Dedicated to...

My Fellow Research Fraternity...

Declaration of Academic Integrity

"I declare that this written submission represents my ideas in my own words and where

other's ideas or words have been included, I have adequately cited and referenced the

original sources. I also declare that I have adhered to all principles of academic honesty

and integrity and have not misrepresented or fabricated or falsified any

idea/data/fact/source in my submission. I understand that any violation of the above will

be cause for disciplinary action as per the rules and regulations of the Institute."

Sincerely,

Date:

Place: Tezpur University

Rakhee Saikia

Rakhee Saikia

(TZ189811 of 2018)

vii

TEZPUR UNIVERSITY

(A Central University established by an Act of Parliament)

Dr. Utpal Bora Associate ProfessorDepartment of Chemical Sciences
Tezpur University, Tezpur
Napaam—784 028
Assam, INDIA

CERTIFICATE FROM SUPERVISOR

This is to certify that the thesis entitled "Copper based Catalyst Design and Methodology Development for Cyanation and Chan–Lam Cross–Coupling Reactions" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Chemical Sciences is a record of research work carried out by Ms. Rakhee Saikia under my supervision and guidance. She has been duly registered (Registration No. TZ189811 of 2018) and the thesis presented is worthy of being considered for Ph.D. Degree.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date: (Dr. Utpal Bora)

Place: Tezpur University Supervisor

E-mail: <u>ubora@tezu.ernet.in</u>, <u>utbora@yahoo.co.in;</u>Web: www.tezu.ernet.in Ph: +91 (3712) 275067 (O), +91 9435699636 (Mob) Fax: +91 (3712) 267005/6

तेजपुरविश्वविद्यालय / TEZPUR UNIVERSITY

(संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय)

(A Central University established by an Act of Parliament)

Dr. Ashim Jyoti Thakur ProfessorDepartment of Chemical Sciences
Tezpur University
Tezpur 784 028, Assam, INDIA

डॉ. असीम ज्योति ठाकुर, प्रोफेसर, रसायन विज्ञान विभाग, तेजपुर विश्वविद्यालय

CERTIFICATE FROM CO-SUPERVISOR

This is to certify that the thesis entitled "Copper based Catalyst Design and Methodology Development for Cyanation and Chan–Lam Cross–Coupling Reactions" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Chemical Sciences is a record of research work carried out by Ms. Rakhee Saikia under my supervision and guidance. She has been duly registered (Registration No. TZ189811 of 2018) and the thesis presented is worthy of being considered for Ph.D. Degree.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date: (Dr. Ashim Jyoti Thakur)

Place: Tezpur University Co-Supervisor

TEZPUR UNIVERSITY

(A Central University established by an Act of Parliament)

Napaam, Tezpur – 784 028, District – Sonitpur, Assam, India

CERTIFICATE OF THE EXTERNAL EXAMINER AND ODEC

This is to certify that the thesis entitled "Copper based Catalyst Design and Methodology Development for Cyanation and Chan-Lam Cross-Coupling Reactions" submitted by Ms. Rakhee Saikia to the School of Sciences, Tezpur University in partial fulfillment of the award of the degree of Doctor of Philosophy in the Department of Chemical Sciences has been examined by us on 21.12.22 and found to be satisfactory.

The committee recommends for the award of the degree of Doctor of Philosophy.

Dr. Utpal Bora

(Supervisor)

Dr. Parthasarathi Das

(External Examiner)

Date: 21/12/2021

Dr. Ashim J. Thakur

(Co-Supervisor)

Acknowledgement

This thesis is a compilation of research work completed in about six years of motivated research and study. I would like to acknowledge everyone who has contributed to the successful completion of this work:

At first, I deeply acknowledge my Supervisors; Dr. Utpal Bora and Dr. Ashim Jyoti Thakur for their constant supervision, guidance and support throughout this research work. Their suggestions have constantly helped me to improve the quality of my work. I would like to thank the Head of the Department of Chemical Sciences, Dr. Ruli Borah for providing us with an easy access to all the departmental facilities. This research work would not be possible without financial Support from Tezpur University (Institutional fellowship), Council for Scientific and Industrial Research (CSIR), New Delhi and DST-India.

Valuable contributions from our Collaborators are also deeply acknowledged: Prof. Ramesh Chandra Deka, Department of Chemical Sciences, Tezpur University; Prof. Hiranao Sajiki and his research group, Gifu Pharmaceutical University, Japan; Dr. Sanjeev Pran Mahanta, Assistant Professor, Department of Chemical Sciences, Tezpur University; Dr. Manash Ranjan Das and Dr. Purna Kanta Boruah, CSIR-NEIST, Jorhat, Assam and Dr. Bipul Sarma, Assistant Professor, Department of Chemical Sciences, Tezpur University.

I would like to sincerely thank my Doctoral Committee member; Dr. Sajal Kumar Das, Assistant Professor, Department of Chemical Sciences, Tezpur University for his support and suggestions.

I am also thankful to the non-teaching staff of the Department of Chemical Sciences and staff of SAIC, Tezpur University for their help during research work; Dr. Dhrubajyoti Talukdar, Dr. Raju Kr. Borah, Mrs. Babita Das, Mr. Biplob Ozah, Mr. Sankur Phukan, Dr. Biraj Jyoti Borah, Dr. Nipu Dutta, Mr. Pankaj Bharali, Mr. Tridip Ranjan Nath, Mr. Prakash Kurmi, Mr. Manoranjan Sarma and Mr. Naba Kr. Gogoi. All the cleaning staff of the department is deeply acknowledged for their service. Special thanks to Mrs. Akhtara Hussain Kalita, Assistant Professor, Jagannath

Barooah College, Jorhat; Prof. Dhanapati Deka; Department of Energy, Tezpur

University and Dr. Bornali Deka, Darrang College, Tezpur for their motivation throughout this research work.

I am obliged to my senior labmates: Dr. Abhijit Mahanta, Dr. Manashi Sarmah, Dr. Sameeran Kumar Das, Dr. Khairujjaman Laskar and Dr. Porag Bora for their advices and supervision whenever necessary; my current labmates: Dr. Anindita Dewan, Anurag Dutta, Raktim Abha Saikia, Sudhamoyee Kataky, Prantika Bhattacharjee, Dipika Konwar, Debasish Sarmah, Mohendra Tahu, Arzu Almin and Dibyashree Dolakasharia for the love, respect, kindness and consideration and my project students: Sahid Mostak Ahmed and Sanghamitra Das for their help and contribution in my research work.

Special acknowledgement to my friends and juniors; Dr. Rajarshi Bayan, Dr. Rituraj Das, Dr. Aditi Saikia, Dr. Chiranjita Goswami, Dr. Prashurya Pritam Mudoi, Dr. Plaban Jyoti Sarma, Julie Baruah, Debabrat Pathak, Dr. Satyajit Dey Baruah, Anup Choudhury, Arup Jyoti Das, Bikash Mushahari, Dr. Pangkita Deka, Dr. Manoj Mondal, Bhugendra Chutia, Raju Chouhan, Sameeran Morang and Rashmi Chetry without whom this research journey would not be possible.

Finally, I express my gratitude to my friends outside the university who have always lend me a helping hand; Dr. Hemanta Hazarika, Dr. Rajkumar Gogoi, Mr. Pallab Karjee and Ms. Nimisha Bania.

To my Parents...You are my first school and my biggest inspiration, I can never thank you enough...

THANK YOU ALL!!

Rakhee Saikia

Abbreviations and Symbols

 Δ heat

% percentage

 δ Chemical shift

J Coupling constant

Å Angstrom

Ar Aryl

Ac Acetyl

AIBN 2,2'-Azobisisobutyronitrile

^tBuOH Tertiary butanol

BET Brunauer-Emmett-Teller surface area analysis

BJH Barrett-Joyner-Halenda method

br broad

°C degree Centigrade

CV Cyclic Voltammetry

DMEDA 1,2-Dimethylethylenediamine

DABCO 1,4-Diazbicyclo[2.2.2]octane

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene

DMAc Dimethylacetamide

DIPEA *N,N*-diisopropylethylamine

DMSO Dimethylsulfoxide

DMF *N,N*-dimethylformamide

DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DCE Dichloroethane

DCM Dichloromethane

EDG Electron donating group

EWG Electron withdrawing group

EDX Energy Dispersive X-ray analysis

equiv. equivalent

EPR Electron Paramagnetic Resonance

ESI–MS Electron Spray Ionization-Mass Spectrometry

FT-IR Fourier transformed infra-red spectroscopy

g gram

GO Graphene oxide

HRMS High Resolution Mass Spectrometry

h hour(s)

HOMO Highest Occupied Molecular Orbital

ICP-AES Inductively Coupled Plasma Atomic Emission Spectroscopy

IP Isopropanol

LUMO Lowest Unoccupied Molecular Orbital

MCIP Mesoporous covalent imine porous material

PI-COF Polyimide covalent organic framework

mmol milli mole(s)

MHz Mega-Hertz

Me Methyl

m multiplet

mg milli gram(s)

MS Molecular Sieves

mL milli Litre(s)

m/z Atomic mass units per charge

nm nano metre(s)

NCTS *N*-cyano-*N*-phenyl-*p*-toluenesulfonamide

NIS *N*-iodosuccinimide

NP nanoparticle

NHC *N*-heterocyclic carbene

NMR Nuclear Magnetic Resonance spectroscopy

ppm parts per million

1,10-Phen 1,10-Phenanthroline monohydrate

PEG Polyethylene glycol

p-XRD Powder X-ray diffraction analysis

SHE Standard Hydrogen Electrode

TBACN Tertiarybutylammonium cyanide

TBAA Tetrabutylammonium acetate

NIS *N*-iodosuccinimide

rt room temperature

SB Schiff base

SPR Surface Plasmon Resonance

SEM Scanning Electron Microscope

TEM Transmission Electron Microscope

TLC Thin Layer Chromatography

TMSCN Trimethylsilyl cyanide

TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl

TMPDA *N,N,N',N'*-tetramethyl-1,3-diaminopropane

TMEDA Tetramethylethylenediammine

TD-DFT Time Dependent Density Functional Theory

UV-Vis Ultra violet-visible

WEBPA Water Extract of Banana Peel Ash

w.r.t with respect to

XPS X-ray Photoelectron Spectroscopy

List of Schemes

Scheme No.	Scheme Caption	Page No.
Chapter 1		
1.1	Ullmann and Goldberg reaction	1
1.2	Pioneering works on cyanation	5
1.3	Cu-catalyzed synthesis of aryl nitriles with NaCN	9
1.4	Synthesis of 4-Cyano-2,6-dimethylphenol	10
1.5	Cyanation of α -bromocarboxamides with Zn(CN) $_{\scriptscriptstyle 2}$	11
1.6	Cu-catalyzed cyanation with $K_4[Fe(CN)_6]$	11
1.7	Cyanation of arenes with K ₃ [Fe(CN) ₆]	12
1.8	Cyanation of alkenes with TMSCN	13
1.9	Cyanation of α -aryl diazoacetates with acetone cyanohydrin	14
1.10	Cyanation of arylboronic acids with DDQ	14
1.11	Cyanation of secondary aryl halides with TBACN	14
1.12	Cyanation of benzamides with KSeCN	15
1.13	Cyanation of vinyInapthalenes with NCTS	15
1.14	Cyanation of arenes with acetonitrile	16
1.15	Cyanation of aryl iodides with malononitrile	17
1.16	Cyanation of 2-Phenylpyridines with AIBN	18
1.17	Cyanation with ethyl(ethoxymethylene)cyanoacetate	18
1.18	Cyanation with of 2-Phenylpyridines benzyl cyanide	19
1.19	Cyanation of terminal alkynes with cyanogen iodide	20
1.20	Cyanation of 2-Phenylpyridines with DMF	21
1.21	Cyanation of aryl iodides with formamide	21
1.22	Representative nucleophile-nucleophile cross-coupling	24
1.23	First discovery of Chan–Lam cross-coupling reaction	25
1.24	Examples of arylations with boronic acid derivatives	28
1.25	Electrochemical Chan-Lam cross-coupling reaction	30
1.26	Chemoselective Chan-Lam arylation of	30
	Benzimidazoline-2-thione	
1.27	Autocatalytic photo-redox Chan-Lam arylation of free	31
	diarylsulfoximines	
1.28	Chan-Lam N-arylation of imidazole-based heterocycles	32
1.29	Chan-Lam N-arylation of cytisines	32

1.30	Chan-Lam N-arylation of anilines under heterogeneous	33
	catalysis	
1.31	N-arylation of fluoroalkylamines and trifluoroacetamides	33
1.32	Synthesis of intermediate in L-thyroxine synthesis	35
Chapter 2		
2.1	First work on cyanation with nitromethane	58
2.2	Previous works on cyanation with nitromethane	59
2.3	Anomalous observations under the optimized reaction	
	condition	63
2.4	No cyanation of benzyl bromide in the absence of Cu.	65
Chapter 3		
3.1	First work on cyanation with combined source	87
3.2	Mechanism of cyanation with the combination of ammonium	
	and DMF	87
3.3	Cyanation with the combination of $\mathrm{NH_4HCO_3}$ and DMSO	87
3.4	Cyanation with the combination of $\mathrm{NH_4HCO_3}$ and DMF	88
3.5	Cyanation with the combination of $\mathrm{NH_4I}$ and DMF	89
3.6	Cyanation with the combination of urea and DMSO	90
3.7	Investigation of carbon source	95
Chapter 4		
4.1	N-arylation of imidazoles in water	113
4.2	N-arylation of 5-substituted tetrazoles	114
4.3	Chan-Lam cross-coupling with chelating ligands	114
4.4	Chan-Lam cross-coupling reaction through homogeneous	
	catalysis	115
4.5	Tunable N,O-bidentate ligands in Chan-Lam cross-coupling	116
4.6	Chan-Lam <i>N</i> -arylation with Cu ^{II} -DMU catalyst	117
4.7	Synthesis of $[Cu_2(OAc)_4(DMU)_2]$	120
Chapter 5		
5.1	Study of controlled reactions	171
5.2	N N'-diarylation of 2-Δminohenzimidazole	177

List of Figures

Figure No.	Figure Caption	Page No.
Chapter 1		
1.1	Representative nitrile containing drugs	4
1. 2	Possible transformations of nitriles into other useful	
	functionalities	4
1.3	Cyanating sources and their order of toxicity	7
1.4	General reaction mechanism of cyanation	8
1.5	Boronic acid counterparts used in Chan-Lam cross-coupling	26
1.6	Drug molecules achieved through CEL cross-coupling	34
1.7	General mechanism of Chan-Lam cross-coupling reaction	
	(Watson's model)	35
1.8	Common side-products of CEL cross-coupling reactions	37
Chapter 2		
2.1	Examples of indirect cyanating sources	57
2.2	(a) UV-Vis spectra of [black: in situ generated Cu(I) complex;	
	blue: 1,10-Phen; red: Cu(NO ₃) ₂ ·3H ₂ O] in DMSO; (b) Cyclic	
	Voltammogram of the reaction mixture recorded in n-	
	Bu ₄ NCIO ₄ /DMSO; (c) X-band EPR spectra of [blue: reaction	
	mixture before the start of reaction; red: reaction mixture at	
	the end of reaction i.e. 16 hours] in DMSO at 100 K.	64
2.3	Plausible mechanism of cyanation	65
2.4	Potential energy surfaces depicting the generation of HCN from	
	nitromethane at RPBE/DNP level of theory	67
2.5	TD-DFT spectrum of $[Cu(phen)_2]^+$ complex at RPBE/DNP level of	68
	theory	
2.6	(a) Metal-centered HOMO of [Cu(phen) ₂] ⁺ ; (b) Ligand-centered	
	LUMO of [Cu(phen) ₂] ⁺	68
2.7	Optimized geometries of all the species involved in the	
	generation of HCN from nitromethane at RPBE/DNP level of	
	theory (ball and stick model).	70
2.8	¹ H NMR spectrum of 13i in CDCl ₃ (400 MHz, 298 K)	77
2.9	¹³ C NMR spectrum of 13i in CDCl ₃ (100 MHz, 298 K)	77

2.10	¹ H NMR spectrum of 13j in DMSO– d_6 (400 MHz, 298 K)	78
2.11	13 C NMR spectrum of 13j in DMSO– d_6 (100 MHz, 298 K)	78
Chapter 3		
3.1	Combined sources of cyanation	86
3.2	Representative work on cyanation with combination sources	90
3.3	Controlled experiments for cyanation with CAN-DMF	95
3.4	Plausible mechanism	96
3.5	XPS Study of oxidation state of Cerium	97
3.6	¹ H NMR spectrum of 23n in CDCl ₃ (400 MHz, 298 K)	106
3.7	13 C NMR spectrum of 23n in CDCl ₃ (100 MHz, 298 K)	106
3.8	¹ H NMR spectrum of 23m in CDCl₃ (400 MHz, 298 K)	107
3.9	13 C NMR spectrum of 23m in CDCl ₃ (100 MHz, 298 K)	107
Chapter 4		
4.1	Some bioactive molecules with C-N bonds	112
4.2	Commonly employed urea ligands	117
4.3	ORTEP of compound E with 50% probability ellipsoid.	121
4.4	Site-selective post modifications of APIs	130
4.5	1 H NMR spectrum of 160 in DMSO- d_{6} (400 MHz, 298 K)	148
4.6	13 C NMR spectrum of 16o in DMSO– d_6 (100 MHz, 298 K)	148
4.7	1 H NMR spectrum of 18I in DMSO- d_{6} (400 MHz, 298 K)	149
4.8	13 C NMR spectrum of 18I in DMSO– d_6 (100 MHz, 298 K)	149
4.9	1 H NMR spectrum of 20j in DMSO- d_{6} (400 MHz, 298 K)	150
4.10	13 C NMR spectrum of 20j in DMSO– d_6 (100 MHz, 298 K)	150
Chapter 5		
5.1	Formation of graphitic carbon nitride from s-triazine and tri-s-	162
	triazine	
5.2	Possible replacements of oxygen atom in graphitic carbon	
	nitride surface	162
5.3	TEM images of: (a) Cu(0) NPs decorated on $g-C_3N_4O$ surface; (b)	
	HRTEM image of $Cu(0)/g$ - C_3N_4O (inset shows the lattice	
	fringes); (c) SAED pattern for Cu(0)/g-C ₃ N ₄ O; (d) Particle size	
	distribution curve of Cu(0)/g-C ₃ N ₄ O	164
5.4	p-XRD pattern of (a) bulk g-C ₃ N ₄ O; (b) Cu(0)/g-C ₃ N ₄ O	165
5.5	(a) FT-IR spectra of [red: bulk g-C ₃ N ₄ O; blue: Cu(0)/g-C ₃ N ₄ O]; (b)	166

	UV-vis absorption spectra of [red: bulk g-C ₃ N ₄ O; blue: Cu(0)/g-	
	C_3N_4O] in EtOH; (c) EDX plot of $Cu(0)/g-C_3N_4O$; (d) N_2	
	adsorption-desorption isotherm of $\text{Cu}(0)/\text{g-C}_3\text{N}_4\text{O}$ at 77 K (inset	
	shows the pore size distribution curve of $Cu(0)/g-C_3N_4O)$	
5.6	(a) Full scan survey XPS spectrum of $\text{Cu}(0)/\text{g-C}_3\text{N}_4\text{O}$ and the	
	corresponding high-resolution deconvoluted XPS spectra of (b)	
	Cu 2p; (c) C 1s; (d) N 1s; (e) O 1s and (f) deconvoluted Cu LMM	
	Auger spectrum of Cu(0)/g-C ₃ N ₄ O	167
5.7	Plausible Mechanism	172
5.8	Recyclability of $Cu(0)/g-C_3N_4O$	173
5.9	Study of stability (time-resolved) of the catalyst $Cu(0)/g-C_3N_4O$	174
5.10	High-resolution deconvoluted XPS spectra of (a) Cu 2p and (b)	
	O 1s of recycled $Cu(0)/g-C_3N_4O$ catalyst; and (c) deconvoluted	
	Cu LMM Auger spectrum of recycled Cu(0)/g-C ₃ N ₄ O catalyst	
	after the fifth run.	174
5.11	(a) bulk g-C ₃ N ₄ O; (b) Lyophilized g-C ₃ N ₄ O; (c) Cu(0)/g-C ₃ N ₄ O	183
5.12	1 H NMR spectrum of 3g in DMSO– d_{6} (400 MHz, 298 K)	197
5.13	13 C NMR spectrum of 3g in DMSO– d_6 (100 MHz, 298 K)	197
5.14	¹ H NMR spectrum of 5d in DMSO– d_6 (400 MHz, 298 K)	198
5.15	13 C NMR spectrum of 5d in DMSO– d_6 (100 MHz, 298 K)	198
5.16	¹ H NMR spectrum of 7a in DMSO– d_6 (400 MHz, 298 K)	199
5.17	13 C NMR spectrum of 7a in DMSO– d_6 (100 MHz, 298 K)	199
Chapter 6		
6.1	Brief representations of experimental works	212
6.2	Schematic representation of future scope with aryl nitriles	214

List of Tables

Table No.	Table Title	Page No.
Chapter 1		
1.1	Classification of cyanating sources	22
1.2	Timeline of arylating agents used in Cu–catalyzed C–N cross-	24
	couplings	
1.3	Target nucleophiles employed in Chan-Lam cross-coupling	29
Chapter 2		
2.1	Initial investigation of reaction conditions for the	
	Cu(I)-catalyzed cyanation of 4-lodoanisole (12a) with	
	nitromethane (2)	61
2.2	Scope exploration of the Cu ^l -catalyzed cyanation of aryl iodides	
	and bromides (12) with nitromethane (2) as the cyanating	
	source.	62
2.3	Absolute energies and relative energies of the steps involved in	
	the generation of HCN from nitromethane at RPBE/DNP level of	
	theory. Values are in kcal/mol at 100 °C.	69
Chapter 3		
3.1	Initial screening of reaction conditions	92
3.2	Effect of varying amounts of CAN and Cu(OTf) ₂ for cyanation of	
	aryl iodides and bromides	93
3.3	Scope exploration of Cu ^{II} -catalyzed cyanation of aryl iodides	
	and bromides with CAN-DMF	94
Chapter 4		
4.1	Investigation of reaction conditions for the Chan-Lam cross-	
	coupling reaction between aniline (15) and phenylboronic acid	
	(1)	119
4.2	Scope exploration for the Chan-Lam cross-coupling of	
	arylboronic acids (1) with anilines (15)	122
4.3	Investigation of reaction conditions for the Chemoselective	
	Chan-Lam cross-coupling of phenylboronic acid (1a) with	
	3-Aminophenol	123
4.4	Scope exploration for the Chemoselective Chan-Lam cross-	125

	coupling of arylboronic acids (1) with 3-Aminophenols	
4.5	Investigation of reaction conditions for the Chan-Lam	
	cross-coupling of Phenylboronic acid pinacol ester (1a-BPin)	
	with Benzamide (19a)	126
4.6	Scope exploration for the Chan-Lam cross-coupling of	
	arylboronic acid pinacol esters (1-BPin) with primary amides	128
4.7	Crystallographic parameters of E	134
Chapter 5		
5.1	Investigation of reaction conditions for the Chan-Lam	
	N-arylation of aniline (2b) with 4-Methoxyphenylboronic acid	
	(1a)	169
5.2	Scope exploration of the Chan–Lam N–arylation of anilines (2)	
	with phenylboronic acids (1)	170
5.3	Investigation of reaction conditions for the Chan-Lam	
	N-arylation of 4(5)-Methyl-1 H -imidazoles (4a) with	
	4-Methoxyphenylboronic acid (1a)	175
5.4	Scope exploration of the Chan–Lam N-arylation of 1H-	
	imidazoles and 1 <i>H</i> -benzimidazoles (4) with phenylboronic acids	
	(1) .	176
5.5	Investigation of reaction conditions for the Chan-Lam N-	
	arylation of Indole (6a) with phenylboronic acid (1b)	178
5.6	Scope exploration of the Chan-Lam N-arylation of Indoles (6)	
	with phenylboronic acids (1)	179
5.7	Comparative study of $\text{Cu}(0)/\text{g-C}_3\text{N}_4\text{O}$ w.r.t. other benchmark	
	catalysts for the Chan-Lam arylation of anilines with	
	phenylboronic acids developed in recent years	180