Dedicated to My Family, Friends and Well Wishers Who Supported and Endured Me

Tezpur University CERTIFICATE

This is to certify that the thesis entitled "*Exergetic performance analysis of MHD (Magnetohydrodynamics) and MHD integrated gas turbine power plant*" submitted to the School of Engineering, Tezpur University in part fulfillment for the award of the degree of Doctor of Philosophy in Mechanical Engineering is a record of research work carried out by Mr. Prabin Haloi under my supervision and guidance.

All help received by him from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date:

Place:

Supervisor (Prof. Tapan Kr. Gogoi)

Declaration

I do hereby declare that the matter embodied in this thesis is the result of study and investigations carried out by me in the Department of Mechanical Engineering, Tezpur University, Tezpur, India under the guidance of Professor Tapan Kr. Gogoi, Professor, Department of Mechanical Engineering, Tezpur University.

In keeping with the general practice of reporting scientific observations, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

Date:

Place:

Prabin Haloi

ACKNOWLEDGMENT

It gives me immense pleasure to express my sincere gratitude to my supervisor, Professor Tapan Kr. Gogoi, for his precious suggestion, guidance and decisive insights during the entire term of my Ph.D. research. His constant motivation, support and the argue to keep myself focused has undoubtedly played a key role towards the completion of this research work in time.

I wish to express my deepest gratitude to Prof. Manuj Kumar Hazarika, Prof. Santanu Sarma, Prof. Tridip Sarmah, Dr. Paragmoni Kalita, Dr. Sanjib Banerjee, Prof. Dilip Datta, and to all my departmental colleagues for their helpful suggestions time to time. I express my thanks to all the members who were in association with the doctoral committee.

I am also very thankful to Tezpur University for allowing me to pursue my research and helping me to enhance my knowledge in this field of work.

I would like to convey my sincere regards to all the contributors whose work towards developing the field of MHD in its various aspects has been a constant source of inspiration to me. Going through such contributions has really helped in understanding MHD in detail and has encouraged me to undertake atleast a small research attempt in MHD in the form of my Ph.D work.

Last but not the least, I would like to convey my heartfelt thanks to my family members for their understanding, patience and support without which this work would not have been accomplished.

(Prabin Haloi)

TABLE OF CONTENTS

Contents	Page No.
Dedication	ii
Abstract	iii-vii
Certificate	viii
Declaration	ix
Acknowledgement	Х
Table of Contents	xi
List of Chapters	xii-xx
List of Tables	xxi-xxii
List of Figures	xxiii-xxiv
Nomenclature	xxv-xxix

Table No.	Description	Page no.
Table 3.1.	Determination of mass flow rates, HHV and thermal input	55
Table 3.2.	Computing nozzle exit Mach number	58
Table 3.3.	Computation of nozzle parameters	59
Table 3.4.	Determination of MHD system parameters	59
Table 4.1.	Determination of fuel-air ratio, HHV, LHV, chemical exergy and chemical exergy ratio	75
Table 4.2.	Mass flow rates, temperature and pressure of flow streams for the MHD plant	75
Table 4.3.	Energy and exergy rates of the flow streams of the MHD plant	76
Table 4.4.	Component-wise energy loss and exergy destruction rates of the MHD plant	77
Table 4.5.	Compressor power, generator power. net power output, thermal efficiency and exergetic efficiency of the MHD plant	78
Table 5.1.	Molar specific heats and specific molar enthalpies of dissociated MHD combustion product species (kJ/kmol) at the states 6 and 7	96
Table 5.2.	Molar specific heats and specific molar enthalpies of undissociated MHD combustion product species (kJ/kmol) at the states 6 and	96
Table 5.3.	Specific molar entropies of dissociated MHD combustion product species (kJ/kmol-K) at the states 6 and 7	97
Table 5.4.	Specific molar entropies of undissociated MHD combustion product species (kJ/kmol-K) at the states 6 and 7	97
Table 5.5.	Mass flow rate, temperature and pressure at various state points of the MHD plant	104
Table 5.6.	Energy and exergy rates at various state points of the MHD plant in MW	105
Table 5.7.	Component-wise exergy flow rate, exergy destruction rate and exergetic efficiencies of the MHD plant	106
Table 5.8.	Mass flow rate, temperature, pressure, energy and exergy rates at the various state points of the GT plant	107
Table 5.9.	Component-wise exergy flow rate, exergy destruction rate and exergetic efficiencies of the GT plant	108

LIST O F TABLES

Table 5.10.	Comparison of exergy based results with molecular and ionized combustion products	109
Table 6.1.	Percentage composition of the constituents of air (<i>assumed</i>) and combustion products (<i>actual</i>)	131
Table 6.2.	Mass fractions of ionic species formed during partial ionization	133
Table 6.3.	Energy and exergy balances for the components of the MHD	135
Table 6.4.	Assumptions of hypothetical, actual and unavoidable conditions	139
Table 6.5.	Mass flow rate, state properties, energy and exergy rates at various states of the standalone MHD power generation system	140
Table 6.6.	Results of standard exergy analysis for the units of the MHD system	142
Table 6.7.	Splitting of exergy destruction in the <i>j</i> th unit into its main	143
	portions	
Table 6.8.	Mexogenous exergy destruction in the <i>j</i> th unit of the MHD system	144
Table 6.9.	Classifying exergy destruction in the <i>j</i> th unit into the sub-	145
Table 6.10.	portions Comparison of mass flow rates and exergy rates between Ref. and present study	150
Table 6.11.	Results of validation of the present study	150

LIST OF FIGURES

Figure No.	Figure Name	Page No.
Fig. 1.1.	Linear (continuous) generator	11
Fig. 1.2.	Segmented Faraday generator	11
Fig. 1.3.	Diagonal type MHD generator	11
Fig. 1.4.	Hall type MHD generator	11
Fig. 1.5.	Disk type MHD generator	12
Fig. 2.1.	Coal-fired MHD-steam turbine combined cycle with O_2 enrichment of MHD air	34
Fig. 2.2.	Three-level open-cycle MHD combined system	34
Fig. 2.3.	Three-level closed-cycle MHD combined system	35
Fig. 2.4.	MHD-GT-ST combined cycle with tail gasification	35
Fig. 3.1.	Schematic of a typical MHD power plant	53
Fig. 3.2.	Variation in nozzle exit flow Mach number with area ratio	60
Fig. 3.3.	Variation in nozzle exit temperature in K with change in exit	61
C	Mach number	
Fig. 3.4.	Variation in nozzle exit gas velocity with Mach number	61
Fig. 3.5.	Variation in maximum power density with nozzle area ratio	62
Fig. 3.6.	Variation in maximum voltage with Mach number	63
Fig. 4.1.	Schematic of the MHD power generation system	70
Fig. 4.2.	Equipment's thermal efficiency vs rate of energy loss of the	
	MHD plant	79
Fig. 4.3.	Equipment's exergy efficiency vs rate of exergy destruction of	
	the MHD plant	79
Fig. 5.1.	Schematic of the MHD gas-turbine power plant	91
Fig. 5.2.	Station-wise energy rates of the gas turbine in MW	111
Fig. 5.3.	Station-wise exergy rates of the gas turbine in MW	111
Fig. 5.4.	Station wise exergy destruction rates of the gas turbine in MW.	113
	Schematic of stand-alone MHD power plant	128
Fig. 6.1. Fig. 6.2.	Division of exergy destructions inside the <i>j</i> th unit of the system	137
Fig. 6.3.	Value of exergy destruction in the <i>j</i> th unit of the MHD system	146
0		

Fig. 6.4.	Comparing endogenous exergy destruction rate in the <i>j</i> th unit of	147
Fig. 6.5.	the MHD system in <i>MW</i> Percentage comparison of the endogenous exergy destruction in	148
	the <i>j</i> th unit of the MHD system	
Fig. 6.6.	Distribution of overall avoidable exergy destruction rate into	148
Fig. 6.7.	endogenous and exogenous portions of the MHD system in <i>MW</i> Distribution of overall unavoidable exergy destruction rate into	149
0	endogenous and exogenous portions of the MHD system in MW	

Nomenclature	
A _e	Nozzle exit area (m ²)
<i>A</i> *	Nozzle throat area (m ²)
\bar{c}_p	Molar specific heat (kJ kmol ⁻¹ K ⁻¹)
Ė	Rate of energy transfer (MW)
$\Delta ar{g}^0$	Standard Gibbs free energy change (kJ kmol ⁻¹)
$\Delta_{\!f} ar{g}^0$	Standard Gibbs energy of formation (kJ kmol ⁻¹)
h	Plank's constant (J-sec)
\overline{h}	Molar specific enthalpy (kJ kmol ⁻¹)
$ar{h}^0_f$	Molar specific enthalpy of formation (kJ kmol ⁻¹)
H _p	Enthalpy of products (kJ)
H _r	Enthalpy of products (kJ)
<i>M</i> *	Mach number at throat
\dot{m}_a	Mass flow rate of air (kg s^{-1})
M _a	Molecular mass of air (kg kmol ⁻¹)
M _e	Nozzle exit Mach number
\dot{m}_f	Mass flow rate of fuel (kg s ^{-1})
M_{f}	Molecular mass of fuel (kg kmol ⁻¹)
\dot{m}_{plasma}	Mass flow rate of plasma (kg s^{-1})
\dot{m}_{seed}	Mass flow rate of seeding material $(kg s^{-1})$

p_e	Exit pressure (bar)
p_0	Stagnation pressure (bar)
\dot{Q}_{th}	Rate of thermal heat input (MW)
R _u	Universal gas constant (8.314 kJ kmol ⁻¹ K ⁻¹)
Ī	Absolute molar entropy (kJ kmol ⁻¹ K ⁻¹)
\overline{S}	Molar specific entropy (kJ kmol ⁻¹ K ⁻¹)
\bar{s}^0	Standard molar specific entropy (kJ kmol ⁻¹ K ⁻¹)
T _{adia}	Adiabatic flame temperature (K)
T _e	Nozzle exit temperature (K)
Ve	Nozzle exit velocity (m s^{-1})
₩ _{AC}	Rate of air compressor work (MW)
₩ _{cv}	Work done rate of the control volume (MW)
\dot{w}_e	Rate of electrical work output of the generator (MW)
Ø _{dry}	Ratio of chemical exergy to net calorific value of dry coal

Greek Letters and symbols

∇	Del operator
$\phi_{\scriptscriptstyle B}$	Magnetic flux (Tesla)
$ ho_{n,e}$	Electron number density (cm ⁻¹)
ω_s	Statistical weight (atoms/electrons/ions per cubic centimeter)
σ	Electrical conductivity (Siemens/m)
Σ	summation

 κ Boltzmann constant (J K⁻¹)

Subscripts

а	atoms
ACT	actual
comb	combustion
CV	control volume
e	electrons
f	formation
F	fuel
i	ions
Н	hypothetical
${\cal H}$	heavy particles
L	loss
min	minimum
Р	product
tot	total
у	instantaneous

Abbreviation

AC	Air Compressor
APH	Air Preheater
CC	Combustion Chamber
CCPP	Combined Cycle Power plant

- CV Control Volume
- DSU Desulphurization Unit
- EA Excess Air
- GEN Generator
- GT Gas Turbine
- GTCC Gas Turbine Combined Cycle
- HHV Higher Heating Value
- HPT High Pressure Turbine
- HRSG Heat Recovery Steam Generator
- ICE Internal Combustion Engine
- LES Large Eddy Simulation
- LHV Lower Heating Value
- LMMHD Liquid Metal Magnetohydrodynamic
- MHD Magnetohydrodynamic
- MHDCC MHD Combustion Chamber
- MHD-GT MHD-Gas Turbine
- MHD-GT-ST MHD-Steam Turbine-Gas Turbine
 - MILD Moderate or Intense Low oxygen Dilution
 - NCV Net Calorific Value
 - ORC Organic Rankine Cycle
 - OTSG Once Through Steam Generator

PaSR	Partially Stirred Reactor
PERC	Pittsburgh Energy Research Center
SSSF	Steady State Steady Flow
SRU	Seed Recovery Unit
TIT	Turbine Inlet Temperature