List of Tables Ph. D. Thesis

Table No.	Table caption	Page No.
Table 3.1.	Polyphenols used for the establishment of MTT assay	65
Table 3.2.	Extracts used for screening	65-66
Table 3.3.	Preliminary phytochemical analysis of RCFE and APTE	78-79
Table 4.1.	Probable compounds identified by HPLC and ESI-MS technique in RCFE	115
Table 5.1.	List of the anticancer compounds present in APTE(E) fraction of APTE	146
Table 5.2.	List of the anticancer compounds present in APTE(B) fraction of APTE	147

Figure No.	Figure caption	Page No.
Figure 1.1.	A comparative global scenario of the top 10 causes of death in 2010 and 2016	3
Figure 1.2.	A comparative scenario of cancer incidences in the world and India	4
Figure 1.3.	A schematic representation of the process of metastasis	5
Figure 2.1.	Schematic representation of proteins involved in cell proliferation and apoptosis	24
Figure 2.2.	Schematic representation of the role of cell cycle regulating proteins	29
Figure 2.3.	Schematic representation of the role of MMPs in metastasis	30
Figure 3.1.	Screening of eight polyphenols in MCF-7 and MDA-MB-231 cells by MTT assay	71-73
Figure 3.2.	Screening of eight polyphenols in MCF-7 MDA-MB-231cells by MTT assay.	73-75
Figure 3.3.	RCFE and APTE do not induce cytotoxicity in HEK-293 and MEF	76
Figure 3.4.	In vitro free radical scavenging activity of RCFE	76-77
Figure 3.5.	In vitro free radical scavenging activity of RCFE	77-78
Figure 4.1.	RCFE inhibited the migration of breast cancer cells	96
Figure 4.2.	RCFE inhibits adhesion of MCF-7 and MDA-MB-231 cells	97
Figure 4.3.	RCFE inhibits the invasion of MCF-7 and MDA-MB-231 cells	97-98
Figure 4.4.	RCFE treatment down-regulates MMPs expression	98-99
Figure 4.5.	RCFE induced apoptosis in MCF-7 and MDA-MB-231 cells	100
Figure 4.6.	Flow cytometer analysis of induction of apoptosis by RCFE	102
Figure 4.7.	Western blot analysis of induction of apoptosis	103
Figure 4.8.	Effect of RCFE on Cyclin E1 and p53 expression	104
Figure 4.9.	RCFE treatment led to the dephosphorylation of STAT3	105
Figure 4.10.	Effect of RCFE on syngeneic mouse model	106-107

Figure 4.11.	RCFE induced cytotoxicity in MDA-MB-453, ZR-75-1, HT-29, and A549 cells	108
Figure 4.12.		109
Figure 4.13.	RCFE inhibited the metastatic properties of A549 lung cancer cells	110
Figure 4.14.	Cytotoxic effect of various fractions of RCFE on human breast cancer cells	111
Figure 4.15.	HPLC chromatogram of an ethyl-acetate fraction of RCFE	112
Figure 4.16.	ESI-MS spectra of Ricinine (A), p-Coumaric acid (B), Epigallocatechin (C) and Ricinoleic acid (D)	113-114
Figure 4.17.	Pure compounds showed a cytotoxic effect in MCF-7 and MDA-MB-231 cells	116
Figure 4.18.		117
Figure 4.19.	Pure compounds showed migration inhibitory effect in MDA-MB-231 cells	118
Figure 4.20.	Pure compounds affect adhesion of MCF-7 and MDA-MB-231 cells	119
Figure 5.1.	APTE inhibited the migration of breast cancer cells	138
Figure 5.2.	Adhesion of MDA-MB-231 to collagen IV is hindered by APTE	139
Figure 5.3.	Invasion of MDA-MB-231 cells is reduced by APTE	139-140
Figure 5.4.	APTE induced apoptosis in MCF-7 and MDA-MB-231 cells	140
Figure 5.5.	Quantification of apoptotic cells by Annexin V-Cy3	141-142
Figure 5.6.	Western blot analysis of induction of apoptosis	143-144
Figure 5.7.	Cytotoxic effect of various fractions of APTE on human breast cancer cells	145
Figure 5.8.	LC-MS chromatogram	145
Figure 6.1.	Schematic representation of the effect of RCFE/APTE in MCF-7 and MDA-MB-231 cells	162

Abbreviations Ph. D. Thesis

List of abbreviations

- Around

μ Micron

μg Microgram

μL Microliter

μM Micro molar

μm Micrometre

⁰C Degree centigrade

AAE Ascorbic acid equivalents

ABTS 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid

ACN Acetonitrile

APTE Amorphophallus paeoniifolius tuber extract

cAMP Cyclic adenosine monophosphate

DMEM Dulbecco's modified eagle medium

DMSO Dimethylsulphoxide

DPPH 2,2-diphenyl-1-picrylhydrazyl

EDTA Ethylene diamine tetra -acetic acid

ESI Electrospray ionization

EtOH Ethanol

FAS Fatty acid synthase

FBS Fetal bovine serum

FeCl₃ Ferric chloride

FRAP Ferric reducing ability of plasma

g Gram

GAPDH Glyceraldehyde phosphate dehydrogenase

Abbreviations Ph. D. Thesis

GAE Gallic acid equivalents

HEK293 Human Embryonic Kidney cell line 293

hr Hour

H₂O₂ Hydrogen peroxide

H₂SO₄ Sulphuric acid

HCl Hydrochloric acid

HPLC High performance liquid chromatography

LC-MS Liquid chromatography-mass spectroscopy

M Molar

MCF-7 Michigan Cancer Foundation-7

MDA-MB-231 M.D. Anderson- Metastasis Breast cancer-231

MEF Mouse Embryonic Fibroblast

min minute

mg Milli gram

ml Milli litre

mM Milli molar

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NaOH Sodium hydroxide

Na₂CO₃ Sodium carbonate

nM Nano molar

PBS Phosphate buffer saline

QE Quercetin equivalent

RCFE Ricinus communis fruit extract

RCLE Ricinus communis leaf extract

ROS Reactive oxygen species

Abbreviations Ph. D. Thesis

SDS Sodium dodecyl sulphate

sec Second

SEM Standard error of mean

SPLE Smilex perfoliata leaf extract

SPSE Smilex perfoliata stem extract

SPRE Smilex perfoliata root extract

TAE Tannic acid equivalents

TBA Thiobarbituric acid

TCA Trichloroacetic acid

TFA Trifluoroacetic acid

Zn Zinc