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2.1. Molecular basis of breast cancer 

Development of cancer is a multi-step process that occurs as a result of many genetic, 

molecular and cellular changes over time. The persistent ambiguity with regard to the 

time of origin, specific etiology involved, and the molecular mechanisms responsible 

for cancer initiation and progression, have made it almost impossible to eradicate cancer 

[1]. The development of breast cancer is dictated by endocrine conditions, controlled by 

the ovary and its function [1]. In spite of the profound uncertainties regarding the origin 

of cancer, several studies have revealed numerous threat causes associated with breast 

cancer, with specific acknowledgement of the hereditary history of cancer, previous 

history of breast diseases, mutation susceptibility to BRCA1 and BRCA2 genes, 

exposure to radiations, food habits, socioeconomic status, hormonal and reproductive 

issues [2-5]. The elucidation of hormonal factors mainly focuses on the level of 

estrogen, though in practice, the molecular mechanism underlying the role of estrogen 

in breast cancer is poorly understood [1,6]. Estrogen is accredited with the induction of 

breast cancer mainly by receptor-mediated pathway or by CytP450 mediated 

metabolism or by DNA repair mechanism [1,6]. The breast cancer initiation starts with 

uncontrolled proliferation of cells and the genetic amendments include stimulation of 

proto-oncogenes, de-regulation of DNA repair and tumor suppressor genes [7,8]. 

During this process, susceptible cells are expected to gain graded mutations in genes 

that regulate proliferation i.e. tumor suppressor and proto-oncogenes. In general, the 

rate of mutation is slow in humans, but exposure to various environmental mutagens 

like chemical mutagens, radiation, and tumor viruses critically increases the rate of 

mutation and concomitantly, boosts the prospect of emerging cancer. Each time a new 

mutation occurs in the cells, they gain an extra benefit, which leads to uncontrolled 

expansion, by facilitating changes in normal processes like cell cycle deregulation, 

inhibition of apoptosis and enhancing metastasis properties [7]. Proto-oncogenes are 

mutated to oncogenes, resulting in excessive production of growth factors, unrestricted 

stimulation of the transitional pathways, overflow of the replication signals and elevated 

levels of transcription factors leading to cell growth [7]. In human cancer, RAS is the 

most frequently mutated oncogene, which encodes a GTP-binding protein RAS, that 

wheels a number of key signaling pathways, responsible for cell division. In normal 

cells, this same RAS is momentarily stimulated and recruits Raf, which triggers the 

MAPK pathway to communicate growth-promoting signals with the nucleus. It is the 
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permanent activation of the mutant RAS protein in cancers, which leads to the non-stop 

stimulation of cells, which gives it a wholly different dimension. Other oncogenes 

frequently mutated in cancer are SIS, HST-1, INT-2, TGFα, ERB-B1, ERB-B2, PDGF-

R, KIT, K-RAS, H-RAS, N-RAS, ABL, BRAF, β-catenin, C-MYC, N-MYC, L-MYC, 

Cyclin D and E, and CDK4 [7,9,10]. Tumor suppressor genes are responsible for 

encoding proteins that inhibit cell proliferation, regulating cell cycle progression and 

growth signaling pathways (e.g. APC or PTEN), besides; controlling checkpoints and 

promoting apoptosis. The example of few tumor suppressor genes are TP53, PTEN, RB, 

BRCA1, BRCA2, CDKN2A, CDH1, MEN1, NF1, SMAD4, APC, TSC1, TSC2, VHL, 

WT1 [7]. Growth factors stimulate proliferation by different receptor-mediated 

signaling pathways which include binding of the growth factors to membrane-bound 

receptors and activating different transduction signals in the inner membrane. The latter 

leads to activation of targets like transcription factors, genes either in nucleus or cytosol, 

finally stimulating cell cycle progression and cell division. But in cancer, cells produce 

their own internal signals stimulating uncontrolled proliferation which is not influenced 

by environmental factors [7,11-14]. 

2.2. Hormone-dependent Breast cancer 

Breast is a hormone-dependent organ and its development is influenced by complex 

hormonal interactions [1,15,16]. Breast cancer includes several different types of 

neoplasm in the breast tissue of both men and women, the most common is the 

adenocarcinoma of the breast cells [17-21]. The growth of breast cancer is regulated by 

steroid and peptide hormone receptors [22-24]. They express hormone receptors and 

proliferate after hormone stimulation and hence called hormone-dependent breast 

cancers [17,25]. The steroid hormones involved in breast cancer are estrogen (ER) and 

progesterone (PR) whereas Human Epidermal Growth Factor Receptor 2 (HER2) is a 

peptide hormone, which also plays a significant role in breast cancer along with other 

types of cancers like ovary, bladder, lung, head & neck [26,27]. About 80% of all breast 

cancers are ER-positive i.e. express the estrogen receptor. Amongst these, about 65% of 

the cells express the progesterone receptor i.e. these cells are both ER and PR positive. 

A smaller percentage of these cells can also express the Human Epidermal Growth 

Factor Receptor 2 (HER2). The rest 20% of the cancer cells are called triple-negative 

breast cancers as they do not express either of the three hormone receptors and they are 
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the most aggressive among all cell types [28,29]. To decide the treatment option for 

breast cancer, understanding the hormone receptor status is vital [29-31]. The cancers 

which are hormone-positive are more expected to react to hormonal treatment than 

hormone-negative breast cancer [28]. Few examples of breast cancer cell lines are 

MCF-7 (ER+, PR-, HER2-), T47D (ER+, PR+/-, HER-), MDA-MB-435, MDA-MB-

453 (ER-, PR-, HER2+), ZR-75 (ER+, PR+, HER2+), MDA-MB-231, MDA-MB-468 

and HBL-100 (ER-, PR-, HER-). Though specific genes responsible for hormone 

related breast cancer are unknown, a few gene have been found to be involved in the 

pathogenesis [24]. Gene regulated in breast cancer 1 (GREB1), Trefoil factor 1 (pS2) 

and Stromal cell-derived factor 1 (SDF-1) are the genes found to be differentially 

regulated in ER+ breast cancer cells [25]. Whereas the gene BRACA1 is regulated by 

both steroid hormones estrogen and progesterone [32]. The Ca
2+ 

binding protein-

encoding gene, mts1 (S100A4) gene is involved in the control of tumor metastasis [33]. 

Breast cancer risk is also found to be associated with estrogen-metabolizing genes like 

CYP17, CYP1A1, and COMT [23]. During the process of advancement of breast 

cancer, the pattern of hormone dependence changes with time, along with other 

characteristics like increased metastatic potential and resistance to different therapies 

[34]. The resistance of ER-positive breast cancers to endocrine therapies are mainly due 

to loss of ERα expression, and the expression of shortened isoforms of ERα and ERβ 

[35]. The other causes are post-translational modifications of ERα, increased Activator 

Protein 1 (AP1) activity, faulty regulation of ER co-activators, activation of the Erk and 

PI3K pathways, and disruption of the cell cycle as well as apoptotic components [35]. 

2.3. Mechanisms of cancer cell death 

In earlier times it was believed that the only fate of cells, as well as life, is death 

[36,37]. The research from the previous decades has overturned this belief and made 

cell death not only essential for the developmental and protection of life but an event 

that is judiciously regulated by the body [36-42]. This cell death is manifested by a 

variety of mechanisms leading to morphological changes in the dead cell and based on 

these changes, and pathways followed by cells to death, they are classified into three 

types [36,43]: 

1. Type I cell death known as apoptosis: Apoptosis is characterized by 

morphological changes like cytoplasmic shrinkage, condensation of chromatin i.e. 
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pyknosis, DNA fragmentation i.e. karyorrhexis, and membrane blebbing ending up with 

the formation of apoptotic bodies of small vesicles that are phagocytically taken up by 

neighboring cells and degraded within lysosomes. 

2. Type II cell death also known as autophagy: Autophagy is characterized by 

extensive vacuolization in the cytoplasm and terminating with phagocytic engulfment 

and degraded within lysosomes. 

3. Type III cell death or necrosis: Cells undergoing necrosis do not display any 

typical features of type I and/or II cell death and ends with the disposal of cell bodies 

without the involvement of phagocytosis and lysosome [36,44,45].  

Initially, apoptosis was considered as the most plausible mode of cell death, but 

contemporary studies discovered novel signaling pathways that point to conventional 

chemotherapeutic agents eliciting apoptosis and non-apoptotic cell death. These modes 

of non-apoptotic cell death may be categorized as pyroptosis, enucleation, necrosis, 

autophagy, mitotic catastrophe, senescence, etc [36,46-49]. Recently the Nomenclature 

Committee on Cell Death (NCCD) has given a list of different types of programmed 

cell death mechanisms but follow a common mode i.e. initiation, execution and 

transmission to cell death [36].  

2.3.1. Intrinsic apoptosis 

Intrinsic apoptosis is initiated by multiple microenvironmental factors like DNA 

damage, removal of growth factors, stress by reactive oxygen species or replication 

stress [50-53]. Mitochondrial outer membrane permeabilization in response to apoptotic 

stimuli is an irreversible process controlled by apoptosis regulator Bcl2 family proteins 

[50,54,55]. Bcl-2 associated X (Bax), Bcl-2 antagonist/killer 1 (Bak1) and Bcl2 family 

apoptosis regulator (Bok) are the pro-apoptotic members of Bcl2 family which activate 

in response to apoptotic signals and form pores across the outer mitochondrial 

membrane facilitating permeabilization [36,55-58]. The pro-survival or anti-apoptotic 

members of the Bcl2 family proteins i.e. Bcl2,  Bcl2 like 1 (Bcl2L1; also known as Bcl-

X), Bcl2 family apoptosis regulator (MCL1), Bcl2 like 2 (Bcl2L2; also known as Bcl-

W), and Bcl2 related protein A1 (Bcl2A1; also known as BFL-1) are inserted into the 

outer mitochondrial membrane and exert anti-apoptotic effect by directly binding to the 

pro-apoptotic members of the Bcl2 family proteins [36,59-62]. 
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Source: Wikipedia, Overview of signal transduction pathways,2008 [63] 

Figure 2.1.: Schematic representation of proteins involved in cell proliferation and apoptosis 

Mitochondrial outer membrane permeabilization facilitates the release of apoptogenic 

factors present in intermembrane space to cytoplasm like Cytochrome C, a second 

mitochondrial activator of caspases (SMAC) [64-68]. Cytochrome C in the cytoplasm 

binds to apoptotic peptidase activating factor 1 (APAF1) as well as pro-caspase 9 to 

form an apoptosome, which ultimately stimulates caspase 9 [68]. This stimulation of 

caspase 9 is mainly responsible for the catalytic activation of caspases 3 and 7, the main 

enzymes involved in intrinsic apoptosis [69,70]. Cytochrome C release for the pro-

apoptotic signal is also possible in BAK and Bax independently for caspase activation 

(Fig 2.1.) [71,72]. The catalytic activation of executioner caspases leads to 

morphological changes like DNA fragmentation, externalization of phosphatidylserine 

in the membrane and the formation of apoptotic bodies [73-77]. Caspase 3 is involved 

in DNA fragmentation and exposure of phosphatidylserine by activating externalizing 

proteins and inactivating internalizing proteins [78-85]. Along with caspase 3, caspase 7 

is also a putative executioner of apoptosis [86]. Hence intrinsic apoptosis is defined as a 



Chapter 2 Ph. D. Thesis 
 

Munmi Majumder, 2019 Page 25 

 

form of regulated cell death, originated by the intracellular or extracellular 

microenvironment, followed by membrane permeabilization and advanced by 

executioner caspases [36]. 

2.3.2. Extrinsic apoptosis 

Extrinsic apoptosis is originated by the extracellular microenvironment and mainly 

dependent on plasma membrane proteins like death receptors and dependence receptors 

[87-91]. Death receptors like FAS or CD95 or APO-1 and TNF receptor superfamily A1 

are also known as TNFR1 and form the death-inducing signaling complex (DISC), that 

controls the activation of caspase 8 and 10 [90,92-95]. The mechanism involves 

maturation of caspase 8, through a cascade of events, where caspase 8 binds to FAS 

associated death domain (FADD) in the DISC, followed by autoproteolytic degradation 

for its activation [96-99]. The death receptor-dependent execution of extrinsic apoptosis 

is carried out in two different ways. The first type is the proteolytic activation of 

executioners caspase 3 and 7 by caspase 8, which cannot be inhibited by Bcl-2 

overexpression or loss of BID function [100,101]. The second type is characterized by 

restriction of caspase 3 and caspase 7 activation, by X-chromosome linked inhibitor of 

apoptosis protein (XIAP) [102]. Death receptor ligation does not always end in 

regulated cell death, instead, the post-translational modification of the complex may 

decide the fate of such complexes [103,104]. In addition, TNF stimulation may promote 

inflammation and cell viability through mitogen-activated protein kinase (MAPK) or 

NF-kB activation pathway [105-107]. 

2.3.3. Necroptosis 

Necroptosis or regulated necrosis or non-apoptotic cell death is also a form of regulated 

cell death controlled by death receptors like TNFR1 and FAS; or pathogen recognition 

receptors (PRRs) like TLR-3, TLR-4 and Z-DNA binding protein 1 (ZBP1) [108-112]. 

Necroptosis not only mediates the stress signals but also works as a protective driver 

and helps in maintaining T-cell homeostasis [38,113]. As long as caspase 8 is inactive, 

necroptosis initiation by TNFR1 mainly depends upon receptor-interacting 

serine/threonine-protein kinase 3 (RIPK3) which is activated by RIPK1, and forms 

complexes known as necrosome [114-118]. RIPK3 can also be activated by activation 

of TLR-3, TLR-4, and ZBP1 leading to NF-B activation [111,119-121]. 
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2.3.4. Transition (MPT)-driven necrosis 

This is initiated by intracellular microenvironments like extreme oxidative stress and 

cytosolic Ca
2+ 

burden, giving rise to necrotic morphology, where a discrepancy occurs 

in the permeability of mitochondrial inner-membrane (IMM) and mitochondrial outer-

membrane (OMM); followed by an increase in membrane potential and osmotic 

breakdown of both the membranes [108,122]. It is believed that MPT-driven necrosis 

follows the opening of the permeability transition pore complex (PTPC) at the junction 

of IMM and OMM, but its role is controversial and still under intensive research 

[108,122-124]. Different PTPC interactors are reported to regulate transition (MPT)-

driven necrosis like (i) both pro-apoptotic and anti-apoptotic family proteins viz. Bax, 

BID, BAK [125-128], Bcl-2, Bcl-XL [129-132]; (ii) Dynamin-1-like protein (DNM1L) 

which promote PTPC opening in response to receptor stimulation [133] and (iii) p53 

which physically interacts with Cyclophilin D (CypD) [134]. 

2.3.5. Ferroptosis 

Ferroptosis is another type of controlled cell death, initiated by a change in cellular 

microenvironment, characterized by lipid peroxidation, due to the generation of reactive 

oxygen species (ROS) and iron accessibility [135-138]. The occurrence of ferroptosis is 

neither dependent upon caspases or necrosome formation or autophagy but it does have 

a morphological resemblance with necrosis [139]. This mechanism is regulated by an 

antioxidant enzyme glutathione peroxidase 4 (GPX4); whereas p53 is reported to 

restrict ferroptosis by blocking dipeptidyl peptidase 4 (DPP4) activity [140,141]. 

2.3.6. Pyroptosis 

Pyroptosis is also a programmed cell death manifested by a high level of inflammation 

as a result of infection with intracellular pathogens, which breaks the homeostasis 

between intracellular and extracellular membranes [142]. It can be compelled by 

activation of different caspases like caspase 1, caspase 3, caspase 4, caspase 5 and 

caspase 11 in case of a murine model; in response to inflammatory signals of 

intracellular lipopolysaccharides (LPS) [143-150]. 

2.3.7. Parthanatos 

Parthanatos is a programmed cell death, differentiated from apoptosis and necrosis,  
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where an excessive accumulation of poly (ADP-ribose) polymerase 1 (PARP1) results 

due to genomic stress [151,152]. Parthanatos is facilitated by nuclear translocation of 

apoptosis-inducing factor (AIF) from mitochondria, followed by binding to PARP1, 

which results in DNA degradation and nuclear condensation [151-155]. This type of cell 

death is hypothesized to be a contributing factor in different pathological conditions like 

diabetes, cardiovascular disorders, renal diseases, neurodegenerative disorders 

[156,157]. 

2.3.8. Entosis 

Entosis is a non-apoptotic, but regulated cell death process where other non-phagocytic 

cells cause either cell invasion or engulfment [158-161]. The cell invasion occurs by 

forming a junction between the two participating cells with the involvement of E-

cadherin and catenin alpha 1 but without integrin involvement [158,160,162,163]. This 

is followed by the generation of actomyosin-contractility and finally, execution of the 

engulfed cell is carried out by lysosomes [164-166].  

2.3.9. NETosis 

NETosis is a unique form of cell death, associated with the release of chromatin and 

histones, in granular as well as cytoplasmic fiber like meshwork of neutrophil 

extracellular traps (NET), characterized initially in neutrophils, and restricted to cells of 

hematopoietic origin [167-169]. This NET framework binds and traps pathogens, after 

which the neutrophils are thought to kill them, either by engulfing or secretion of 

antimicrobials [167,170,171]. The precise mechanism of this type of cell death has not 

been elucidated to date; though the involvement of NADPH oxidases activation 

resulting in ROS generation is postulated [172-174]. 

2.3.10. Lysosome-dependent cell death 

Lysosome-dependent cell death is a programmed cell death, where the permeabilization 

of the lysosomal membrane, leads to the release of lysosomal content. Thus proteolytic 

enzymes are released into the cytosol, which degrades most cellular macromolecules, 

contributing to various pathophysiological conditions like inflammation, aging, 

cardiovascular and neurodegenerative disorders [175-177]. In some particular cases,  

the lysosomal membrane permeabilization occurs only after mitochondrial outer 
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membrane permeabilization, as a result of apoptotic signaling and noncompulsory 

involvement of executioner caspases [178,179]. 

2.3.11. Autophagy-dependent cell death 

Autophagy is a regulated and natural mode of cellular function, whereby cells remove 

the unwanted or non-functional components to protect other cells [180-183]. Autophagy 

is not always cytoprotective but can act as a pro-death pathway [184,185]. The 

autophagy-dependent cell death primarily depends on this machinery and its subsequent 

components [186-189]. It supports at least three other types of programmed cell death.  

Ferroptosis involves the autophagic degradation of ferritin; extrinsic apoptosis, with 

autophagic degradation of tyrosine phosphatase and necroptosis, where autophagic 

degradation of inhibitors of apoptosis proteins (IAP) occurs [190-192]. 

2.3.12. Immunogenic cell death 

Immunogenic cell death is a specific type of programmed/regulated cell death, which 

gives rise to activation of adaptive immunity, in response to internal or external antigens 

expressed by the dying cells [193,194]. The stimuli of immunogenic cell death are 

restricted to viral infection, few chemotherapeutic agents, some radiation and 

photodynamic therapies [195-197]. These stimuli activate the release of damage-

associated molecular patterns (DAMPs), which in turn establish the immunological 

memory [194,198]. 

2.4. Regulation of cell cycle and apoptosis 

Tissue homeostasis is important for usual growth and development in multicellular 

organisms, for which a balance between cell proliferation, and regulated cell death is 

required. Apoptosis is the most plausible mode of cell death in normal as well as drug-

treated cells. Manipulation in the cell cycle may either induce or inhibit apoptosis. The 

regulation of cell cycle and apoptosis is mainly dependent on factors like tumor 

suppressor genes p53 and retinoblastoma, the dominant oncogene c-Myc, and cyclin-

dependent kinases (Cdks), and their regulators [199]. p53 is a regulator of apoptosis and 

cell cycle, as it regulates the inhibitory signals/proteins for cell cycle progression i.e. 

cell cycle arrest induces apoptosis in cells. p53 is a master regulator for both the G1/S 

phase as well as G2/M phase progression. Cyclins are required by cyclin-dependent  
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kinases (CDKs) for cell cycle progression as depicted in Fig 2.2. [199]. The c-Myc 

proto-oncogene is mainly responsible for cell cycle progression with the involvement of 

Max gene, but the overexpression of this gene leads to apoptosis in cells [199]. The 

pathways like Raf/MEK/ERK, PI3K/Akt, JAK1/2-STAT3, MAPK and NF-κB are well 

understood for their role in cell cycle progression, leading to the prevention of apoptosis 

in tumorigenic cells and are the most widely targeted pathways in cancer chemotherapy 

[200-203]. 

 

Figure 2.2.: Schematic representation of the role of cell cycle regulating proteins 

2.5. Regulation of metastasis 

Metastasis of cancer is a well-coordinated process of migration, adhesion and invasion 

of cancer cell lines from the source to the destination tissue [204,205]. Cancer cell 

migration is one of the earliest steps in this process and influenced by the tumor 

microenvironment, extracellular matrix (ECM) construction and other cell types of the 

tumor [206]. Tumor microenvironment fuels the progression of metastasis by recruiting 

macrophages and mesenchymal stem cells for various internal stimuli, suppressing 

immunity, developing a site for extravasation [207,208]. The alteration in ECM and 

collagen cross-linkage promotes tumor growth, motility, and invasion [209]. Collagen, 
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laminin and fibronectin are the primary components of ECM where the integrins bind 

and help the primary tumor cells to adhere to a distant site [210]. Other adhesion 

molecules vinculin, paxillin, tensin assist the program and with the help of proteases 

e.g. MMP-2, MMP-9, MT1-MMP, seprase, invadolysin, the cells invade the ECM 

[206]. Tumor hypoxia acts synergistically with ECM remodeling to include an extra 

drive in the metastasis process [209,211]. Matrix metalloproteinases (MMPs) play a 

vital role in metastasis progression, and many compounds are reported to have targeted 

MMPs, especially MMP-2 and MMP-9 (Fig 2.3.) [212]. MMPs are secreted by cancer 

cells, and their increased expression is a hallmark of disease metastasis. The secreted 

MMPs like MMP-2 and 9 degrade the extracellular matrix which allows the cancer cells 

to invade and migrate through blood vessels and grow secondary tumors in new tissue 

sites [213,214]. 

 

Figure 2.3.: A schematic representation of the role of MMPs in metastasis 

TIMPs is a suppressor of metastasis that inhibits metalloproteinases to restrict 

migration, invasion and angiogenesis [215]. Till date, about 23 genes are identified that 

can act as a suppressor of metastasis. Cadherins (E-Cadherin, N-Cadherin and 

Cadherin-11) and CD44 inhibit cell to cell or cell to matrix adhesion thereby prevent 

epithelial-to-mesenchymal transition (EMT) and invasion. Other genes responsible for 
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inhibiting migration and invasion are DCC, DLC1, Gelsolin, MKK4, MKK7, p38, 

RKIP, RRM1 which function by regulating pathways like MAPK signaling, Raf-MEK 

signaling, ras signaling. Intercellular adhesion molecule-1 (ICAM-1), inflammatory 

chemokines CXCL4 and CXCL12, angiogenic factors VEGF, TGF-β and TNF-α are 

upregulated in metastatic cancers [216,217]. It is well known that more than 90% of 

cancer deaths are due to metastasis, and yet, the availability of a first-line commercial 

anti-metastatic drug has not been reported [218-220]. The development of anti-

metastatic drugs from plant-based sources like baicalein and curcumin is ongoing. In-

vitro studies have shown inhibition of metastatic properties like migration, adhesion, 

and invasion can be achieved by hindering phosphorylation of MAPK pathway 

[217,221]. TGF-β induces epithelial-mesenchymal transition for invasion and metastasis 

of cancer cells by Smad dependent and independent pathways. In addition, the JAK1/2-

STAT3, PI3K/AKT, NF-κB, Hedgehog, MAPK/ERK, p38MAPK, Wnt/β-catenin 

signaling pathways are also involved in tumor invasion and metastasis [222,223]. 

Though the requirement of IAP ('Inhibitor of Apoptosis Protein) in apoptosis is not well 

understood, its role in metastasis stimulation through XIAP (X-linked inhibitor of 

apoptosis protein) and survivin complex formation leading to NF-κB activation is 

reported [224].  

2.6. Targets for breast cancer treatment 

The obvious way to target cancer by chemotherapeutic approaches is to kill cancer cells 

by targeting cell death pathways [48]. One of the therapeutic approaches may be by 

affecting the growth factors of receptor tyrosine kinases which inhibit tumor cell 

proliferation and angiogenesis [225]. Cisplatin and its analogs interact with the purine 

base of DNA and thereby affecting the DNA repair mechanism and inhibit proliferation 

[226]. Targeting metabolic regulators is another option that helps the cancer cells to 

modify the metabolic and apoptotic roles of Bcl-2 family proteins [227]. Doxorubicin is 

one such widely used anti-cancer drug which alters various molecular pathways by 

binding to DNA associated enzymes and influence the Bcl-2/Bax apoptotic pathway 

[228]. STAT3 pathway is another major target to contain cancer cells. Inhibition of  

STAT3 pathway i.e. diminishing STAT3 phosphorylation negatively affects survival 

and metastasis of cancer cells. Further, the AKT pathway, which down-regulates 

apoptosis and stimulates cell cycle progress to enhance cell proliferation and growth can 
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also be aimed. Everolimus and Temsirolimus are two drugs that inhibit 

PI3K/AKT/mTOR pathway in mammalian cancer cells [225]. The other important 

target is the ERK/MAPK pathway which transduces signals for explicit phosphorylation 

events, resulting in the manifestation of cell cycle progression proteins, apoptosis 

opposition, cellular motility, extracellular matrix renovation, angiogenesis and drug 

resistance. Activating proteasomal degradation of proteins involved in cell cycle 

progression, NF-kB activation, and angiogenesis can be an interesting therapeutic 

approach [229]. Inhibition of autophagy may be a promising approach where 

compounds like chloroquine and hydroxychloroquine are used in combination with 

other anticancer drugs [230]. Modulating tumor microenvironment is another strategy to 

overcome tumor progression and metastasis which can be achieved by altering the 

extracellular pH of the tumor [227]. Glycolytic enzymes like hexokinase, pyruvate 

kinase, lactate dehydrogenase A and transporters like GLUT1-4 involved in glucose 

catabolism can be aimed to make the cancer cells energy-deprived leading to death 

[227,231-233]. Targeting mitochondrial respiration and glutaminolysis in cancer 

metabolism are some other aspects of cancer targets [227]. The anti-hormonal treatment 

approach is a popular option to treat hormone-dependent breast cancer and tamoxifen is 

one such drug used for this purpose [234]. Tamoxifen is also used in hormone 

independent cancer therapy which induces apoptosis, prevent angiogenesis and 

metastasis and inhibit drug resistance [234]. Another key target is the drug transporters, 

mainly ATP binding cassette (ABC) transporters, as the cancer cells develop a high 

efflux pump that make them multidrug resistance [227,235,236]. Breast cancer 

resistance protein (BCRP) helps in forming ATP-binding transporter cassette which 

pumps out drugs like mitoxantrone, camptothecin, topotecan, and flavopiridol from the 

cells to make it multidrug resistance [237]. Therefore, any therapy with ability to target 

the metabolism of cancer cells, alter downstream signaling pathways of tumor cells, 

modulate tumor microenvironment can be considered as viable options for 

chemotherapeutic drug regimen [227]. 

2.7. Medicinal plants as an anti-cancer agent 

Drug discovery from plant sources is a multi-dimensional approach that combines many 

areas like ethnomedicinal, phytochemical, pharmacological and molecular biology 

[238]. Medicinal plants are rich sources of bioactive molecules and can be exploited for 
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novel compounds for application in various treatments like cancer, diabetes, 

Alzheimer's, malaria, etc. [238]. The popularity of plant-derived compounds is 

garnering positive impact and approval from the scientific community as they are 

considered to be safe and less toxic in comparison to prevalent chemotherapeutic agents 

[239]. The North-Eastern part of India is a well-regarded reservoir of traditional 

medicinal plants, as it is one of the prominent biodiversity hotspots of the world [240]. 

Vinca alkaloids from Catharanthus roseus (Apocynaceae) i.e. vincristine and 

vinblastine are the very first anti-cancer compounds derived from plants revolutionized 

the concept of medicinal plant-based cancer treatment [241]. They were used 

individually or in combination to treat different types of cancers. After these two 

compounds, many other plant-derived anti-cancer molecules were discovered and 

commercialized. Some of the other important anti-cancer drugs from plant sources are 

already in the market like paclitaxel, vinorelbine, teniposide and various water-soluble 

analogs of camptothecin [241-246]. The anti-cancer efficacy of these compounds is 

attributed to their ability to target microtubules. Podophyllotoxin, a lignin derived from 

Podophyllum peltatum L. or P. emodi and their derivatives are also used commercially 

as anti-cancer drugs [247]. While podophyllotoxin acts by inhibiting microtubule 

assembly, its derivatives like etoposides and teniposide act by interacting with DNA and 

inhibition of DNA topoisomerase II [248]. Camptothecin, a quinoline alkaloid from 

Camptotheca acuminata also functions as an anti-cancer drug, which inhibits the DNA 

enzyme topoisomerase I [249].  

Studies are ongoing to discover new prototypes of anti-cancer agents that can target 

cancer by novel pathways [239,245,250]. In search of novel medicinal plant-based 

therapeutic approaches, several plant extracts and polyphenols, are studied for their anti-

cancer activity. Moringa oleifera leaf extract has shown anti-cancer activity in the KB 

tumor cell line by induction of apoptosis [251]. Teucrium polium plant extract inhibits 

proliferation and induces cell cycle arrest at S-phase. This extract also prevents cell 

invasion and motility of PC-3 and DU145 human prostate cancer cells by re-

establishing the E-cadherin/catenin complex [252]. Matricaria chamomilla extract 

exhibits anti-cancer effects against a number of prostate cancer cell lines like LNCaP, 

DU145 and PC-3 [253]. Crude extract, as well as phenolic compounds present in 

Terminalia chebula, shows anti-proliferative activity in various cancer cell lines like 

human breast cancer, MCF-7; osteosarcoma cancer, HOS-1; prostate cancer, PC-3; and 
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mouse breast cancer, S115 [254]. Basil leaf extract induces apoptosis and inhibits 

metastasis of aggressive human pancreatic cancer cells in vitro and in vivo [255]. 

Purified plant polyphenols baicalin and fisetin, shows anti-cancer and apoptosis-

inducing activity in breast cancer cell lines [221,256]. [257]. Fisetin, also known for its 

anti-inflammatory effect, is reported to induce apoptosis and cell cycle arrest [258] and 

autophagy through suppression of mTOR signaling in prostate cancer cells, LNCaP 

[259]. It is also reported to inhibit the COX2 and Wnt/EGFR/NF-κB-signaling 

pathways in HCT116 and HT29 in colon cancer cells and downregulate the expression 

of MMP2/9 in LNCaP cells [260-262]. Fisetin has shown anti-cancer activity against 

many other cancer cell lines by adopting different mechanisms; such as utilizing the 

NF-kB pathway in pancreatic cancer AsPC‐1 cells [263], mediating the ERK1/2 

pathway in human cervical cancer HeLa cells and lung cancer A549 cells [264], and 

through caspase-dependent pathways in human breast cancer MCF-7 and MDA-MB-

231 cells [265,266]. Curcumin inhibited NF-kB pathway and subsequently, expressions 

of inflammatory cytokines CXCL-1 and -2 which are up-regulated during metastasis 

[267]. Extracts from different berries have shown anti-cancer activity in LNCaP, MCF-

7, KB, HCT116, HT-29, and CAL-27 cell lines [268]. Mulberry anthocyanins, green tea 

and ellagic acid are reported to inhibit migration, invasion and metastasis of several 

cancer cell lines [269,270]. Andrographolide, a lactone derived from Andrographis 

paniculata inhibited migration and invasion in A549 cells, via down-regulation of 

PI3K/Akt signaling pathway [271].  

2.8. Ricinus communis L 

Ricinus communis L. (Euphorbiaceae) is commonly known as the castor plant, is 

abundant in North East India and well-known for its traditional and medicinal use 

globally [272]. In general, various parts of this plant have been used for the treatment of 

pain, paralysis, constipation, gastritis and warts [273,274]. Ethanolic extract of the 

leaves has shown hepatoprotective effect and anti cholestatic activity in hepatocytes 

isolated from rats [275].  Further fractionation of the extract followed by activity 

assessment has shown that butanolic fraction was most effective and Ricinine and N-

dimethylricinine are reported to be the major compounds of the fraction[275]. 50% 

ethanolic extract of the roots of this plant have shown anti-diabetic and reversible anti-

fertility activity in in-vivo rat models [276,277]. On the other hand, a methanolic extract 
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of the roots have shown anti-inflammatory activity in wister albino rats and demonstrate 

free radical scavenging activity in-vitro [278]. There are other reports which indicate the 

effectiveness of this plant as an anti-fungal agent and a pest control measure [276,279-

281]. A volatile extract from the leaves of the plants has shown to induce apoptosis in 

human melanoma cells (SK-MEL-28) [272]. However, a detailed study on the anti-

cancer efficacy of the fruits of R. communis L. is not reported. 

2.9. Amorphophallus paeoniifolius (Dennst.) Nicolson 

Amorphophallus paeoniifolius (Dennst.) Nicolson (Elephant Foot Yam) is a folk 

medicinal plant of India used in Ayurveda, Siddha, and Unani medicine. Reports on 

traditional use of this plant as medicine are available for the treatment of hemorrhoids, 

digestion, liver ailment, vomiting, anorexia, dyspepsia, colic, fatigue and anemia among 

others [282,283]. The tuber portion of the plant is used as a vegetable in India. Only a 

few reports of its anti-inflammatory, hepatoprotective, anthelmintic, analgesic are 

available [284-289]. The tuber is also reported to have antitumor, cytotoxic and anti-

inflammatory properties [282,290,291]. Despite its wide traditional application as 

medicine, detailed mechanistic studies to demonstrate the basis of these activities are 

lacking [282]. 

Hence, prospecting for novel cancer therapeutic compounds from these two plants as 

representatives of the prolific bounty of biodiversity of North East India will be a 

worthwhile and viable option. 
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