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3.1 Introduction  

Water soluble peroxidotitanates have been for the past several years object of 

intense investigation for a variety of reasons including their utility as ideal environmentally 

benign precursors for preparation of titanium-containing functional materials by water-

based synthesis methods [1]. Most importantly, Ti(IV)–peroxido systems have proved to 

be excellent and versatile oxidation catalysts, as elegantly exemplified in a wide range of 

oxygen transfer processes such as asymmetric epoxidation [2-8], phenol hydroxylation [3-

11], ammoximation of ketone [9,12-14], as well as selective transformation of sulfides to  

sulfoxides or sulfones [15-35]. 

It has been the pioneering work of Kagan [36,37] and Modena [38], which showed 

the use of titanium(IV) isopropoxide-diethyltartrate catalyst systems, also known as 

“modified Katsuki-Sharpless reagents” for asymmetric oxidation of prochiral sulfides by 

alkylhydroperoxides [15]. However, as the growing ecological concerns triggered an 

uninterrupted exploration of alternative non-polluting and sustainable oxidation protocols 

in recent years, aqueous H2O2 has emerged as an ideal clean, ecologically acceptable cost 

effective oxidant among the plethora of traditional oxidants available for organic 

oxidations [39-43]. Numerous innovative and promising transition metal homogeneous 

and heterogeneous catalysts with metals like vanadium [44-48], molybdenum [49-55], Iron 

[56-62], manganese [63-65] etc. have been reported for sulfide oxidation with H2O2 as 

terminal oxidant. A large number of catalytic systems based on well characterized salen-

titanium complexes [66,67], Ti(IV) compounds with polydentate Schiff bases [68,69], 

other highly active systems bearing tetradentate ligands such as trialanolamine [70] and 

triphenolamine [71] have been developed and used as homogeneous catalysts for the 

oxidation of sulfides to the corresponding sulfoxides. In fact, as revealed by a survey of 

literature, majority of existing procedures still rely upon the use of hazardous and volatile 

organic solvents as reaction medium [17,68,71-78] due to which the important criterion of 

environmental sustainability remains a challenging issue to address. Difficulty in catalyst 

regeneration is another limitation with respect to many of the otherwise efficient catalytic 

sulfoxidations, particularly in case of homogeneous systems [69,72,73,79-81]. It is notable 

in this context that, we have come across only few reports dealing with titanium based 

catalytic oxidation of sulfide that have used water as reaction medium [82-84].  
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 Water  has  already  been  widely  recognized  as  a  natural  solvent  with  obvious 

benefits  of  cost  efficiency,  nontoxicity,  nonflammability,  abundance  and  environmental 

compatibility, of vital importance for organic synthesis [85-94]. Apart from reducing the 

environmental  impact,  use  of  water  as  a  reaction  medium  often  facilitates  simple 

separation  and  quantitative  recovery  of  a  water  soluble  catalyst  through  easy  phase 

separation  due  to  poor  solubility  of  organic  products  in  water  [93,94]. A  variety  of 

commercially  important  processes,  including  hydroformylation,  carbonylation, 

hydrogenation,  olefin  metathesis,  polymerization  etc.  have  already  been  carried  out  in 

aqueous medium at industrial scale [90-92]. The recent upsurge in activity in the area of 

water-centered organic  synthesis  has  stimulated  a  concomitant  rise  in  the  demand  for 

water-tolerant and water compatible catalysts to support aqueous phase organic reactions 

[85,94]. 

 In  the  recent  past,  our  group  has  documented  a  series  of  d0 transition  metals 

peroxido complexes immobilized on different polymer supports including water soluble 

polymers [45,49-51,95-100],  which  displayed  excellent  catalytic  activity  in  a  variety  of 

selective organic oxidations under mild condition [98]. It is somewhat surprising that the 

idea  of  using  linear  WSP  as  support  to  generate  catalytically  active  metal  complexes 

appears to have received scant attention, although Merrifiled and Letsinger utilized soluble 

polymers during their pioneering work on peptide synthesis [104-106], which paved the 

way towards preparing immobilized homogeneous catalysts [107,108]. 

 Encouraged by the aforementioned observations in the present study, we focused 

on  developing  convenient  and  stable  peroxido compounds  of  titanium,  a  non-toxic  and 

cheap  metal, that  can  be  used  as  environmentally  safe,  water-compatible  recyclable 

catalysts to accomplish organic oxidation in aqueous medium [15]. There is a paucity of 

reports on activity of well-defined synthetic peroxidotitanium complexes (PTC) in sulfide 

oxidation  [75,82]  as  majority of  the  Ti  mediated  sulfoxidation  reactions  have  been 

performed via in  situ generated  peroxidotitanium  species  using Ti  complexes  as  pre- 

catalysts [35,74]. 

 In  this  Chapter  we  describe  the  preparation  and  characterization  of  a  set  of 

peroxido-Ti(IV)  compounds  anchored  to  water  soluble  polymer  matrices, poly(sodium 

acrylate)  (PA),  poly(sodium  methacrylate)  (PMA)  and  poly(sodium  styrene  sulfonate) 

(PSS) and  their  activity  in  controlled  oxidation  of  sulfides  with  H2O2,  with  respect  to 
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selectivity, TOF, reusability and eco-compatibility. These polymers were chosen for the 

purpose of this study mainly owing to their chemical stability, ready availability and in 

particular, due to the presence of pendant functional groups such as carboxylate or 

sulfonate in the polymer matrices which are capable of forming facile attachment with the 

Ti(IV) centres. In addition, the chosen polymer supports are biocompatible and non-toxic 

as evident from their extensive use in development of pharmaceutical formulations 

[109,110]. To the best of our knowledge, this is the first report dealing with synthesis of 

well defined pTi complexes in macroligand environment comprising of poly(acrylate) 

based WSP and their application as catalysts for organic oxidations.  

3.2 Experimental section 

3.2.1 Synthesis of water soluble peroxidotitanium complexes, 

Ti2(O2)2O2(OH)2(carboxylate)]-PA (PATi) (3.1), [Ti2(O2)2O2(OH)2(carboxylate)]-

PMA (PMATi) (3.2) and [Ti2(O2)2O2(OH)2(sulfonate)]-PSS (PSSTi) (3.3) 

TiCl4 (1.72 mL, 10 mmol) in 20 % HCl solution was placed in a 100 mL beaker 

maintaining temperature below 4 oC in an ice bath. To this, 8M NaOH solution was added 

dropwise with stirring until no further precipitation occurred. The titanic acid thus obtained 

was filtered and washed repeatedly with water to remove chloride as well as excess NaOH. 

The absence of chloride in the filtrate was confirmed by silver nitrate test. To the obtained 

precipitate, 30% H2O2 (2.26 mL, 20 mmol) was added dropwise with constant stirring until 

a clear yellow solution was obtained. The pH of the solution was ca. 2. To this yellowish 

solution, 1 g (for PATi) or 2 g (for PMATi) or 4 g (for PSSTi) of the soluble polymer was 

then added in portions with continuous stirring. The pH of the system was recorded to be 

ca. 4 at this stage. The resulting solution was allowed to stand in an ice bath for 12 h. 

Subsequently, 50 mL of acetone was added to the mixture under stirring and the system 

was kept as such for another 2 h below 4 0C. A pasty mass separated out on adding pre-

cooled acetone to this mixture under vigorous stirring. The supernatant liquid was 

decanted off and pale yellow residue was treated repeatedly with acetone under scratching. 

The microcrystalline product obtained was separated by centrifugation and dried in vacuo 

over concentrated sulfuric acid. 
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3.2.2 Elemental analysis and physical measurements 

The titanium, peroxide, carbon, hydrogen, nitrogen and sodium content in the 

synthesized compounds were quantitatively determined by procedures described in 

Chapter 2. The analytical data of the compounds are summarized in Table 3.1. The 

methods employed for thermogravimetric analysis, scanning electron micrographs (SEM) 

and EDX analysis, as well as spectroscopic measurements have been outlined in Chapter 2. 

Structurally significant IR bands and their assignments are listed in Table 3.2.  Presented 

in Table 3.3, are the 13C NMR chemical shift values for the complexes and their respective 

free polymers. TGA data of the complexes are reported in Table 3.4.  

3.2.3 Computational details 

In the present work, we have performed all the computation as in Dmol3 program 

package [111,112]. Local Density Approximation (LDA) [113] using (PWC) functional 

has been used to optimize the electronic structures of the complexes with double numerical 

with polarization (DNP) [114, 115] basis set for our calculations. DNP basis set used for 

our calculations is comparable to Gaussian 6-31G**, but DNP is more accurate than a 

Gaussian basis set of the same size [116, 117]. For the vibrational frequency calculations, 

same level of theory was used. We have obtained stable minima which correspond to the 

real and positive values. To improve computational performance, a global orbital cutoff of 

4.5 Å was employed. Self-consistent field (SCF) procedures are done with tolerances of 

the energy, gradient, and displacement convergences: 1.0*10-5 Ha, 2*10-3 Ha Å, and 5*10-

3 Å, respectively. 

3.2.4 General procedure for catalytic oxidation of sulfides to sulfoxides  

In a typical procedure, the sulfide oxidation reaction was carried out by placing 

organic substrate (5 mmol), catalyst containing 0.005 mmol of Ti [PATi (1.40 mg) or 

PMATi (1.88 mg) or PSSTi (2.9 mg )], 30% H2O2 (2.26 mL, 20 mmol) in 5 mL of water 

in a round bottom flask. The molar ratio of Ti : substrate was maintained at 1:1000 and 

substrate : H2O2 at 1:4. Reaction was conducted at ambient temperature under magnetic 

stirring. The progress of the reaction was monitored by thin layer chromatography (TLC) 

and GC. After completion of the reaction, the oxidised product along with unreacted 

organic substrates were extracted with diethyl ether, dried over anhydrous sodium sulfate 
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and distilled under reduced pressure to remove excess diethyl ether. The product was then 

purified by column chromatography on silica gel with ethyl acetate-hexane (1: 9 v/v) as 

the eluent. The product obtained was characterized by IR, 1H NMR, 13C NMR 

spectroscopy and melting point determination (for solid products) (Appendix I). 

3.2.5 General procedure for catalytic oxidation of sulfides to sulfones 

To a stirred solution of 5 mmol sulfide in 5 mL water, 0.01 mmol of Ti containing 

catalyst [PATi (2.81 mg) or PMATi (3.77 mg) or PSSTi (5.95 mg)] was added, followed 

by addition of 50% H2O2 (1.36 mL, 20 mmol) in a round bottom flask. The Ti : substrate 

molar ratio was maintained at 1:500  and the substrate:H2O2 molar ratio at 1:4. The reaction 

was conducted at 80 0C temperature. The reaction was monitored by thin-layer 

chromatography (TLC) and GC. After completion of the reaction, the system was allowed 

to cool to room temperature. The sulfone obtained was then isolated, purified and 

characterized by following similar procedure as mentioned under above section.  

3.2.6 Regeneration of the catalyst 

The recyclability of the catalyst was tested employing methyl phenyl sulfide (MPS) 

as the model substrate. After completion of the reaction, the product and the unreacted 

substrates were extracted by diethyl ether. To this spent reaction mixture, fresh batch of 

MPS (5 mmol) was added followed by addition of 30% hydrogen peroxide (2.26 mL, 20 

mmol). The progress of the reaction was monitored by thin layer chromatography (TLC) 

as well as by GC and the process was repeated under optimized reaction condition for 

minimum of ten reaction cycles. The regenerated catalyst could also be recovered as solid 

by adding pre-cooled acetone to the spent reaction mixture that was kept on an ice bath 

after the completion of the reaction and extraction of the product.  

3.3 Results and discussion 

3.3.1 Synthesis and characterization  

The synthesis of water soluble macromolecular peroxidotitanium complexes 

PATi, PMATi and PSSTi were achieved by reacting freshly prepared titanic acid with 30 

% H2O2 in presence of the respective WSP, poly(sodium acrylate) (PA) or poly(sodium 

methacrylate) (PMA) or poly(sodium 4-styrene sulfonate) (PSS). Titanic acid was 

obtained by employing a procedure introduced by Kakihana et al. [1], based on the reaction 
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of TiCl4 in 20% HCl with NaOH. The maintenance of pH of ca. 4 was found to be crucial 

for the formation of the µ-oxido peroxidotitanium(IV) complexes and their co-ordination 

to the pendant carboxylate groups of the polymer chain. In a similar manner, the synthesis 

of peroxido titanium complex anchored to soluble polymer (PSS) with the sulfonate group 

was carried out. The peroxido-hydroxido titanium complexes formed in an acidic solution 

have been known to undergo facile dimerization to afford stable oxido-bridged di-titanium 

complexes with Ti2O2 core [118-122]. Ligands possessing carboxylate groups have been 

reported to stabilize peroxidotitanium species, leading to the development of a host of 

highly stable peroxidotitanium complexes with carboxylate containing co-ligands [123-

126]. One of the advantages of using water soluble polymeric ligands, which are 

essentially polychelatogens, is the convenience of adopting synthetic procedures used for 

obtaining their monomeric analogues. The immobilized complexes PATi, PMATi and 

PSSTi, finally obtained as solids by solvent induced precipitation, remain stable and can 

be stored dry at ambient temperature for several weeks. 

The elemental analysis data of the complexes revealed the ratio of Ti:O2
2- content 

to be unity, showing that the anchored pTi moieties occur in the complexes in their 

monoperoxido configuration. The metal : ligand ratio for the complexes PMATi, PATi 

and PSSTi was found to be 1:2, 1:1.5 and 1:2, respectively. Magnetic susceptibility 

measurements revealed the diamagnetic nature of the compounds, testifying to the 

occurrence of  Ti in its +4 oxidation state in each of them. 

3.3.1.1 SEM and energy dispersive X-ray (EDX) analysis 

The scanning electron micrographs of the polymer anchored complexes showed 

noticeable alteration of their surfaces in comparison to the even surfaces of the pure 

polymers (Fig. 3.1 1a, 1c and 1e). That the metal ions are distributed across the surface of 

the polymer was evident from the morphological changes occurring on the polymers after 

metal incorporation (Fig. 3.1 1b, 1d and 1f). 

From the energy dispersive X-ray (EDX) spectroscopic analysis, carried out by 

focusing regions over the surface of the compounds, it was further confirmed that Ti, C, 

O, Na are the constituents of the complexes (Fig. 3.2). The EDX analysis data obtained on 

the composition of the compounds were in good agreement with the elemental analysis 

values (Table 3.1). 
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Fig. 3.1 Scanning electron micrographs of (a) PMA, (b) PMATi, (c) PA, (d) PATi, (e) 

PSS and (f) PSSTi. 
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Table 3.1 Analytical data for the synthesized peroxido-titanium complexes PMATi, 

PATi and PSSTi 

 

 

 

 

         bDetermined by AAS. 

cDetermined by ICP-OES. 

 

 

 

 

 

 

 

Compound % found from elemental analysis 

(% obtained from EDX) 

Metal loadinga 

(mmolg-1 of 

polymer) 

C H Na S Ti O2
2- 

PMATi 

 

 

25.59 

-- 

(25.41) 

3.10 

-- 

-- 

18.26 

-- 

(18.11) 

-- 12.41b 

12.69c 

(12.70) 

9.24 

-- 

-- 

2.65 

 
 

 

PATi 

 

16.40 

-- 

(16.28) 

 

 

1.81 

-- 

-- 

 

17.69 

-- 

(17.41) 

 

-- 

 

16.83b 

16.91c 

(17.03) 

 

12.41 

-- 

-- 

 

3.56 

 

 
 

PSSTi 31.38 

-- 

(33.55) 

3.3 

-- 

-- 

12.30 

-- 

(12.01) 

13.87 

-- 

(14.11) 

8.04b 

8.22c 

(8.14) 

5.1 

-- 

-- 

1.68 

aTitanium loading  = 

 

Observed metal % × 10 

Atomic weight of metal 
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Fig. 3.2 EDX spectra (a, b) PMATi, (c, d) PATi and (e, f) PSSTi. 
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3.3.1.2 FTIR and Raman spectral studies 

Raman and IR spectra of each of the compounds displayed typical absorption in 

the vicinity of ca. 860 cm-1 attributable to ν(O-O) mode of coordinated peroxido group, in 

addition to the complementary νasym(Ti-O2) and νsym(Ti-O2) modes, as has been expected, 

in the 500-600 cm-1 region [118,127-138]. The IR spectra of PMATi, PATi and PSSTi 

are presented in Fig. 3.3-Fig. 3.5 and the corresponding Raman spectra are shown in Fig. 

3.6(a)-Fig. 3.6(c) respectively.  

The significant IR and Raman spectral data for the compounds are summarized in 

Table 3.2. The weak intensity band observed in the 750-780 cm-1 region in the IR spectra 

has been assigned to Ti-O-Ti stretching vibration of µ-oxidotitanium dimer 

[82,121,135,137]. The corresponding absorption appeared as a sharp band in the Raman 

spectra of the compounds at ca. 790 cm-1. The Ti-OH bending mode corresponding to the 

terminal –OH groups of the complexes manifested at 1104 cm-1 in PATi, at 1120 cm-1 in 

PMATi and 1127 cm-1 in PSSTi, corresponding to Raman band at ca. 1109, 1138 and 

1098 cm,-1 respectively [128,131,136]. The ν(OH) modes appeared as a broad band in the 

spectrum of each of the complexes in the 3300-3500 cm-1 [127-138]. 

The intense band observed in the IR spectrum of the poly(acrylate) bound complex, 

PATi at 1626 cm-1 and a weak absorption occurring at 1391 cm-1 have been ascribed to 

νasym and νsym stretching vibrations, respectively of deprotonated and coordinated carboxyl 

groups [139,140]. The corresponding bands in the poly(methacrylate) anchored compound 

PMATi were observed at 1647 and 1407 cm-1, respectively. The observed shift of 

νasym(COO) to a higher frequency and that of νsym(COO) to a lower frequency in the 

complexes relative to the free polymer values (Table 3.2), resulting in the magnitude of 

wavenumber difference of ca. 230 cm-1, provided clear indication of unidentate co-

ordination of COO- groups in each of the  compounds [98,139,140]. The IR and Raman 

spectra also indicated the presence of free –COOH in the compounds showing absorptions 

at ca. 1710 cm-1 [139,140]. 

For the complex PSSTi, the IR spectrum shows broad bands at 1212 cm-1 and 1183 

cm-1 along with the symmetric vibration of  S-O at 1035 cm-1 [141-145]. In case of the 

pure polymer, S-O asymmetric and symmetric stretching of SO2 group was observed at 

1197 cm-1 and 1039 cm-1 respectively [141,142]. The appearance of the new bands in the 

complex can be assigned as S-O stretching vibrations that originates due to the   
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Table 3.2 Infrared (IR) and Raman (R) spectral data (cm-1) for PMATi, PATi and PSSTi compoundsa 

Assignment  PMA PMATi PA PATi PSS PSSTi 

ν(O-O) 

 

(IR) 

(R) 

 848(s) 

839(vs) 

 863(s) 

879(vs) 

 839(s) 

820(s) 

νsym(Ti-O2) 

 

(IR) 

(R) 

 531(m) 

523(s) 

 525(m) 

527(m) 

 576(m) 

546(s) 

νasym(Ti-O2) 

 

(IR) 

(R) 

 614(m) 

607(s) 

 619(w) 

613(m) 

 620(m) 

647(s) 

ν(Ti-OH) (IR) 

(R) 

 1120(m) 

1138(m) 

 1104(s) 

1109(s) 

 1127(s) 

1098(m) 

ν(Ti-O-Ti) (IR) 

(R) 

 753(w) 

815(s) 

 766(w) 

795(s) 

 775(m) 

754(w) 

νasym(COO) 
 

(IR) 

(R) 

1540(s) 1701(s), 1647(br,s) 

1708(m), 1643(m) 

1565(s) 1710(s),1626(br,s) 

1710(m), 1592(w) 

  

--- 

νsym(COO) 
 

(IR) 

(R) 

1415(s) 1407(w) 

1405(m) 

1409(s) 1391(w) 

1347(s) 

 --- 

νasym(S-O) (IR) 

(R) 

 ---  --- 1197 (m),1039 

(s) 

1212(sh),1183(s) 

1214(m), 1147(s) 

as, strong; m, medium; vw, very weak; sh, shoulder; br, broad 
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Fig. 3.3 IR spectra of (a) PMA and (b) PMATi. 
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Fig. 3.4 IR spectra of (a) PA and (b) PATi. 
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Fig. 3.5 IR spectra of (a) PSS and (b) PSSTi. 
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Fig. 3.6 Raman spectrum of  PMATi. 

 

 

 

Fig. 3.7 Raman spectrum of  PATi. 

 

 

 



Chapter 3 

 

3.16 | P a g e  

 

Fig. 3.8 Raman spectrum of  PSSTi. 

 

complexation of sulfonate group to the metal. In addition to this, the IR spectrum of PSSTi 

shows absorption bands for the phenyl group and bending CH2 at ca. 1631 and 1499 cm-1 

respectively [141,143,146] which show no alternation of value in comparison to the 

pristine polymer and thus signifying non-involvement of these groups in any bond 

formation in the complex. 

3.3.1.3 Electronic spectral studies 

The electronic spectra of the complexes PATi, PMATi and PSSTi, recorded in 

H2O showed a well resolved broad band at 350-360 nm region, in addition to a sharp and 

intense absorption at 215 nm (Fig. 3.9-3.11). In line with the previous literature on 

peroxidotitanium(IV) complexes [125,127,147], the weaker band at 350-365 nm could be 

attributed to πv*→d peroxido to metal charge transfer (LMCT) transition, whereas the 

intense peak appearing at higher energy at 215 nm has been assigned  to πh*→dσ* LMCT 

transition. 
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Fig. 3.9 UV-Vis spectrum of complex PMATi. 

 

 

 

 

 

Fig. 3.10 UV-Vis spectrum of complex PATi. 
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Fig. 3.11 UV-Vis spectrum of complex PSSTi. 

3.3.1.4 13C NMR studies 

The 13C NMR spectra of the complexes and the respective pristine polymers, PA, 

PMA and PSS are presented in Fig. 3.12-Fig. 3.14. The spectral pattern along with the 

corresponding chemical shift data listed in Table 3.3, provided complementary 

information indicating modification of carbon resonances of the polymer support to 

varying degrees after anchoring of Ti(IV) species. The major resonances have been 

assigned on the basis of available literature [148-157]. The spectra of the free polymers 

PA and PMA showed carboxylate carbon resonances at lower end of the field at 187 and 

184 ppm, respectively [148-151], apart from the expected signals corresponding to the 

chain carbon atoms. The spectra of the Ti anchored macro complexes on the other hand 

displayed an additional peak at much lower field of ca. 215 ppm which may be ascribed 

to the C atom of the metal coordinated carboxylate group. The observed large downfield 

shift, Δδ (δcomplex - δfree carboxylate) of 28 ppm in PMATi and 31 ppm in PATi suggested 

presence of strong metal ligand interactions in the macromolecular complexes, as has been 

reported earlier [49,98,99,140]. 
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Table 3.3 13C NMR chemical shift data for polymer-anchored peroxidotitanium complexes and free polymer 

 

 

 

  

Compound Chemical shift (ppm) 

Carboxylate carbon  
  

Ring carbon 

Free Complexed CH CH2 CH3 C1 C2 C3 C4 C5 C6 

PMA 187.4 --- --- 17.3 56.5 --- --- --- --- --- --- 

PMATi 
 

187.4 215.5 --- 17.2 55.6 --- --- --- --- --- --- 

PA 184.5 --- 45.5 36.1 --- --- --- --- --- --- --- 

PATi 184.5 215.4 45.5 35.9 --- --- --- --- --- --- --- 

PSS ---- --- 40.5 44.1 --- 140.3 128.8 125.5 148.5 125.3 128.1 

PSSTi --- --- 40.1 42.8 --- 140.3 128.1 125.5 148.6 125.2 128.2 
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ppm 

 

Fig. 3.12 13C NMR spectra 

of (a) PMA and (b) PMATi. 

 

ppm ppm 

 Fig. 3.13 13C NMR spectra of 

(a) PA and (b) PATi. 

 

Fig. 3.14 13C NMR spectra of (a) 

PSS and (b) PSSTi. 
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In the spectrum of PSSTi, the peaks at 40.5 and 44.1 of CH and CH2 groups of the 

pure polymer poly(sodium styrene sulfonate) were observed almost unchanged. This is not 

unexpected as Ti(IV) is bound to the polymer through the sulfonate groups which is well 

separated from the chain carbon as well as ring carbon atoms of the polymer support.  

3.3.1.5 TGA-DTG analysis 

The TGA-DTG profile of the complexes (Fig. 3.15-Fig. 3.17) show multistage of 

degradation with major break down processes that reveal the compound compositions and 

phase transition in each of the complexes (Table 3.4). The first step of weight loss due to 

the liberation of physisorbed water molecules from the complexes occurred between room 

temperature and ca.108 0C. The second degradation stage in the temperature range of 170-

303 0C in PMATi, 166-220 0C in PATi and 146-213 0C in PSSTi is attributable to the 

decomposition and loss of co-ordinated peroxido groups of peroxidotitanium moieties 

anchored to the polymer [129,158-161]. The absence of peroxide group in the 

decomposition product, isolated at this stage, was also verified by its IR spectrum. The 

subsequent step occurred between the range of 221-280 0C in PATi with a weight loss of 

6.5 % which may be ascribed to the decomposition of terminal -OH group by analogy with 

previous reports on some dimeric hydroxido-peroxido Ti(IV) complexes possessing 

terminal Ti-OH group [128,131,161]. The observed weight loss is in good agreement with 

the value of 6.4 % calculated for the compound PATi. The corresponding degradation step 

in the compound PSSTi was found at 214-2740C with a weight loss of 2.3 %, close to the 

calculated value 2.8%. For PMATi, the degradation was observed at a relatively higher 

temperature range of 329-388 0C with a weight loss of 5.6 % which is close to the 

calculated value of 5.55%. On increasing the temperature further, degradations attributable 

to decarboxylation of carboxylate functional groups accompanied by rupture of polymers 

chain occurs in the broad temperature range of 394 to 538 0C for PMATi and for PATi, 

in the temperature range of 359 0C upto 520 0C, respectively [99,140]. In case of PSSTi, 

a two stage weight loss was observed in the range of 278-576 ºC. This degradation was 

probably due to loss of the sulfonate group and rupturing of polymers. From the available 

literature data on TGA analysis for poly(vinyl sulfonate), the weight loss at this range of 

temperature have been ascribed to loss of sulfonate group and rupturing of the polymer 

accompanied by evolution of ethylene, water, SO2 and CS2 [162]. 
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Table 3.4 TGA data of polymer anchored peroxidotitanium complexes, PMATi, PATi 

and PSSTi 

 

 

The residue remaining after the complete degradation of the polymer immobilized 

compounds was found to be oxidotitanium species. This was further confirmed from the 

IR spectra recorded after heating the compounds separately up to the final decomposition 

temperature which revealed complete disappearance of absorptions attributable to 

peroxido and terminal Ti-OH stretching as well as the strong peaks originating from 

υ(COO) and of the original compounds. Thus, the TGA- DTG analysis data furnished 

additional evidence in support of the composition and formula assigned to the 

macrocomplexes. 

 

 

 

 

 

Compound Temperature range (0C) Observed weight loss (%) Final residue (%) 

PMATi 37-108 

170-303 

329-388 

394-538 

13.7 

9.4 

5.6 

22.7 

48.6 

PATi 36-103 

166-220 

221-280 

359-520 

9.2 

12.9 

6.5 

28.8 

42.6 

PSSTi 30-107 

146-213 

214-274 

278-513 

513-576 

12.1 

6.3 

2.3 

11.9 

22.0 

45.4 
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Fig. 3.15 TGA-DTG plot of PMATi. 

 

 

 

 
 

 

Fig. 3.16 TGA-DTG plot of PATi. 
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Fig. 3.17 TGA-DTG plot of  PSSTi. 

 

Bringing together all the above experimental evidences, structures of the type 

shown in Fig. 3.18 and Fig.3.19 have been envisaged for the pTi complexes. The proposed 

structures consist of a dimeric hydroxido-peroxido Ti(IV) moiety with a Ti2O2 core linked 

to the polymer chain via its pendant carboxylate groups for compound PATi and PMATi. 

For the compound PSSTi, the Ti2O2 core has proposed to linked to the polymer chain 

through the sulfonate groups. Thus the co-ordination sphere around each Ti(IV) centre is 

completed by oxygen atoms belonging to the µ-oxido, η2-peroxido, hydroxido and 

unidentately bound carboxylate groups of the polymer chain. Di-µ-oxido titanium 

complexes with Ti2O2 core have been reported in variety of ligand environment which is 

known to impart stability to the peroxidotitanium(IV) complex species [6,118-122]. 
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Fig. 3.18 Proposed structure of peroxidotitanium complexes PATi and PMATi. 

 [R= H for poly(sodium acrylate) (PA) or R= CH3 for poly(sodium methacrylate) 

(PMA)]. 

 

 

 

 

Fig. 3.19 Proposed structure of peroxidotitanium complex PSSTi. 
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3.3.1.6 Density functional studies 

We have carried out theoretical investigations employing the density functional 

theory (DFT) method with an aim to examine the feasibility of structures proposed for the 

polymer anchored pTi complexes. A model complex has been generated corresponding to 

a section of the poly(acrylate) anchored pTi complex PATi, on the basis of experimentally 

derived structural information (FTIR, Raman, 13C NMR, TGA, EDX and elemental 

analysis). DFT calculations were performed on the model complex at PWC/DNP level of 

theory [113-115]. The optimized structure of the complex presented in Fig. 3.20 shows 

three repeating unit of the polymer with one dinuclear peroxidotitanium(IV) complex with 

di-µ-oxido Ti2O2 core bonded to the polymer chain through its carboxylate groups. 

Bonding of O atom of terminal –OH group completes hexa co-ordination around each of 

Ti(IV) centers as has been observed in a majority of the reported pTi complexes. The 

structure also indicated participation of –OH groups in H-bond formation with 

neighbouring –COOH groups as well as one of the metal bound peroxido ligands.   

 

 

 

 

 

 

 

 

 

 

Fig. 3.20 Optimized geometry for complex PATi. The numerical numbers represent the 

labelling of the atoms as in Table 3.6. 
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 After  optimization  of  the  structure  vibrational  frequencies  were  calculated  to 

conform  to  the  stability  of  the  complex.  Absence  of  negative  vibrational  frequency 

(imaginary frequency) in the vibrational frequency calculations implied that the complex 

represents  a  stable  structure.  Moreover,  the  vibrational  frequencies  calculated  for  the 

optimized geometry (Table 3.5) were observed to simulate well with the  

experimentally determined IR spectral data. The selected geometrical parameters such as 

bond lengths and bond angles obtained from the theoretical calculations listed in Table 3.6 

have been found to be in good agreement with the reported crystallographic parameters 

 corresponding to heteroleptic monoperoxidotitanium  complexes  [122,163-166]. 

Thus,  the  mutually consistent findings of our theoretical studies and experimental 

results completely validate the predicted structures of the synthesized complexes. 

 

Table 3.5 Experimental and theoretical infrared (IR) spectral data (cm-1) for peroxido 

titanium complex PATi 

 

  

Assignment PATi 

νasym(COO) Exp. 1626 

Cal. 1640 

νsym(COO) Exp. 1391 

Cal. 1380 

ν(O-O) Exp. 863 

Cal. 860 

νsym(Ti-O2) Exp. 525 

Cal. 529 

νasym(Ti-O2) Exp. 619 

Cal. 614 

ν(Ti-OH) Exp. 1104 

Cal. 1102 

ν(Ti-O-Ti) Exp. 766 

Cal. 771 
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Table 3.6 Selected bond lengths (Å) and bond angles (degree) for PATi calculated using 

density functional theory (DFT) as implemented in DMol3 package 

 

 

  

Complex PATi 

Structural indexa Calculated values Structural indexa Calculated values 

Ti1-O2 1.889 Ti8-O9 2.138 

Ti1-O3 1.988 C15-O10 1.256 

O2-O3 1.437 ∠O12-Ti8-O13 41.32 

Ti1-O6 1.854 ∠Ti8-O13-O12 62.16 

Ti1-O7 1.956 ∠Ti8-O12-O13 76.52 

C21-O9 1.258 ∠Ti8-O11-H14 86.58 

O4-H5 0.985 ∠Ti1-O2-O3 71.96 

Ti1-O4 1.914 ∠Ti1-O3-O2 64.63 

Ti8-O12 1.916 ∠O2-Ti1-O3 43.41 

O12-O13 1.431 ∠Ti1-O4-H5 112.38 

Ti8-O6 1.889 ∠Ti1-O7-Ti8 97.12 

Ti8-O7 1.810 ∠Ti1-O6-Ti8 97.99 

Ti8-O11 2.062 ∠O7-Ti1-O6 80.95 

O11-H14 0.986 ∠O7-Ti8-O6 83.92 

aSee Fig. 3.20 for the atomic numbering. 
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3.3.2 Catalytic activity of the synthesized complexes PMATi, PATi and PSSTi in 

oxidation of sulfides 

3.3.2.1 Oxidation of sulfides to sulfoxides– Optimization of reaction condition 

In order to assess the catalytic potential of the peroxido titanium macro complexes 

we first examined the sulfoxidation of methyl phenyl sulfide (MPS) as a model substrate 

using PMATi as a representative catalyst with 30% H2O2 as oxidant. To screen the optimal 

reaction condition, a preliminary experiment was conducted maintaining catalyst: MPS 

and MPS : H2O2 molar ratio as 1:500 and 1:2, respectively. The reaction was carried out 

in water at ambient temperature under magnetic stirring in complete absence of organic 

solvent. It was gratifying to note that oxidation of thioanisole was virtually quantitative 

under these conditions and provided the corresponding sulfoxide with complete selectivity 

and a good TOF within an hour (Table 3.7, entry 1). We have subsequently proceeded to 

optimize the reaction by assessing the influence of various reaction parameters viz., solvent 

type, catalyst concentration, oxidant: substrate stoichiometry and reaction temperature as 

shown in Table 3.7. 

The influence of catalyst amount  

We have examined the reaction under three different catalyst concentrations, in 

addition to conducting a blank run in absence of the catalyst, under otherwise identical 

reaction conditions. The role of the catalyst is very much evident when the conversions 

were compared to the result of the control run which provided poor conversion not 

exceeding 13%, under identical condition (Table 3.7, entry 11). From the data presented 

in Table 3.7 (entries 1-3), it is noticeable that increasing the catalyst amount elevated the 

reaction rate considerably without affecting the sulfoxide selectivity, although no 

significant improvement was seen with respect to TOF at higher catalyst concentration. 

On the other hand, a reasonably good TOF was obtained along with sulfoxide selectivity 

(Table 3.7,entry 3) even at a low catalyst: substrate ratio of 1:2000. 
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Table 3.7 Optimization of reaction conditions for PMATi catalyzed selective oxidation 

of methyl phenyl sulfide to methyl phenyl sulfoxide by 30% H2O2
a 

 

 

 

 

 

Entry Molar ratio 

(Ti:MPS) 

H2O2 

Equiv. 

Solvent Temp. Time 

(min) 

Isolated 

yield 

(%) 

1a:1b TONb TOFc 

(h-1) 

1 1:500 2 H2O RT 35 94 100:0 470 806 

2 1:1000 2 H2O RT 65 96 100:0 960 887 

3 1:2000 2 H2O RT 150 96 100:0 1920 768 

4 1:1000 3 H2O RT 40 96 100:0 960 1440 

5 1:1000 4 H2O RT 15 97 100:0 970 3880 

6 1:1000 4 MeOH RT 25 98 100:0 980 2352 

7 1:1000 4 CH3CN RT 35 96 100:0 960 1646 

8 1:1000 2 H2O 60 0C 35 95 100:0 950 1626 

9 1:2000 2 MeOH 65 0C 10 95 100:0 1900 11400 

10 1:2000 4 H2O RT 75 96 100:0 1920 1536 

11d -- 4 H2O RT 15 13 100:0 -- -- 

aAll the reactions were carried out with 5 mmol of substrate in 5 mL of solvent. Catalyst 

amount = 1.8 mg for 0.005 mmol of Ti. 
bTON (turnover number) = mmol of product per mmol of catalyst. 
cTOF (turnover frequency) = mmol of product per mmol of catalyst per hour. 
dBlank experiment without any catalyst. 
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Effect of H2O2 concentration 

Next, a concentration dependent study was carried out with respect to the 

oxidant:substrate stoichiometry, using three different equivalents of 30% H2O2 under 

analogous reaction conditions. As demonstrated by the data (Table 3.7, entries 2, 4 and 

5), increasing oxidant concentration from 2 to 4 equivalents accelerated the reaction 

considerably, leading to nearly 5-fold enhancement of TOF with 4 equivalents of H2O2. It 

is also notable that the sulfoxide selectivity remained unaffected and no overoxidation to 

sulfone occurred even at relatively higher oxidant concentration used. The above findings 

collectively indicated that a substrate:H2O2 of 1:4 with Ti:substrate molar ratio maintained 

at  1:1000 was optimal to achieve best results in terms of selectivity as well as TOF. 

Effect of solvent 

The impressive results achieved in aqueous medium prompted us to screen the 

water-soluble catalyst for its compatibility with some common organic solvents. 

Significantly, despite of the insolubility of the catalysts in the neat organic solvents, the 

compounds dissolved completely in water miscible organic solvents, methanol and 

acetonitrile in presence of aqueous H2O2, leading to homogeneity of the catalytic process. 

Pertinent here is to mention that we have avoided the use of hazardous chlorinated solvents 

in our present work. As seen from data in Table 3.7 (entries 6 and 7), the catalysts are 

compatible with the chosen organic solvents as well. To our pleasure however, water 

emerged to be the best solvent providing maximum catalyst efficiency in terms of both 

product selectivity as well as superior rate (Table 3.7, entry 5). The observation is not 

surprising as it has been amply demonstrated by Sharpless and co-workers [87], followed 

by reports from some other laboratories [167,168], that for reactions to occur optimally in 

neat water, solubility of the organic reagents is not a fundamental requirement. 

Furthermore, our findings are in agreement with previous reports showing the favourable 

effect of polar protic solvent with ability to form H-bond, on chemoselective sulfoxidation 

[52,98,167-169]. 

Effect of reaction temperature 

A further striking feature of the protocol is the remarkable improvement of the rate 

of reaction achieved on increasing the reaction temperature from RT to 60 0C in water and 

65 0C in methanol without affecting the selectivity. Thus, the TOF could be elevated to a 
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high value of (11400 h-1) with 100 % sulfoxide selectivity in refluxing methanol (Table 

3.7, entry 9). Nevertheless, we preferred to carry out the reactions at room temperature due 

to the environmentally benign aspect. It has also been ascertained that neither light nor air 

had any observable influence on the rates of the catalytic oxidations. 

3.3.2.2 Selective sulfoxidation catalyzed by PATi (3.1), PMATi (3.2) and PSSTi (3.3) 

Having standardized the appropriate conditions for sulfoxidation of MPS (Scheme 

3.1), we proceeded to establish the scope of the catalysts and the developed protocol using 

a wide variety of substrates. The reactivity data summarized in Table 3.8 demonstrate that 

clean conversion of the chosen aliphatic or aromatic substrates to the corresponding 

sulfoxide occurred in presence of each of the catalysts within a reasonably short time, 

providing excellent yield and TOF (Table 3.8, entries 1-10). Previous work has already 

established that sulfide oxidation by H2O2 generally occurs via an electrophilic addition 

reaction of oxygen atoms, due to which sulfides with higher electron density on sulfur 

atom are expected to react faster [170,171]. The observed sequence in the present study 

(Table 3.8, entries 1-10) indicating the oxidation of aliphatic sulfides to be more facile in 

comparison to aromatic sulfides as well as other conjugated systems viz., allylic or vinylic 

sulfides is thus in accord with the decreasing nucleophilicity of the tested substrates, owing 

to conjugation of sulfur lone pair of electrons of the aromatic and allylic sulfides. 

The catalyst PMATi displayed consistently superior activity compared to the PATi 

and PSSTi. In fact, considering the mild reaction conditions the TOF values obtained in 

the present study, reaching up to a highest value of 11,280 h-1 (Table 3.8, entry 2), are 

indeed remarkable in comparison to most of the water-based catalytic sulfoxidations 

reported so far [52,83-85,172-175]. The synthesized catalysts displayed high functional 

group tolerance towards sensitive groups such C=C and OH. Thus, allylic and alcoholic 

 

 

Scheme 3.1 Optimized reaction conditions for the selective oxidation of sulfides to 

sulfoxides or sulfones by pTi compounds.  
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Table 3.8 Selective oxidation of sulfides to sulfoxides catalyzed by PMATi, PATi and PSSTi with 30% H2O2 using water as solventa 

 

     PMATi    PATi  PSSTi 

Entry Substrate Time 

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

Time 

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

Time 

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

1 

 

15 97 970 3880 20 98 980 2940 70 

 

 

98 980 840 

94d 940 3760 95d 950 2850 

 

96d 960 822 

2  5 94 940 11280 9 97 970 6466 25 97 970 2328 

3  10 97 970 5820 15 94 940 3760 40 98 980 1470 

4  10 95 950 5700 17 95 950 3353 45 96 960 1280 

5 

 

15 92 920 3680 20 96 960 2880 65 98 980 904 

6 

 

25 96 960 2304 35 95 950 1632 90 98 980 653 

7 

 

70 94 940 806 100 94 940 564 130 96 960 443 

Continued… 
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   PMATi    PATi  PSSTi 

Entry Substrate Time 

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

Time 

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

Time 

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

8 

 

55 95 950 1036 80 96 960 720 105 97 970 554 

9 

 
190 94 940 297 205 95 950 278 265 96 960 217 

10e 

 

12h 90 90 7.5 12h 85 85 7 12h 76 76 6.3 

aAll reactions were carried out in 5 mmol substrates, 20 mmol 30% H2O2and catalyst (0.005 mmol of Ti) in 5 mL H2O at RT, 

unless otherwise indicated. 
 bTON (turnover number) = mmol of product per mmol of catalyst. 
cTOF (turnover frequency) = mmol of product per mmol of catalyst per hour.  
dYield of 10th reaction cycle. 
eReaction condition: 5 mmol substrate, 20 mmol 30%  H2O2  and  catalyst (0.05 mmol of Ti) at 65 oC in refluxing methanol. 
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 sulfides were chemoselectively oxidized to yield targeted sulfoxide without affecting any 

other functional group transformation under the optimized condition.       

Versatility of the developed catalysts is further evident from the fact that, a least 

nucleophilic and refractory sulfide like dibenzothiophene (DBT) could also be selectively 

oxidized to sulfoxide in presence of the catalysts by modification of reaction condition. As 

the DBT oxidation was too slow in water, it was advantageous to make use of the 

compatibility of the catalysts in organic medium to attain the intended oxidation by 

performing the reaction in MeOH. 

3.3.2.3 Oxidation of sulfides to sulfones 

Subsequently, we have directed our efforts towards developing methodology to 

attain selective oxidation of sulfide to sulfone using the same catalysts. Our initial attempts 

to obtain the targeted sulfone from the model substrate, thioanisole using 30% H2O2 in a 

reaction conducted in water, was unsuccessful. However, taking cues from our past 

experience pertaining to sulfide oxidation with polymer supported peroxidometal catalysts 

[49], we could finally accomplish complete conversion of MPS, to pure sulfone in aqueous 

medium at ambient temperature using 4 equivalents of 50% H2O2 (Table 3.9, entry 3) with  

catalyst:substrate molar ratio maintained at 1:500. Although the reaction was rather 

sluggish at room temperature, the reaction rate and hence the TOF could be substantially 

improved without affecting the selectivity, by increasing the reaction temperature 

gradually to 80 0C (Table 3.9, entry 6). After investigating the solvent effect on the rate of 

the oxidation (Table 3.9, entries 8 and 10), it was satisfying to note that the catalyst was 

most potent in water as has been observed in case of sulfoxidation reaction. In methanol 

and acetonitrile, the catalyst displayed comparable activity at RT. 
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Table 3.9 Optimization of reaction conditions for PMATi catalyzed oxidation of methyl 

phenyl sulfide to methyl phenyl sulfone by 50% H2O2
a 

 

 

 

Entry Molar ratio 

(Ti:MPS) 

H2O2 

Equiv. 

Solvent Temp. Time 

(h) 

Isolated 

yield 

(%) 

1a:1b TONb TOFc 

(h-1) 

1 1:1000 2 H2O RT 10 93 77:23 930 93 

2 1:500 2 H2O RT 9 94 41:59 470 52 

3 1:500 4 H2O RT 7.6 98 0:100 490 64 

4 1:500 4 H2O 60 0C 6 96 0:100 480 80 

5 1:500 4 H2O 70 0C 4.5 98 0:100 490 108 

6 1:500 4 H2O 80 0C 3 98 0:100 490 163 

7 1:100 4 H2O 80 0C 1.3 97 0:100 485 72 

8 1:500 4 CH3CN RT 24 94 40:60 470 19 

9 1:500 4 CH3CN 78 0C 9 98 0:100 490 55 

10 1:500 4 MeOH RT 24 95 55:45 475 20 

11 1:500 4 MeOH 60 0C 20 99 0:100 495 25 

aAll the reactions were carried out with 5 mmol of substrate in 5 mL of solvent. Catalyst 

amount = 3.7 mg for 0.01 mmol of Ti. 
bTON (turnover number) = mmol of product per mmol of catalyst. 
cTOF (turnover frequency) = mmol of product per mmol of catalyst per hour.  
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Table 3.10 Selective oxidation of sulfides to sulfones catalyzed by PMATi, PATi and PSSTi with 50% H2O2 using water as solventa 

 

  

 

     PMATi    PATi  PSSTi 

Entry Substrate Time  

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

Time 

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

Time  

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

1 

 

180 98 490 163 205 97 485 142 255 98 490 115 

90d 450 150 92d 460 134 88d 455 103 

2 
 

50 96 480 578 65 96 480 444 80 97 485 363 

3  75 98 490 392 85 97 485 342 95 98 490 309 

4  80 97 485 364 85 98 490 347 115 96 480 250 

5 

 

180  97 485 162 195 96 480 148 250 97 485 116 

6 

 

225 96 480 128 230 97 485 127 320 97 485 91 

 

Continued… 
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     PMATi 

 

 PATi  

 

PSSTi 

Entry Substrate Time  

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

 (h-1) 

Time 

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

Time  

(min) 

Isolated 

yield 

(%) 

TONb TOFc 

(h-1) 

7 

 

380 93 465 73 395 95 475 72 425 96 480 67 

8 

 

350 95 475 81 370 97 485 78 395 94 470 71 

9 

 

8.5h 94 470 55 8.9h 96 480 53.8 9.8h 97 485 49 

10e 

 

12h 85 85 7 12h 80 80 6.7 12h 72 72 6 

aAll reactions were carried out in 5 mmol substrates, 20 mmol 50% H2O2and catalyst (0.01 mmol of  Ti) in 5 mL H2O at 80 oC, unless 

otherwise indicated.  
bTON (turnover number) = mmol of product per mmol of catalyst. 
cTOF (turnover frequency) = mmol of product per mmol of catalyst per hour. 

dYield of 5th reaction cycle.  
eReaction condition: 5 mmol substrate, 20 mmol 50% H2O2and catalyst (0.05 mmol of Ti) at 78 oC in refluxing acetonitrile. 
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In addition to thioanisole, as shown in entries 1-10 of Table 3.10, the developed 

oxidation protocol could be conveniently applied to variously substituted aromatic and 

aliphatic sulfides, regardless of the catalyst used. For DBT oxidation, however, we could 

achieve the desired results by conducting the reaction in acetonitrile at 78 0C, instead of 

water, using a higher amount of catalyst (substrate: catalyst = 1:100 molar ratio). Most 

importantly, despite the presence of excess of 50% H2O2 and a relatively higher reaction 

temperature maintained, the oxidation of sulfide to sulfone proceeded with complete 

chemoselectivity (Table 3.10, entries 7 and 8) leaving the co-existing alcohol and C=C 

groups unaffected.  

3.3.2.4 Recyclability of the catalysts 

Stability of a catalyst and its recyclability are crucial for its practical utility in a 

catalytic process. The recyclability of the synthesized catalysts were tested up to 10 

reaction cycles using MPS as the model substrate in water under optimized reaction 

conditions. The catalysts could be recycled by adding fresh batch of oxidant and substrate 

to the aqueous phase of the spent reaction mixture on completion of each catalytic cycle. 

The recycling performances of the catalysts presented in Fig. 3.21 demonstrated the 

impressive reusability of the catalyst at least up to 10 catalytic cycles with consistent 

activity and selectivity. The approach of in situ recycling of the catalyst is definitely more 

convenient as the troublesome separation and purification steps usually associated with 

soluble catalyst could greatly be avoided. The redundancy of these steps further helped in 

limiting the use of organic solvents during the process. 

We have also characterized the regenerated catalysts after isolating it as solid, by 

elemental and spectral analysis in order to further confirm that the catalysts remain intact 

during the cycles of oxidations. The FTIR and Raman spectra of the regenerated catalysts 

displayed the characteristic peaks that are present in the pristine catalyst. 

As revealed by elemental analysis and EDX data, no significant decrease in 

peroxide content or metal loading occurred, ruling out the possibility of metal leaching out 

of the polymer support during the catalytic process. Thus, it has been established that the 

catalysts are structurally robust reflecting the strong attachment of the pTi species to the 

polymer chain.  
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Fig. 3.21  Recyclability of catalysts (a) PMATi, (b) PATi and (c) PSSTi for the 

selective oxidation of sulfide to sulfoxide in water. 

 

The reusability of the catalysts in oxidation of sulfide to sulfone was also examined 

following a similar methodology. Figure 3.22 shows the no. of cycles vs. % yield in the 

selective oxidation reaction of sulfide to sulfone. Both the catalysts showed good activity 

retaining the selectivity upto nearly fifth reaction cycles. However, a gradual fall in % 

conversion was observed in the subsequent cycles indicating possible degradation of the 

catalyst. This may not be unusual keeping in view the relatively higher reaction 

temperature maintained as well as longer reaction time required for the complete 

conversion of sulfides to sulfones. 
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Fig. 3.22 Recyclability of catalysts (a) PMATi, (b) PATi and (c) PSSTi for the 

oxidation of sulfide to sulfone in water. 

 

A comparative report on selective oxidation of MPS by some of the reported 

homogeneous Ti based catalyst systems is presented in Table 3.11, which demonstrate the 

merit of the developed pTi catalysts in terms of conversion rate, selectivity, reusability 

and reaction conditions employed.  
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Table 3.11 Comparison of catalytic performance of PATi or PMATi or PSSTi with 

literature reported titanium based homogenous catalytic systems for oxidation of sulfides 

using H2O2 as oxidanta 

 

Entry Catalyst Reaction 

condition 

Time 

(min) 

%Conversion 

(% yield) 

/ selectivity 

Recycling 

Run/no. of 

recycling 

Ref. 

1 PMATi Water, RT 15 100/100 

(TOF=3880) 

Yes/10 This 

Work 

2 PATi Water, RT 

 

20 100/100 

(TOF=2940) 

Yes/10  

3 PSSTi Water, RT 

 

70 100/100 

(TOF=840) 

Yes/10  

4 K16[Ti20(μ-O)8 

(HO2)8(O2)12(R,R-

tart)12]·52H2O 

Water, RT 90 89.4/91.6 No 83 

 

5 PN68(IS)4 

 

Water, 25 0C 60 99/95 Yes/7 84 

6 Ti(IV) complexes 

bearing a chiral 

polydentate ligand 

based on α-pinene 

MeOH, RT 5 99/100 No 69 

7 TOC-1 MeOH, 40 0C 

 

15 98/99 Yes/4 79 

8 TOC-2 

 

MeOH, 40 0C 15 93/96 No  

9 Ti(Phen)(OC2H5)2Cl2 MeOH, RT 

 

20 99/98 

(TOF=1182) 

Yes/8 75 

10 Ti(Oi-Pr)4 + Schiff 

base ligand 

MeOH and 

water mixture, 

dry DCM, N2 

atm, 0 0C 

90 95/94 No 

 

164 

Continued… 
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Although a precise comparison of the efficiency of the catalysts PATi, PMATi 

and PSSTi in terms of TON or TOF obtained with different reported examples is not 

possible in absence of sufficient reported kinetic data, nevertheless it is evident from our 

findings that, pTi compounds provide benefits of both homogeneous and heterogeneous 

catalysts by displaying excellent activity along with good recyclability which demonstrate 

the synthetic value of the protocol [35,69,71,72,74,78,80-83,176,177]. These results are 

especially significant considering the truly mild reaction conditions under which the 

reactions have been accomplished using green solvent water as reaction medium at 

ambient temperature. 

 

Entry Catalyst Reaction condition Time 

(min) 

%Conversion  

(% yield) 

/ selectivity 

Recycling 

Run/no. of 

recycling 

Ref. 

11 Ti(Oi-Pr)4+ 

Shiff base 

Dry dichloro 

methane, 0 0C 

600 92/93 No  73 

12 Ti (IV) amino 

triphenolate 

complexes 

Chloroform, 28 0C 120 97/98 No 71 

13 Ti(IV)–

Isopropoxide 

complexes 

MeOH, N2atm, RT 30 90/91 No 35 

14 Ti(IV)–Amino 

triphenolate 

complexes 

MeOH, 28 0C 20 96/98 No 81 

15 Titanium 

substituted 

heteropolytung

state 

Dichloro ethane, 

25 0C 

90 72/86 No 82 

aSubstrate considered is methyl phenyl sulfide (MPS).  
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3.3.2.5 The proposed catalytic cycle 

The mechanism of action of titanium-based catalysts in H2O2 induced oxygen 

transfer processes such as sulfoxidation, epoxidation, oxidation of allylic alcohol has been 

extensively investigated [35,134,138,178-183]. It has been known to proceed by in situ 

activation of peroxide via formation of an active peroxidotitanium species, in which 

peroxido group is usually η2 co-ordinated to Ti(IV) [35,138,178-183]. Based on these 

observations along with findings of our present study, we propose a credible catalytic cycle 

for selective oxidation of sulfides to sulfoxide or sulfone shown in Fig. 3.23.  

 

 

Fig. 3.23 Proposed catalytic cycle. 

 

In the present case the first step is expected to be the transfer of electrophilic 

oxygen from the monoperoxido Ti(IV) complex I of the catalyst to organic sulfide V, to 

yield the corresponding sulfoxide VI (reaction a) with concomitant formation of a 

oxidotitanium intermediate II. Formation of such an oxidotitanium intermediate 
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subsequent to electrophilic oxygen transfer from a pTi complex to sulfides, has been 

documented in the literature [35,138,178-183]. The intermediate II subsequently combines 

with oxygen of H2O2 to regenerate the starting catalyst (reaction b) thus completing a 

catalytic cycle. The sulfoxide produced may undergo further oxidation to yield sulfone 

VII (reaction c) in a separate catalytic cycle of reaction. 

3.4 Conclusions 

In summary, this work highlights the synthesis and characterization of new well 

defined water-soluble peroxidotitanium(IV) compounds anchored to linear 

macromolecular supports, and their successful application as highly efficient water-

compatible catalysts to obtain selective conversion of sulfides to their respective sulfoxide 

or sulfone with H2O2 in aqueous medium. The oxidation protocol being operationally 

simple and free from halogenated solvents or any other hazardous additive, offers the 

additional benefits of safety and ease of handling. Catalysts are remarkably robust in the 

reaction medium as evident from their easy recyclability up to 10 reaction cycles of 

sulfoxidation without significant change in activity. Thus, these immobilized catalysts 

comprising of  Ti, low cost, non-toxic metal and environmentally safe water-soluble 

polymer supports, appear to combine the advantages of selectivity and efficiency of 

homogeneous catalysts with the stability and recyclability benefits of heterogeneous 

catalysts, making them potentially attractive for practical applications. 

The work on applications of this efficient catalyst system to some other important 

oxidative transformations such as olefin epoxidation and oxidation of biomass derived 

substrate, 5-hydroxymethyl-2-furfural (HMF) are presented in Chapter 6 of the thesis.   
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