TABLE OF	CONTENTS
----------	----------

Cont	ents	Page No.
Abst	ract	i-iv
Decla	aration	v
Supe	rvisor certificate	vi
Exte	nal certificate	vii
Ackn	owledgement	viii-x
List o	of Contents	xi-xviii
List o	of Tables	xix-xxii
List o	of Figures	xxiii-xxvi
List o	of Schemes	xxvii
List o	of Abbreviations	xxviii-xxx
Chaj	oter 1: Introduction	1.1-1.67
1.1	Preamble	1.1
1.2	Polymer immobilized metal complexes –general aspects	1.1
1.3	Catalytic application of polymer immobilized metal complexes	1.4
1.4	Metal complexes immobilized on soluble polymers	1.12
	1.4.1 Water soluble polymers (WSP) as metal supports	1.14
1.5	Peroxido complexes of titanium and molybdenum-	1.16
1.6	salient features and importance Catalytic application of pTi and pMo complexes in some important organic reactions	1.24
	1.6.1 Sulfide oxidation	1.25
	1.6.2 Epoxidation reaction	1.31
	1.6.3 Oxidation of 5-Hydroxymethyl-2-furfural (HMF)	1.34
Refe	rences	1.39-1.67
Chaj	oter 2: Materials and Methods	2.1-2.8
2.1	Chemicals	2.1

2.2	Elemental analysis	2.1
	2.2.1 Molybdenum	2.1
	2.2.1.1 Gravimetry	2.1
	2.2.1.2 EDX analysis, inductively coupled plasma optical emission spectrophotometer (ICP-OES) and atomic absorption spectroscopy (AAS)	2.2
	2.2.2 Titanium	2.2
	2.2.3 Peroxide	2.2
	2.2.3.1 Permanganometry	2.2
	2.2.3.2 Iodometry	2.3
	2.2.3.3 By standard Ce(IV) solution	2.3
	2.2.4 Carbon, hydrogen and nitrogen	2.3
	2.2.5 Chlorine	2.3
	2.2.6 Sodium	2.4
	2.2.7 Sulfur	2.4
2.3	Physical and spectroscopic measurements	2.4
	2.3.1 pH measurement	2.4
	2.3.2 Electronic spectra	2.4
	2.3.3 Infrared (IR) and Raman spectra	2.4
	2.3.4 Surface morphology analysis by Scanning Electron Microscope (SEM)	2.5
	2.3.5 Atomic Absorption Spectroscopy (AAS)	2.5
	2.3.6 Inductively coupled plasma-optical emission spectroscopy (ICP-OES)	2.5
	2.3.7 Powder X-ray diffraction (XRD)	2.5
	2.3.8 X-ray photoelectron spectroscopy (XPS)	2.5
	2.3.9 Surface area analysis	2.5
	2.3.10 1H NMR spectra	2.6
	2.3.11 ¹³ C NMR spectra	2.6
	2.3.12 GC-MS analysis	2.6

	2.3.13 HPLC analysis	2.6
	2.3.14 Thermogravimetric analysis	2.6
	2.3.15 Melting point determination	2.7
	2.3.16 Magnetic susceptibility	2.7
2.4	Computational calculation	2.7
Refer	ences	2.8
recyc	ter 3: Water-soluble polymer anchored peroxidotitanates as lable catalysts for environmentally clean and selective tion of sulfides with H ₂ O ₂ in water	3.1-3.63
3.1	Introduction	3.1
3.2	Experimental section	3.3
	3.2.1 Synthesis of water soluble peroxidotitanium complexes,	3.3
	$Ti_2(O_2)_2O_2(OH)_2(carboxylate)]$ -PA (PATi) (3.1),	
	$[Ti_2(O_2)_2O_2(OH)_2(carboxylate)]$ -PMA (PMATi) (3.2)	
	and [Ti ₂ (O ₂) ₂ O ₂ (OH) ₂ (sulfonate)]-PSS (PSSTi) (3.3)	
	3.2.2 Elemental analysis and physical measurements	3.4
	3.2.3 Computational details	3.4
	3.2.4 General procedure for catalytic oxidation of sulfides to sulfoxides	3.4
	3.2.5 General procedure for catalytic oxidation of sulfides to sulfones	3.5
	3.2.6 Regeneration of the catalyst	3.5
3.3	Results and discussion	3.5
	3.3.1 Synthesis and characterization	3.5
	3.3.1.1 SEM and energy dispersive X-ray (EDX) analysis	3.6
	3.3.1.2 FTIR and Raman spectral studies	3.10
	3.3.1.3 Electronic spectral studies	3.16
	3.3.1.4 ¹³ C NMR studies	3.18
	3.3.1.5 TGA-DTG analysis	3.21
	3.3.1.6 Density functional studies	3.26
	3.3.2 Catalytic activity of the synthesized complexes PMATi,	3.29

PATi and PSSTi in oxidation	on of sulfides	
3.3.2.1 Oxidation of sulfides of reaction condition	to sulfoxides- Optimization	3.29
3.3.2.2 Selective sulfoxidation PMATi (3.2) and PSST	• • •	3.32
3.3.2.3 Oxidation of sulfides to	o sulfones	3.35
3.3.2.4 Recyclability of the ca	talysts	3.39
3.3.2.5 The proposed catalytic	cycle	3.44
3.4 Conclusion		3.45
References		3.46-3.63
Chapter 4: Readily prepared per homogeneous and heterogeneous catal of sulfides in aqueous medium		4.12- 4.53
4.1 Introduction		4.1
4.2 Section A: A new chitosan sup heterogeneous catalyst for selective water		4.3-4.31
4.2.1 Experimental section		4.3
4.2.1.1 Synthesis of chitosan dioxidomonoperoxidomo (PMoCh)	11	4.3
4.2.1.2 Elemental analysis		4.3
4.2.1.3 Physical and spectro	oscopic measurements	4.3
4.2.1.4 Computational detail	ils	4.3
4.2.1.5 General procedure sulfides to sulfoxide	for catalytic oxidation of es	4.4
4.2.1.6 Regeneration of the ca	talyst	4.4
4.2.2 Results and Discussion		4.5
4.2.2.1 Catalyst preparation an	nd characterization	4.5
4.2.2.2 Scanning electron mi dispersive X-ray (ED		4.6
4.2.2.3 X-ray diffraction studi	es	4.8

4.2.2.4 BET analysis			
4.2.2.5 FTIR and Raman spectral studies			
 4.2.2.6 Electronic spectral studies 4.2.2.7 ¹³C NMR studies 4.2.2.8 Thermal analysis 			
		4.2.2.9 Density functional studies	4.18
		4.2.3 Catalytic activity of the supported complex, PMoCh (4.1)	4.20
4.2.3.1 Oxidation of sulfides to sulfoxides- Optimization of reaction condition			
4.2.3.2 Utilization efficiency of H ₂ O ₂	4.28		
4.2.3.3 Recyclability of the catalyst	4.28		
4.2.3.4 Test for heterogeneity of the reaction	4.29		
4.2.3.5 The proposed catalytic cycle	4.30		
4.3 Section B: Water soluble polymer supported peroxidomolybdenum complexes catalyzed selective sulfoxidation in water: a sustainable approach			
4.3.1 Experimental section	4.32		
 4.3.1.1 Synthesis of water soluble peroxidomolybdenum complexes, [MoO(O₂)₂(sulfonate)]–PS [PS = poly(sodium vinyl sulfonate)] (PSMo) (4.2) and [Mo₂O₂(O₂)₄(carboxylate)]–PA [PA = poly(sodium acrylate)] (PAMo) (4.3) 	:		
4.3.1.2 General procedure for catalytic oxidation of sulfides to sulfoxides	4.32		
4.3.1.3 Procedure for regeneration of the catalyst	4.33		
4.3.2 Results and discussion	4.33		
4.3.2.1 Oxidation of sulfides to sulfoxides	4.33		
4.3.2.2 Recyclability of the catalyst	4.39		
4.3.2.3 The proposed catalytic cycle	4.42		
4.4 Conclusion	4.42		
References			

Chapter 5: New peroxidomolybdenum(VI) complexes immobilized on Merrifield resin: highly efficient catalysts for selective oxidation of sulfides and olefins under solvent-free condition		5.1- 5.60
5.1	Introduction	5.1
5.2	Experimental section	5.2
	5.2.1 Functionalization of the Merrifield resin (MR)	5.2
	5.2.2 Synthesis of immobilized molybdenum	5.3
	dioxidomonoperoxido compounds [MoO ₂ (O ₂)(L)] ⁻	
	MR, $[L = Asparagine (MRAsnMo) (5.1)]$ or	
	$[MoO_2(O_2)(L)_2] - MR, [L = Nicotinic acid (MRNAMo)$	
	(5.2)]	
	5.2.3 Elemental analysis	5.3
	5.2.4 Physical and spectroscopic measurements	5.4
	5.2.5 General procedure for epoxidation of alkenes	5.4
	5.2.6 General procedure for oxidation of sulfide to sulfoxide	5.4
	5.2.7 General procedure for oxidation of sulfide to sulfone	5.5
	5.2.8 Regeneration of the catalyst	5.5
5.3	Results and discussion	5.6
	5.3.1 Synthesis	5.6
	5.3.2 Characterization and formulation	5.7
	5.3.2.1 SEM and Energy Dispersive X-ray (EDX) Analysis	5.7
	5.3.2.2 Powder X-ray diffraction (XRD) studies	5.10
	5.3.2.3 X-ray photoelectron spectroscopy	5.11
	5.3.2.4 BET analysis	5.12
	5.3.2.5 IR and Raman spectral studies	5.14
	5.3.2.6 Diffuse reflectance UV–visible analysis	5.20
	5.3.2.7 ¹³ C NMR studies	5.21
	5.3.2.8 Thermal analysis	5.24
5.4	Catalytic activity of the synthesized complexes MRAsnMo (5.1) and MRNAMo (5.2) in organic oxidations	5.28

	5.4.1 Alkene epoxidation	5.28
	5.4.1.1 Effect of solvent	5.28
	5.4.1.2 Effect of temperature	5.30
	5.4.1.3 Effect of H ₂ O ₂ concentration	5.31
	5.4.1.4 Effect of catalyst amount	5.32
	5.4.1.5 Effect of reaction time	5.34
	5.4.2 Sulfide oxidation	5.37
	5.4.2.1 Oxidation of sulfides to sulfoxides	5.37
	5.4.2.2 Oxidation of sulfide to sulfone under solvent free condition	5.41
	5.4.3 Recyclability of the catalysts	5.44
	5.4.4 Proposed catalytic cycle	5.46
5.4	Conclusions	5.49
References		5.50-5.60
versa	pter 6: Polymer anchored Peroxidotitanates as novel and atile catalysts for selective oxidation of 5-hydroxymethyl-2- iral and solvent free epoxidation of olefins with H ₂ O ₂	6.1-6.25
6.1	Introduction	6.1
6.2	Experimental section	6.3
	6.2.1 General procedure for catalytic oxidation of HMF	6.3
	6.2.2 General procedure for catalytic epoxidation of olefins	6.4
	6.2.3 Regeneration of the catalyst	6.4
6.3	Results and discussion	6.4
	6.3.1 Catalytic activity of 3.1-3.3 in oxidation of HMF to HMFCA	6.4
	6.3.1.1 Effect of temperatures	6.5
	6.3.1.2 Effect of base amount	6.6
	6.3.1.3 Effect of catalyst amount and reaction time	6.7
	6.3.1.4 Effect of oxidant concentration	6.8
	6.2.2 Cotalytic activity of DAT: (2.1) DMAT: (2.2) and DEET:	6.10
	6.3.2 Catalytic activity of PATi (3.1), PMATi (3.2) and PSSTi	6.10

(3.3) in epoxidation of alkene	
6.3.2.1 Effect of solvent	6.10
6.3.2.2 Effect of temperature	6.11
6.3.2.3 Effect of H ₂ O ₂ concentration	6.12
6.3.2.4 Effect of catalyst amount	6.13
6.3.2.5 Effect of reaction time	6.14
6.3.2.6 Recyclability of the catalyst	6.17
6.3.2.7 Proposed catalytic cycle	6.18
6.4 Conclusion	6.19
References	6.21-6.25
Appendix	
List of Publications	xxxvii
List of Conferences Attended	xxxviii

LIST OF TABLES

Tab	Table	
1.1	The summary of different combinations of metal complexes and	1.9 & 1.10
	macroligands, as well as catalyzed reactions most commonly used	
	in practice	
1.2	Some structurally characterized peroxidotitanium complexes,	1.20
	geometrical parameters in (Å)	
1.3	Structurally characterized oxidoperoxido complexes of	1.22
	molybdenum(VI), $[MoO(O_2)_2L_{ax}L_{eq}]^{n-}$ (n=0,1,2)	
1.4	Some structurally characterized peroxidomolybdenum complexes,	1.23
	geometrical parameters in (Å)	
3.1	Analytical data for the synthesized peroxido-titanium complexes	3.8
	PMATi, PATi and PSSTi	
3.2	Infrared (IR) and Raman (R) spectral data (cm ⁻¹) for PMATi , PATi and	3.11
	PSSTi compounds	
3.3	¹³ C NMR chemical shift data for polymer-anchored	3.19
	peroxidotitanium complexes and free polymer	
3.4	TGA data of polymer anchored peroxidotitanium complexes,	3.22
	PMATi, PATi and PSSTi	
3.5	Experimental and theoretical infrared (IR) spectral data (cm ⁻¹) for	3.27
	peroxido titanium complex PATi	
3.6	Selected bond lengths (Å) and bond angles (degree) for PATi	3.28
	calculated using density functional theory (DFT) as implemented	
	in DMol ³ package	
3.7	Optimization of reaction conditions for PMATi catalyzed	3.30
	selective oxidation of methyl phenyl sulfide to methyl phenyl	
• •	sulfoxide by 30% H ₂ O ₂	
3.8	Selective oxidation of sulfides to sulfoxides catalyzed by PMATi ,	3.33 & 3.34
• •	PATi and PSSTi with 30% H ₂ O ₂ using water as solvent	
3.9	Optimization of reaction conditions for PMATi catalyzed	3.36
	oxidation of methyl phenyl sulfide to methyl phenyl sulfone by	
	50% H ₂ O ₂	

3.10	Selective oxidation of sulfides to sulfones catalyzed by PMATi,	3.37 & 3.38
	PATi and PSSTi with 50% H_2O_2 using water as solvent	
3.11	Comparison of catalytic performance of PATi or PMATi or	3.42 & 3.43
	PSSTi with literature reported titanium based homogenous	
	catalytic systems for oxidation of sulfides using H ₂ O ₂ as oxidant	
4.1	Analytical data for the synthesized complex PMoCh	4.6
4.2	BET surface area, pore volume and average pore diameter of pure	4.9
	polymer (Ch) and compound PMoCh	
4.3	Experimental and theoretical infrared (IR) and Raman (R) spectral	4.12
	data (cm ⁻¹) for PMoCh complex	
4.4	Chemical shifts (ppm) of ¹³ C signals for chitosan(pure polymer)	4.14
	and for complex PMoCh	
4.5	Selected bond lengths (Å) and bond angles (degree) for PMoCh	4.19
-1.0	calculated using density functional theory (DFT) as implemented	1.17
	in DMol ³ package	
4.6	Optimization of reaction conditions for PMoCh catalyzed	4.21
	selective oxidation of methyl phenyl sulfide (MPS) by 30% H ₂ O ₂	
4.7	Selective oxidation of sulfides to sulfoxides with 30%	4.24 & 4.25
	H_2O_2 catalyzed by PMoCh in H_2O	
4.8	Selective oxidation of sulfides to sulfoxides with 30% H ₂ O ₂	4.26 & 4.27
	catalyzed by PMoCh in MeOH	
4.9	Optimization of reaction conditions for PSMo catalyzed selective	4.35
	oxidation of methyl phenyl sulfide (MPS) to sulfoxide by 30%	
	H ₂ O ₂	
4.10	Selective oxidation of sulfides to sulfoxides with 30% H ₂ O ₂	4.37 & 4.38
	catalyzed by PSMo and PAMo	
5.1	Analytical data for the functionalized Merrifield resin and	5.8
	polymer-bound peroxidomolybdates	
5.2	Mo(3d) binding energies of the complexes MRAsnMo and	5.12
	MRNAMo	
5.3	BET surface area, V_{tot} and pore radius of the pMo compounds 5.1	5.13

and **5.2** and base polymers

5.4	Infrared and Raman spectral data (in cm ⁻¹) for polymer support,	5.16
	ligand-anchored Merrifield resin and polymer immobilized	
	peroxidomolybdates	
5.5	¹³ C NMR chemical shifts for Merrifield resin, ligand-anchored	5.23
	Merrifield resin and polymer bound peroxidomolybdates	
5.6	Thermogravimetric data for MRAsn, MRNA, MRAsnMo and	5.25
	MRNAMo	
5.7	Effect of solvent on styrene oxidation with 30% H ₂ O ₂ catalyzed by	5.29
	MRAsnMo (5.1)	
5.8	Effect of temperature on styrene oxidation with 30% H ₂ O ₂	5.30
	catalyzed by MRAsnMo (5.1)	
5.9	Effect of H_2O_2 concentration on the styrene oxidation with 30%	5.32
	H ₂ O ₂ catalyzed by MRAsnMo (5.1)	
5.10	Effect of catalyst amount on styrene oxidation with 30% H_2O_2	5.33
	catalyzed by MRAsnMo (5.1)	
5.11	Effect of reaction time on styrene oxidation with $30\% H_2O_2$	5.34
	catalyzed by MRAsnMo (5.1)	
5.12	Selective oxidation of alkene to epoxides with 30% H ₂ O ₂ ,	5.36
	catalyzed by MRAsnMo and MRNAMo	
5.13	Optimization of reaction conditions for MRAsnMo catalyzed	5.38
	selective oxidation of methyl phenyl sulfide (MPS) by 30% H_2O_2	
5.14	Selective oxidation of sulfides to sulfoxides with 30% H ₂ O ₂	5.39 & 5.40
	catalyzed by MRAsnMo and MRNAMo at room temperature	
5.15	Optimization of reaction conditions for the MRAsnMo catalyzed	5.41
	selective oxidation of methyl phenyl sulfide (MPS) to sulfone by	
	50% H ₂ O ₂	
5.16	Selective oxidation of sulfides to sulfones with 50% H ₂ O ₂	5.42 & 5.43
	catalyzed by MRAsnMo and MRNAMo at room temperature	
6.1	HMF oxidation at different temperature	6.6
6.2	HMF oxidation using different amount of base	6.7
6.3	Effect of catalyst amount and reaction time on HMF oxidation	6.8
	using PATi as catalyst	

6.4	HMF oxidation using different amounts of oxidants	6.9
6.5	5.5 Selective oxidation of HMF with 12% H ₂ O ₂ catalyzed by PATi ,	
	PMATi and PSSTi	
6.6	Selective oxidation of alkenes to epoxides with 30% H ₂ O ₂ ,	6.16
	catalyzed by PATi , PMATi and PSSTi	

Figu	re	Page No.
1.1	Different approaches for the formation of metal containing polymers.	1.4
1.2	Merrifield resin or Chloromethylated polystyrene cross-linked with	1.5
	divinylbenzene.	
1.3	Molecular structure of chitin or chitosan.	1.8
1.4	Hydrocarbon oxidation catalysts reported by Antony et al.	1.11
1.5	Chitosan based metal catalyst reported by Shen et al.	1.12
1.6	Some water-soluble polymers used for metal ion interaction.	1.15
1.7	Structural classification of metal-dioxygen complexes.	1.17
1.8	Example of mononuclear peroxidotitanium complexes.	1.18
1.9	Example of binuclear peroxidotitanium complex.	1.19
1.10	Example of tetra nuclear peroxidotitanium complex.	1.20
1.11	Example of monoperoxido molybdenum complexes.	1.21
1.12	Structures of Mimoun type complexes (a) [MoO(O ₂) ₂ (HMPA)(H ₂ O)]	1.22
	and (b) [MoO(O ₂) ₂ (DMF)(H ₂ O)].	
1.13	Structure of RP 73163.	1.26
1.14	Complexes and ligands used in titanium-catalyzed sulfoxidations	1.28
	with H ₂ O ₂	
1.15	Oxidation of HMF with ammonium octamolybdate in presence of	1.37
	H_2O_2 .	
3.1	Scanning electron micrographs of (a) PMA, (b) PMATi , (c) PA, (d) PATi , (e) PSS and (f) PSSTi .	3.7
3.2	EDX spectra (a, b) PMATi , (c, d) PATi and (e, f) PSSTi	3.9
3.3	IR spectra of (a) PMA and (b) PMATi .	3.12
3.4	IR spectra of (a) PA and (b) PATi .	3.13
3.5	IR spectra of (a) PSS and (b) PSSTi .	3.14
3.6	Raman spectrum of PMATi .	3.15
3.7	Raman spectrum of PATi .	3.15
3.8	Raman spectrum of PSSTi .	3.16
3.9	UV-Vis spectrum of complex PMATi .	3.17
3.10	UV-Vis spectrum of complex PATi.	3.17
3.11	UV-Vis spectrum of complex PSSTi .	3.18
3.12	¹³ C NMR spectra of (a) PMA and (b) PMATi .	3.20

LIST OF FIGURES

3.13	¹³ C NMR spectra of (a) PA and (b) PATi .	3.20
3.14	¹³ C NMR spectra of (a) PSS and (b) PSSTi .	3.20
3.15	TGA-DTG plot of PMATi .	3.23
3.16	TGA-DTG plot of PATi .	3.23
3.17	TGA-DTG plot of PSSTi .	3.24
3.18	Proposed structure of peroxidotitanium complexes PATi and	3.25
	PMATi.	
3.19	Proposed structure of peroxidotitanium complex PSSTi.	3.25
3.20	Optimized geometry for complex PATi. The numerical numbers	3.26
	represent the labelling of the atoms as in Table 3.6 .	
3.21	Recyclability of catalysts (a) PMATi, (b) PATi and (c) PSSTi for	3.40
	the selective oxidation of sulfide to sulfoxide in water.	
3.22	Recyclability of catalysts (a) PMATi, (b) PATi and (c) PSSTi for	3.41
	the oxidation of sulfide to sulfone in water.	
3.23	Proposed catalytic cycle.	3.44
4.1	Scanning electron micrographs of chitosan $1(a),(c)$ and	4.7
	PMoCh1(b),(d).	
4.2	EDX spectrum of PMoCh .	4.7
4.3	Powder X-ray diffraction pattern of (a) Ch, (b) PMoCh and (c)	4.8
	reference powder X-ray diffraction pattern of H_2MoO_5 (JCPDS card	
	number 41-359).	
4.4	BET N ₂ -adsorption-desorption isotherm of PMoCh .	4.10
4.5	IR spectra of (a) Chitosan and (b) catalyst PMoCh.	4.11
4.6	Raman spectrum of PMoCh .	4.13
4.7	UV-Vis spectrum of PMoCh .	4.14
4.8	Solid state ¹³ C NMR spectra of (a) chitosan and (b) PMoCh .	4.15
4.9	TG-DTG plot of chitosan.	4.16
4.10	TG-DTG thermogram of PMoCh.	4.17
4.11	Proposed structure of PMoCh (* represents polymer chain).	4.18
4.12	Optimized geometry for complex PMoCh .	4.19
4.13	Recyclability of PMoCh for the selective oxidation of MPS to	4.29
	sulfoxide in H ₂ O and MeOH.	
4.14	IR spectra of (a) original catalyst PMoCh, (b) catalyst PMoCh	4.30

	regenerated after 6 th cycle in water and (c) catalyst PMoCh	
	regenerated after 6 th cycle in MeOH.	
4.15	Proposed catalytic cycle.	4.31
4.16	Peroxido compounds of Mo(VI) under investigation in the current	4.34
	study. Structures of (a) PSMo and (b) PAMo. "~~" represents	
	polymer chain.	
4.17	Recyclability of catalyst PSMo and PAMo for the selective	4.40
	oxidation of sulfide to sulfoxide.	
4.18	FTIR spectra of (a) PSMo and (b) PSMo after 10 th reaction cycle.	4.41
4.19	⁹⁵ Mo NMR spectrum of (a) PSMo and (b) PSMo after 10^{th} reaction cycle, in D ₂ O.	4.41
4.20	Proposed catalytic cycle.	4.42
5.1	Scanning electron micrographs of (a) MR, (b) MRAsn, (c)	5.9
	MRAsnMo at 10 µm, (d) MRAsnMo at 5µm, (e) MRNA, (f)	
	MRNAMo at 10 µm and (g) MRNAMo at 5 µm.	
5.2	EDX spectra of (a) MRAsnMo and (b) MRNAMo.	5.10
5.3	X-ray diffraction (XRD) pattern of (a) MR, (b) MRNA, (c) MRAsn,	5.11
	(d) MRNAMo and (e) MRAsnMo.	
5.4	XPS core level spectra for Mo $(3d_{3/2})$ and Mo $(3d_{5/2})$ for MRAsnMo	5.12
	and MRNAMo .	
5.5	The N_2 adsorption/desorption isotherm of (a) MRAsn , (b)	5.13
	MRAsnMo, (c) MRNA and (d) MRNAMo.	
5.6	IR spectra of (a) MR, (b) MRAsn and (c) MRAsnMo.	5.17
5.7	IR spectra of (a) MR, (b) MRNA and (c) MRNAMo.	5.18
5.8	Raman spectrum of MRAsnMo.	5.19
5.9	Raman spectrum of MRNAMo.	5.19
5.10	Diffuse reflectance UV-vis spectrum of MRAsnMo (5.1).	5.20
5.11	Diffuse reflectance UV-vis spectrum of MRNAMo (5.2).	5.20
5.12	Solid state ¹³ C NMR spectra of (a) MRAsn and (b) MRAsnMo.	5.22
5.13	Solid state ¹³ C NMR spectra of (a) MRNA and (b) MRNAMo.	5.22
5.14	TG-DTG plot of MRAsnMo.	5.26
5.15	TG-DTG plot of MRNAMo .	5.26
5.16	Proposed structure of (a) MRAsnMo and (b) MRNAMo.	5.27

E 1 E		5 00
5.17	% styrene conversion vs. solvent for catalyst MRAsnMo .	5.28
5.18	% styrene conversion vs. temperature for catalyst MRAsnMo .	5.30
5.19	% styrene conversion vs. amount of H_2O_2 .	5.31
5.20	% styrene conversion vs. catalyst amount.	5.33
5.21	% styrene conversion vs. reaction time for catalyst MRAsnMo.	5.35
5.22	Recyclability of catalysts MRAsnMo and MRNAMo for selective	5.44
	oxidation of styrene.	
5.23	Recyclability of catalyst MRAsnMo and MRNAMo for the selective	5.45
	oxidation of MPS to sulfoxide in MeOH.	
5.24	Recyclability of catalysts MRAsnMo and MRNAMo for the	5.45
	selective oxidation of sulfide to sulfone under solvent-free condition.	
5.25	Proposed catalytic cycle for alkene epoxidation with heterogeneous	5.47
	catalyst shown with MRAsnMo (5.1) as representative in presence of	
	H_2O_2 .	
5.26	Proposed catalytic cycle for sulfide oxidation with heterogeneous	5.48
	catalyst shown with MRAsnMo (5.1) as representative in presence of	
	H_2O_2	
6.1	% HMF conversion vs. temperature for catalyst PATi .	6.5
6.1 6.2		6.5 6.9
	% HMF conversion vs. temperature for catalyst PATi.	
6.2	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. 	6.9
6.2	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and 	6.9
6.2 6.3	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. 	6.9 6.11
6.2 6.3	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity 	6.9 6.11
6.26.36.4	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity and TON/TOF (inset). 	6.96.116.12
6.26.36.4	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity and TON/TOF (inset). Effect of H₂O₂ concentration on styrene conversion over product 	6.96.116.12
6.26.36.46.5	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity and TON/TOF (inset). Effect of H₂O₂ concentration on styrene conversion over product selectivity and TON/TOF (inset). 	6.96.116.126.13
6.26.36.46.5	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity and TON/TOF (inset). Effect of H₂O₂ concentration on styrene conversion over product selectivity and TON/TOF (inset). Effect of catalyst amount (PMATi) on styrene conversion over product selectivity and TON/TOF (inset). 	6.96.116.126.13
 6.2 6.3 6.4 6.5 6.6 	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity and TON/TOF (inset). Effect of H₂O₂ concentration on styrene conversion over product selectivity and TON/TOF (inset). Effect of catalyst amount (PMATi) on styrene conversion over product selectivity and TON/TOF (inset). Effect of reaction time on styrene conversion over product selectivity 	 6.9 6.11 6.12 6.13 6.14
 6.2 6.3 6.4 6.5 6.6 	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity and TON/TOF (inset). Effect of H₂O₂ concentration on styrene conversion over product selectivity and TON/TOF (inset). Effect of catalyst amount (PMATi) on styrene conversion over product selectivity and TON/TOF (inset). Effect of reaction time on styrene conversion over product selectivity and TON/TOF (inset). 	 6.9 6.11 6.12 6.13 6.14
 6.2 6.3 6.4 6.5 6.6 6.7 	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity and TON/TOF (inset). Effect of H₂O₂ concentration on styrene conversion over product selectivity and TON/TOF (inset). Effect of catalyst amount (PMATi) on styrene conversion over product selectivity and TON/TOF (inset). Effect of reaction time on styrene conversion over product selectivity and TON/TOF (inset). Effect of reaction time on styrene conversion over product selectivity and TON/TOF (inset). Effect of reaction time on styrene conversion over product selectivity and TON/TOF (inset). Recyclability of catalyst (a) PMATi, (b) PATi and (c) PSSTi for the 	 6.9 6.11 6.12 6.13 6.14 6.15
 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity and TON/TOF (inset). Effect of H₂O₂ concentration on styrene conversion over product selectivity and TON/TOF (inset). Effect of catalyst amount (PMATi) on styrene conversion over product selectivity and TON/TOF (inset). Effect of reaction time on styrene conversion over product selectivity and TON/TOF (inset). Recyclability of catalyst (a) PMATi, (b) PATi and (c) PSSTi for the selective oxidation of styrene. 	 6.9 6.11 6.12 6.13 6.14 6.15 6.17
 6.2 6.3 6.4 6.5 6.6 6.7 	 % HMF conversion vs. temperature for catalyst PATi. % HMF conversion vs. amount of H₂O₂ (eq.) for catalyst PATi. Effect of solvent on styrene conversion over product selectivity and TON/TOF. Effect of temperature on styrene conversion over product selectivity and TON/TOF (inset). Effect of H₂O₂ concentration on styrene conversion over product selectivity and TON/TOF (inset). Effect of catalyst amount (PMATi) on styrene conversion over product selectivity and TON/TOF (inset). Effect of reaction time on styrene conversion over product selectivity and TON/TOF (inset). Effect of reaction time on styrene conversion over product selectivity and TON/TOF (inset). Effect of reaction time on styrene conversion over product selectivity and TON/TOF (inset). Recyclability of catalyst (a) PMATi, (b) PATi and (c) PSSTi for the 	 6.9 6.11 6.12 6.13 6.14 6.15

LIST OF SCHEMES

Scheme		Page No.
1.1	Synthesis of Merrifield resin supported palladium catalyst.	1.6
1.2	Synthesis of polymer anchored VO(IV) complex.	1.7
1.3	Preparation of polystyrene-supported Pd complex NBn,NH-ADC-Pd(II).	1.7
1.4	Metal catalyzed oxidation with peroxides.	1.24
1.5	Oxidation of organic sulfur containing compounds to sulfoxides or sulfones.	1.25
1.6	Enantioselective oxidation of prochiral sulfides with alkyl hydroperoxides by titanium(IV) isopropoxide-diethyltartrate.	1.26
1.7	Synthesis of Esomeprazole.	1.26
1.8	Katsuki-Sharpless asymmetric epoxidation of allylic alcohols.	1.31
1.9	Epoxidation of unfunctionalized short chain olefins by TS-1 in presence of H_2O_2 .	1.32
1.10	Schematic representation of biomass conversion into value added chemicals to daily use products.	1.35
3.1	Optimized reaction conditions for the selective oxidation of sulfides to sulfoxides or sulfones by pTi compounds.	3.32
4.1	Optimized reaction conditions for the selective oxidation of sulfides to sulfoxides by catalyst PMoCh .	4.23
5.1	Synthesis of chloromethylated poly(styrene divinylbenzene) supported pMo complexes.	5.6
6.1	Possible products obtained from selective oxidation of HMF.	6.1

LIST OF ABBREVIATIONS

HMF	5 -hydroxymethyl-2-furfural
MR	Merrifield resin
CSDVB	Cross-linked poly(styrene-divinylbenzene)
PA	Poly(sodium acrylate)
PAAc	Polyacrylic acid
PMMA	Poly(methylmethacrylate)
PTFE	Polytetrafluoroethylene
PAN	Polyacrylonitrile
PEG	Polyethyleneglycol
P4VP	Poly(4-vinyl pyridine)
PEI	Polyethyleneimine
PVAI	Poly(vinyl alcohol)
TPP	Tetraphenylporphyrin
pW	Peroxidotungstate
DIOP	4,5- bis(diphenylphosphinomethyl)-2,2-dimethyl-
	1,3-dioxidolane
WSP	Water soluble polymer
DNA	Deoxyribonucleic acid
PEG	Poly(ethylene glycol)
BINOL	1,1'-Bi-2-naphthol
Р	Peroxido
HMPT	hexamethylphosphorous triamide
Dipic	Dipicolinate
Cit	Citrate
Bipy	2,2'-bipyridine
рМо	Peroxidomolybdenum
pTi	Peroxidotitanium
DET	Diethyl tartrate
UHP	Urea hydroperoxide
MPS	Methyl phenyl sulfide
QO	8-quinolinolate

РОМ	Polyoxidometalate
ТВА	Tetra-n-butylammonium
СНР	Cumene hydroperoxide
	• •
DMF	Dimethylformamide
ТВНР	Tert-Butyl hydroperoxide
pybmz	(2-pyridyl)benzimidazole
Hphox	2-(2'-hydroxyphenyl)-5,6-dihydro-1,3-oxazine
DFF	2,5-diformylfuran
FDCA	2,5-furandicarboxylic acid
FFCA	5-formyl-2-furancarboxylic acid
LA	levulinic acid
HMFCA	5-hydroxymethyl-2-furancarboxylic acid
DMSO	Dimethyl sulfoxide
PS	poly(sodium vinyl sulfonate)
PSMo	[MoO(O ₂) ₂ (sulfonate)]–PS
PAMo	[Mo ₂ O ₂ (O ₂) ₄ (carboxylate)]–PA
EDX	Energy Dispersive X-Ray
AAS	Atomic absorption spectroscopy
ICP-OES	Inductively coupled plasma optical emission
	spectrophotometer
CHN	Carbon, hydrogen and nitrogen
SEM	Scanning Electron Microscope
PXRD	Powder X-ray diffraction
XPS	X-ray photoelectron spectroscopy
BET	Brunauer–Emmett–Teller
TGA	Thermogravimetric analysis
HPLC	High performance liquid chromatography
GC-MS	Gas chromatography-mass spectrometry
DFT	Density functional theory
РМА	poly(sodium methacrylate)
PSS	Poly(sodium 4-styrene sulfonate)
PATi	Ti ₂ (O ₂) ₂ O ₂ (OH) ₂ (carboxylate)]-PA
PMATi	$[Ti_2(O_2)_2O_2(OH)_2(carboxylate)]$ -PMA

PSSTi	[Ti ₂ (O ₂) ₂ O ₂ (OH) ₂ (sulfonate)]-PSS
TOF	Turn over frequency
TON	Turn over number
Ch	Chitosan
PMoCh	Chitosan supported dioxidomonoperoxido
	molybdenum(VI)
Asn	Asparagine
MRAsn	Asparagine functionalized Merrifield resin
MRNA	Nicotinic acid functionalized Merrifield resin
MRAsnMo	[MoO ₂ (O ₂)(L)] [—] MR [L = Asparagine]
MRNAMo	$[MoO_2(O_2)(L)_2]$ — MR, $[L = Nicotinic acid]$
TLC	Thin layer chromatography
RT	Room temperature
NA	Nicotinic acid
DCE	Dichloroethane