proposed
EQB ABD CAHT ECBD LBP-BT

|L| =945
Grass-Healthy 87.55 99.20 99.39 99.19 98.03 99.63
Grass-Stressed 94.48 96.24 98.06 94.24 100.00 96.27
Grass-Synthetic 99.81 99.97 99.86 99.97 100.00 99.97

Tree 94.53 99.73 99.20 99.71 100.00 99.69
Soil 98.86 99.93 99.76 100.00 100.00 100.00

Water 97.32 99.14 99.57 99.94 98.07 99.91
Residential 96.14 99.01 98.80 99.90 100.00 99.67
Commercial 87.71 93.97 98.00 97.86 77.72 98.31

Road 92.81 95.49 95.15 97.64 95.64 97.50
Highway 90.48 97.50 97.52 97.27 100.00 98.06
Railway 95.60 96.27 95.22 97.87 100.00 97.90

Parking Lot 1 95.76 97.13 96.51 97.60 100.00 97.75
Parking Lot 2 92.67 92.58 92.96 97.89 95.29 97.78
Tennis Court 98.74 99.93 99.74 100.00 100.00 100.00

Running Track 99.95 99.91 99.88 99.97 100.00 99.97

OA 94.19 97.63 97.9 98.38 97.57 98.67

2.3.6 Results: statistical significance test

In the fifth experiment, for a further comparison between different algorithms, a

statistical significance test called z-test is utilized [85]. It describes the signifi-

cance of the difference between two classification results obtained by two different

algorithms, which can be calculated as follows:

z =
µ1 − µ2

| σ2
1 − σ2

2 |
(2.5)

Where, µ1 and µ2 are the mean values of the kappa coefficient obtained by algo-

rithms 1 and 2, respectively and σ2
1 and σ2

2 are the corresponding variances. If

|z| > 1.96, the results of two algorithm are assumed to be statistically significant

at the 5% significance level.

Table 2.9 reports the z-scores obtained between the proposed technique

and the other state-of-the-art methods used for comparison. From the table one

can see that in all the cases the z-score obtained between the proposed technique

and the state-of-the-art techniques is greater than 1.96. This indicates that the

results provided by the proposed technique are statistically significant.
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Table 2.9: Obtained Z-scores between the proposed and the state-of-the-art meth-
ods for all the considered data sets

Data Sets SP SP-MS SP SP-MCLU MPM
EQB ABD CAHT ECBD LBP-BT

KSC 457.65 368.18 2685.20 562.50 269.86
University of Pavia 60.15 2361.10 667.05 283.33 506.36

Indian Pines 1550.80 4857.10 5162.80 875.00 1449.30
University of Houston 5.07 3.57 7.61 5.52 51.64

2.3.7 Results: computation time

The sixth experiment shows the effectiveness of the different techniques in terms

of computational load. All the experiments were carried out on a personal com-

puter (INTEL(R) Core(TM) i5 6500 CPU @3.20 GHz with 4 GB RAM) with the

experimental setting (i.e., number of initial training samples, batch size, iteration

number, etc.) described in the experiments 1, 2, 3 and 4. Table 2.10 shows the

computational time (in minutes) taken by the different techniques for the four

considered data sets. From these results one can see that the proposed technique

requires significantly less amount of time than the existing spectral-spatial MPM-

LBP-BT AL technique. For all the four considered data sets, the MPM-LBP-BT

technique takes several hours to complete the AL process. Whereas, the proposed

technique needs only few minutes to complete the process. Thus, the MPM-LBP-

BT AL technique may not be a reasonable choice for many AL applications. The

time taken by the EQB technique is similar to that of the proposed technique. The

results reported in Table 2.10 also show that the SP-MS-ABD, the SP-CAHT, and

the SP-MCLU-ECBD techniques are faster than the proposed technique. This is

because the proposed technique takes some additional time to exploit GAs for

selecting informative samples at each iteration of the AL process.

Table 2.10: Computational time (in minutes) taken by the different AL methods
on the considered data sets

Data Sets SP SP-MS SP SP-MCLU MPM Proposed
EQB ABD CAHT ECBD LBP-BT

KSC 3 1.43 1.78 1.70 371.41 6.95
University of Pavia 18.46 5.81 4.83 7.16 245.91 17.15

Indian Pines 14.88 3.85 5.31 4.66 60.18 15.5
University of Houston 9.5 1.33 2.74 1.89 1841.8 6.18
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2.3.8 Results: sensitivity analysis

The final experiment was devoted to analyze the effect of the different parameters

used in the proposed technique. The first parameter that may effect the perfor-

mance of proposed method is the k value associated to the k-means clustering.

We varied the value of k in the range 400, 500, and 600. Fig. 2-10 shows the

average classification accuracies obtained by the proposed technique for the KSC

data set. From this figure one can see that the classification accuracies provided

by the proposed technique are not significantly varied within the considered k

values. Similar results are also observed for the other data sets.

Figure 2-10: Average classification accuracy provided by the proposed technique
varying the values of k for the k-means algorithm (KSC data set).

The second parameter that may effect the performance of proposed tech-

nique is the K value associated with the K-nearest neighbors algorithm used to

compute the local density of a region in the feature space. We varied the value

of K in the range 5, 10, 15, and 20. Fig. 2-11 shows the average classification

accuracies obtained by the proposed technique on the KSC data set. From the

figure one can see that the different values provide very similar results.

Finally, we carried out different experiments for assessing the stability of

the proposed technique by varying the main parameters of GAs within a wide

range. In this regard the population size, the crossover probability and the muta-

tion probability of GAs are varied within the ranges [10 - 40], [0.7 - 0.8] and [0.05

- 0.001], respectively. The results of all these experiments pointed out the low

sensitivity of the proposed algorithm to these parameters value within the above
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Figure 2-11: Average classification accuracy provided by the proposed technique
by varying the values of K for the K-nearest neighbors algorithm (KSC data set).

defined ranges.

2.4 Discussion and conclusions

In this chapter a novel AL technique is presented for classification of HSIs with

limited labelled samples. The proposed technique is divided into two phases. Con-

sidering the importance of dimensionality reduction and spatial information for the

analysis of HSIs, Phase I generates the pattern corresponding to each pixel of HSI

by extracting spectral-spatial features. To this end, first, PCA is used to reduce

the dimensionality of HSI, then EMPs are exploited. The spectral-spatial features

based patterns generated by EMPs are used as input to the Phase II, which per-

forms the classification task with a small number of labelled samples. To this end,

a multi-criteria batch mode AL technique is proposed by defining a novel query

function that incorporates uncertainty, diversity and cluster assumption criteria.

The uncertainty criterion of the proposed query function is defined by exploiting

an SVM classifier. The diversity criterion is defined by maximizing the nearest

neighbor distances of the selected samples and the cluster assumption criterion

is defined by using the properties of k-means clustering and K-nearest neighbors

algorithms. Finally, GAs are exploited to select batch of most informative samples

by optimizing these three criteria.

To empirically assess the effectiveness of the proposed method, we com-
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pared it with five batch mode AL approaches existing in the literature by using

four real hyperspectral data sets. By this comparison, we observed that for all

the considered data sets, the proposed technique consistently provided better sta-

bility with high accuracy. This is due to the integration of the dimensionality

reduction, the spectral-spatial feature extraction and the new query function of

the AL, which make the proposed technique more robust to the quality of initial

labelled samples available. Moreover, the proposed technique is computationally

very much less demanding than the one of the existing spectral-spatial information

based AL technique.
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