
3
Study of one zero texture Yukawa matrix in

a flavor symmetric scotogenic model

In this chapter, we have realized the scotogenic model with the help of discrete flavor

symmetry A4 ⊗Z4. We have obtained three one zero textures of Yukawa coupling matrices

from the model and have studied its impact on neutrino phenomenology and related aspects

of cosmology. On the basis of µ − τ symmetry, we have further discarded two structures

of one zero texture Yukawa coupling matrix. We further analyze if the effective mass of

active neutrinos obtained by the virtue of the Yukawa coupling matrix is consistent with the

KamLAND-Zen limit for 0νββ . Also different lepton flavor violating (LFV) proceses such

as lα −→ lβ γ and lα −→ 3lβ are implemented and their influence on neutrino phenomenology

is studied corresponding to the Yukawa coupling matrix. The entire work is carried out

considering the dark matter mass (MDM) in the region 450−750 GeV. We have also obtained

some significant results for baryon asymmetry of the Universe in agreement with the one
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zero textures of the coupling matrices. Furthermore, interesting results for relic abundance

on the basis of distinct mass splittings between the inert scalars.

3.1 Introduction

In our work, we mainly focus on the radiative seesaw mechanism which is of much signifi-

cance in connecting neutrino and dark matter phenomenology. We consider the scotogenic

model[13] which is an extension of the SM by three heavy neutral singlet fermions and an

inert scalar doublet. These extra fields in the extension are experimentally observable at the

forthcoming Large Hadron Collider (LHC), with an important implication that the lightest

of them could be a significant candidate for the dark matter of the Universe. We basically

realise the generic scotogenic model with the help of discrete flavor symmetry A4 ⊗Z4[238].

With proper choice of vacuum expectation value (vev), allowed by A4 symmetry[97], we

are able to generate three structures of Yukawa coupling matrices with one zero texture. We

further investigate the phenomenology related with these matrices in both neutrino as well

as cosmology sector. A comparative study between the three cases is carried out, thereby

determining which one could be viable in satisfying the bounds from various observations.

Neutrinoless double beta decay process[223, 224] is evaluated to check if the effective mass

of the active neutrinos abide by the limit given by KamLAND-Zen[113, 114]. Consecutively,

we have studied the lepton flavor violating(LFV) proceses such as lα → lβ γ and lα → 3lβ , to

examine their impression on the neutrino phenomenology. The most stringent bounds on LFV

comes from the MEG experiment[215] giving limit on Br(µ → eγ)< 4.2×10−13. In case of

lα → 3lβ decay, bound from SINDRUM experiment[239] is set to be Br(lα → 3lβ )< 10−12.

We have analysed N1 leptogenesis[67, 68, 240] in all the three cases of Yukawa coupling

matrices as it is has a direct consequence in the generation of baryon asymmetry of the

Universe. The mass of the lightest heavy neutral singlet fermion is of TeV scale, which has

a lower limit M1 ≃ 10 TeV[68, 211]. Thus, a low scale leptogenesis, generally termed as
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vanilla leptogenesis is also possible in a scotogenic model unlike other seesaw mechanisms.

Our work is primarily carried out with the dark matter candidate (in our case, lightest of the

inert scalar doublet) having mass in the regime 450−750 GeV. However, as seen in various

literatures[13, 33, 199], in the IHDM desert, i.e. MW < MDM ≤ 550 GeV, the generation

of relic abundance is prohibited. But, with proper choice of the mass splitting between

the scalars and fine tunning of the quartic coupling, it is possible to get the observed relic

abundance for 400 ≤ MDM ≤ 550 GeV.

We know that the Yukawa coupling in scotogenic model responsible for generating neu-

trino mass and freeze-out of dark matter, also significantly persuade lepton flavor violating

processes such as lα → lβ γ and µ −→ e conversion at one loop level. In order to naturally

suppress these decays, we can consider the choice of parameters, mainly the elements of

Yukawa coupling matrix to play a vital role. One such possibility is obtained by assigning

two zeroes simultaneously in the Yukawa coupling matrices. However, this choice leads to

a disfavoured range of the UPMNS mixing angles according to the 3σ global fit data[241].

Therefore, we take the assumption of one zero texture in Yukawa coupling matrix to ob-

tain a supressed lepton flavor violating processes simultaneously obeying the 3σ range

for neutrino oscillation parameters. Furthermore, we proceed the entire phenomenological

study taking into consideration of the one zero texture Yukawa coupling matrix which is

more preferable as also studied in[241, 242]. In various neutrino mass models as studied in

the literatures[243, 244], the allowance of two zero texture on basis of neutrino oscillation

parameters is obtained. It is seen to abide by the KamLAND-Zen limit for effective neutrino

mass as well. Also as mentioned in[243], where the phenomenological study of texture

zeroes in (2,3) inversee seesaw is carried out, we see that the higher texture zero structures are

disallowed, whereas all the possible structures of texture two zero is successful in producing

the desired results for 0νββ and relic abundance of dark matter candidate.
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We have further categorised the paper into four sections which are as follows. Sec.(3.2)

includes the flavor symmetric scotogenic model. We analyse the model by verifying it under

the various phenomenological constraints as mentioned in sec.(3.3) Phenomenologies such

as neutrinoless double beta decay, lepton flavor violation, leptogenesis, and dark matter

are therefore explicitly mentioned under its subsections (3.3.1), (3.3.2), (3.3.3) and (3.3.4)

respectively. We finally show the results and numerical analysis of our work in sec.(3.4),

finally followed by the conclusion in sec.(3.5).

3.2 Flavor symmetric scotogenic model

With the help of discrete flavor symmetry, in our case A4 ⊗ Z4, we realise the minimal

scotogenic model and obtain the neutrino mass at 1-loop level with the DM candidate

contained. The discrete symmetries, i.e A4 ⊗Z4 imposes significant bounds on the Yukawa

coupling matrix which further impacts the model parameters. In our work, we obtain three

cases of one zero texture Yukawa coupling matrix by the virtue of the choice of the vev.

Furthermore, using these distinct Yukawa coupling matrices, we determine the neutrino mass

and analyse the phenomenologies associated with it. The particle content and their respective

charges corresponding to the discrete symmetries are given in Table (3.1). We have the

Field l eR µR τR φ η χ χ
′

(SU(2),U(1)Y ) (2,-1/2) (1,1) (1,1) (1,1) (2,1/2) (2,1/2) (1,0) (1,0)
A4 3 1 1

′′
1
′

1 1 3 3
Z4 1 i i i 1 1 1 i

Field χ
′′

Φ κ κ
′

N1 N2 N3

(SU(2),U(1)Y ) (1,0) (1,0) (1,0) (1,0) (1,1) (1,1) (1,1)
A4 3 3 1 1

′
1 1

′
1

Z4 −1 −i 1 −1 1 −i −1

Table 3.1 Fields and their respective transformations under the symmetry group of the model.



3.2 Flavor symmetric scotogenic model 77

A4 ⊗Z4 invariant Lagrangian for the lepton sector as follows:

L ⊃ye

Λ
(l̄φΦ)eR +

yµ

Λ
(l̄φΦ)µR +

yτ

Λ
(l̄φΦ)τR +

y1

Λ
(l̄ηχ)N1 +

y2

Λ
(l̄ηχ

′
)N2 +

y3

Λ
(l̄ηχ

′′
)N3+

1
2

ω1κN̄c
1N1 +

1
2

ω2κ
′
N̄c

2N2 +
1
2

ω3κN̄c
3N3

(3.1)

With the choice of vacuum expectation value of the flavon Φ, i.e. < Φ >= (u,0,0)[97],

we obtain the flavor structure for charged lepton coupling matrix to be a diagonal one. The

charged lepton mass matrix is given by:

Ml =
< φ > u

Λ

 ye 0 0

0 yµ 0

0 0 yτ

 (3.2)

Because of the additional Z4 symmetry, the right handed neutrino mass matrix will be

diagonal one with < κ >=< κ
′
>=< u >.

MR =

 ω1u 0 0

0 ω2u 0

0 0 ω3u

 , (3.3)

where ω1, ω2 and ω3 are the couplings between the right handed neutrinos and the scalar

fields κ and κ
′
(i.e. they are the Yukawa couplings). As we have mentioned earlier that we

tend to obtain three one zero texture Yukawa coupling matrices from this model. This is

possible depending on the choice of vev assigned to the flavons χ , χ
′
and χ

′′
. The Yukawa

coupling matrices that we showcase below are a manifestation of the Dirac mass matrices.

Case I: Incorporating the following flavon allignments: < χ >= (0,−u,u), < χ
′
>= (u,u,u)

and < χ
′′
>= (u,u,u) in eq.(3.1), we obtain a zero term in Y

′
11 position given by:

Y
′
=

 0 b c

−a b c

a b c

 , (3.4)
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where a = y1
u
Λ

, b = y2
u
Λ

and c = y3
u
Λ

.

Case II: We obtain a zero in the Y
′′
13 position of the Yukawa coupling matrix from eq.(3.1) with

a slight alteration in the assignment of vev allignment of the flavons as such: < χ >= (u,u,u),

< χ
′
>= (u,u,u) and < χ

′′
>= (0,−u,u). The Yukawa coupling matrix takes the form:

Y
′′
=

 a b 0

a b −c

a b c

 . (3.5)

Case III: Again with the choice of vev allignments given by: < χ >= (u,u,u), < χ
′
>=

(0,−u,u) and < χ
′′
>= (u,u,u), the term in the Y

′′′
22 position turns out to be zero. Thus, the

Yukawa coupling matrix in this case is expressed as:

Y
′′′
=

 a b c

a 0 c

a −b c

 . (3.6)

Considering these three cases for the Yukawa coupling matrices, we carry out our analysis

in various sector. Incorporating the three cases of Yukawa coupling matrix in eq.(2.7), we

obtain a µ − τ symmetry for Case I and Case II. A broken µ − τ symmetry is obatined

naturally only in Case III. Thus, we study the phenomenology for Case III, as it is the only

viable stucture of one zero texture Yukawa coupling matrix in our model. The elements of

the light neutrino mass matrix incorporating Case III are as follows:

Mν
11 = 1/16π

2[a2M1[L1(m2
η0

R
)−L1(m2

η0
I
)]+b2M2[L2(m2

η0
R
)−L2(m2

η0
I
)]+c2M3[L3(m2

η0
R
)−L3(m2

η0
I
)]
]

(3.7)

Mν
12 = 1/16π

2[a2M1[L1(m2
η0

R
)−L1(m2

η0
I
)]+ c2M3[L3(m2

η0
R
)−L3(m2

η0
I
)]
]

(3.8)



3.3 Constraints on the model 79

Mν
13 = 1/16π

2[a2M1[L1(m2
η0

R
)−L1(m2

η0
I
)]−b2M2[L2(m2

η0
R
)−L2(m2

η0
I
)]+c2M3[L3(m2

η0
R
)−L3(m2

η0
I
)]
]

(3.9)

Mν
22 = 1/16π

2[a2M1[L1(m2
η0

R
)−L1(m2

η0
I
)]+ c2M3[L3(m2

η0
R
)−L3(m2

η0
I
)]
]

(3.10)

Mν
23 = 1/16π

2[a2M1[L1(m2
η0

R
)−L1(m2

η0
I
)]+ c2M3[L3(m2

η0
R
)−L3(m2

η0
I
)]
]

(3.11)

Mν
33 = 1/16π

2[a2M1[L1(m2
η0

R
)−L1(m2

η0
I
)]−b2M2[L2(m2

η0
R
)−L2(m2

η0
I
)]+c2M3[L3(m2

η0
R
)−L3(m2

η0
I
)]
]

(3.12)

3.3 Constraints on the model

3.3.1 Neutrinoless double beta decay

Analysing the neutrino phenomenology of the allowed Yukawa coupling matrix struc-

ture(Case III) in our work, we therefore, calculate the effective mass of the active neutrinos(mββ ).

The experimental technique of detecting the Majorana neutrino mass(which is a combination

of the neutrino mixing matrix and the neutrino mass eigenstates) i.e. neutrinoless double

beta decay(0νββ )[223, 245, 224] includes some well known experiments related to it such

as KamLAND-Zen[113, 114], GERDA[115, 116], KATRIN[246, 59]. Its existence can be

associated with the Majorana neutrinos. The expression for mββ is given by:

mββ =
3

∑
k=1

mk|U2
ek| (3.13)
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where, U2
ek are the elements of the neutrino mixing matrix with k holding up the generation

index. This eq.(3.13) can be further expressed as,

mββ = m1|Uee|2 +m2|Ueµ |2 +m3|Ueτ |2. (3.14)

Calculation of the effective mass has a vital part in determining the possibility of the light

neutrino parameters of a model to hint towards the sensitivity of the ongoing as well as future

experiments.

3.3.2 Lepton Flavor Violation(LFV)

We estimate the viability of the model on basis of various lepton violating processes such as

lα → lβ γ ,lα → 3lβ and µ−e conversion in nuclei[247]. The most robust bound on the models

mainly come from the muon decay experiments and the limits on this decay process i.e.

Br(lα → lβ γ)< 4.2×10−13 is set by the MEG collaboration[215]. Future experiment MEG

II may further improve this bound to a more precised one. SINDRUM experiment[239] gives

a bound on Br(lα → 3lβ ) which is Br(lα → 3lβ )< 10−12. Interestingly a 4 orders improve

on the magnitude of the current bound can be expected from the future Mu3e experiment. In

case of the µ −e conversion of muonic atom, the experiments which essentially focuses on it

are DeeMe[140], Mu2e[141], COMET[143] and PRIME[248]. The sensitivity on the limits

produced from these experiments range from 10−14 to 10−18. A possibility of improving

the current limits on τ in the near future is given by the LHC collaboration, as well as by

B-factories such as Belle II[249].

We now discuss the analytical results of branching ratios of different LFV processes such

as lα → lβ γ ,lα → 3lβ and µ − e conversion in nuclei in case of the scotogenic model.

The branching ratio of lα → lβ γ for radiative lepton decay is given by[212]:

Br(lα → lβ γ) =
3(4π3)αem

4G2
F

|AD|2Br(lα → lβ να ν̄β ). (3.15)
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η+

γ
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lβ

η+

lα

η+
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γ

lα

γ
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Fig. 3.1 The 1-loop Feynman diagrams depicting the decay of lα −→ lβ γ .

Where, GF is the Fermi constant and αem = e2

4π
is the electromagnetic fine structure constant

and e denoting the electromagnetic coupling. The dipole form factor AD is expressed as:

AD =
3

∑
i=1

Y ∗
iβYiα

2(4π)2
1

m2
η+

F2(ρi) (3.16)

with ρi being defined as ρi =
M2

i
m2

η+
and F2(x) is the loop function[212, 238].

The branching ratio for three body decay process like lα → 3lβ [212] is as follows:

Br(lα → 3lβ ) =
3(4π2)α2

em

8G2
F

[
|AND|2 + |AD|2

(
16
3

log
(

mα

mβ

)
− 22

3

)
+

1
6
|B|2 +

(
−2ANDA∗

D +
1
3

ANDB∗− 2
3

ADB∗+h.c
)]

×BR(lα → lβ να ν̄β ).

(3.17)

Considering mβ << mα only in the logarithmic term so that the appearance of an infrared

divergence is refrained. The form factor AD is generated by dipole photon penguins and the

other form factor AND is given by:

AND =
3

∑
i=1

Y ∗
iβYiα

6(4π)2
1

m2
η+

G2(ρi). (3.18)
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Fig. 3.2 The penguin contributions to lα −→ lβ γ , where the wavy lines depicts either a
Z-boson or a photon.

AND is generated by non-dipole photon penguins, whereas B, induced by box diagrams is

given by-

e2B =
1

(4π)2m2
η+

3

∑
i, j=1

[
1
2

D1(ρi,ρ j)Y ∗
jβYjβY ∗

iβYiα +
√

ρiρ jD2(ρi,ρ j)Y ∗
jβY ∗

jβYiβYiα

]
. (3.19)

For the expressions of the functions G2(x), D1(x,y) and D2(x,y) one can refer to[212,

238]. The e Z-boson penguin contributions are negligible as they are suppressed by charged

lepton masses in this model. Also the contribution from Higgs-penguin are not considered as

they too are suppressed. We can express the µ − e conversion rate, normalized to the muon

capture rate by:

CR(µ − e,Nucleus) =
peEem3

µG2
Fα3

emZ4
e f f F2

p

8π2ZΓcapt
×
[
|(Z +N)(g(0)LV +g(0)LS )+(Z −N)(g(1)LV +g(1)LS )|

2

+|(Z +N)(g(0)RV +g(0)RS )+(Z −N)(g(1)RV +g(1)RS )|
2
]
.

(3.20)

Here, Z is the number of protons and N is the number of protons. Ze f f is the effective

atomic charge, Fp is the nuclear matrix element and Γcapt is the total muon capture rate.

Again, pe and Ee are the momentum and energy of electron respectively. We represent g(0)XK

and g(1)XK (X = L,R and K = S,V )by the equations:

g(0)XK =
1
2 ∑

q=u,d,s

(
gXK(q)G

q,p
K +gXK(q)G

q,n
K

)
(3.21)
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g(1)XK =
1
2 ∑

q=u,d,s

(
gXK(q)G

q,p
K −gXK(q)G

q,n
K

)
. (3.22)

The contribution from the effective couplings gXK(q) in scotogenic model are given by:

gLV (q)≈ gγ

LV (q) (3.23)

gRV (q) = gLV (q)|L↔R (3.24)

gLS(q)≈ 0 (3.25)

gRS(q)≈ 0 (3.26)

here, the photon penguins contribution is given by gγ

LV (q). Now the effective coupling

can be expressed as:

gγ

LV (q) =

√
2

GF
e2Qp(AND −AD). (3.27)

where, Qp is the electric charge of the corresponding quark.

3.3.3 Baryon asymmetry of the Universe(BAU)

It is known that baryon asymmetry of the Universe can be produced via the mechanism of

leptogenesis[67] for the out of equilibrium decay of N1 → lη , l̄η∗. In our work, we have

analyzed the observed baryogenesis for a flavor symmetric scotogenic model in order to

check its feasibility in terms of cosmological aspect. In the scotogenic model framework, a

crucial result has been discussed in many literatures[68] which highlights the existence of

a lower bound for the lightest of the RHNs(M1) i.e. about 10 TeV considering the vanilla

leptogenesis scenario[68, 35]. The lepton asymmetry generated is only due to the decay of
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N1 as the decay of N2 and N3 are supressed because of strong washout effects produced by

N1 or N2 and N3 mediated interactions[35]. This occurs as a we consider a mass heirarchy of

the RHN masses, i.e M1 << M2,M3. We consider the RHN masses as M1 = 104 −105 GeV,

M2 = 106 −107 GeV and M3 = 5×107 −108 GeV. Also considering m
η0

R
= 450−750 GeV

and the lightest neutrino mass ml = 10−12 − 10−10 eV, corresponds to the weak washout

regime.

The decay parameter governs the distinction between weak and strong washout regime

which is further an essential component in calculating leptogenesis which is given by

eq.(1.52). Again, we can use the expression for Hubble parameter, H, from eq.(2.21).

The constrained Yukawa couplings calculated from the model have a vital role in the decay

rate equation for N1 which is given by,

Γ1 =
M1

8π
(Y †Y )11

[
1−
(m

η0
R

M1

)2
]2

=
M1

8π
(Y †Y )11(1−η1)

2 (3.28)

The leptogenesis process must occur by the out of equilibrium decay of the RHN, in our

case N1.For a heirarchical mass of RHN, i.e M1 << M2,M3, the leptogenesis produced by

the decay of N2 and N3 are supressed due to the strong washout effects produced by N1 or N2

and N3 mediated interactions[35].The CP asymmetry parameter ε1 in its simplified form is

given by,

ε1 =
1

8π(Y †Y )11
∑
j ̸=1

Im[(Y †Y )2]1 j

[
f (r j1,η1)−

√r j1

r j1 −1
(1−η1)

2
]
, (3.29)

where,

f (r j1,η1) =
√

r j1

[
1+

(1−2η1 + r j1)

(1−η1)2 ln(
r j1 −η2

1
1−2η1 + r j1

)

]
, (3.30)
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and r j1 =
(M j

M1

)2, η1 ≡
(m

η0
R

M1

)2.

The Boltzmann equations for the number densities of N1 and NB−L are as follows [86],

dnN1

dz
=−D1(nN1 −neq

N1
), (3.31)

dnB−L

dz
=−ε1D1(nN1 −neq

N1
)−W1nB−L, (3.32)

respectively. Here, neq
N1

= z2

2 K2(z) is the equilibrium number density of N1, where Ki(z) is

the modified Bessel function of ith type and

D1 ≡
Γ1

Hz
= KN1z

K1(z)
K2(z)

(3.33)

gives the measure of the total decay rate with respect to the Hubble rate, and W1 =
ΓW
Hz is

the total washout rate. We have W1 =W1D +W∆L=2, viz the summation of the washout due

to inverse decays lη , l̄η∗ → N1 (W1D = 1
4KN1z3K1(z)) and the washout due to the ∆L = 2

scatterings lη ↔ l̄η∗, ll ↔ η∗η∗ which is given by,

W∆L=2 ≃
18
√

10MPl

π4gl
√

g∗z2v4 (
2π2

λ5
)2M1m̄ς

2. (3.34)

Here, gl stands for the internal degrees of freedom for the SM leptons, and m̄ς i.e. the

effective neutrino mass parameter is defined as:

m̄ς
2 ≃ 4ς

2
1 m2

1 + ς2m2
2 + ς

2
3 m2

3, (3.35)

where, m,
is are the light neutrino mass eigenvalues and ςk is expressed as:

ςk =
( M2

k

8(m2
η0

R
−m2

η0
I
)
[Lk(m2

η0
R
)−Lk(m2

η0
I
)]
)−1

(3.36)

Now by numerical analysis of eq.(3.31) and eq.(3.32) before the sphaleron freeze-out, we

find the final B−L asymmetry n f
B−L. This is further converted into the baryon-to-photon
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ratio given by:

nB =
3
4

g0
∗

g∗
asphn f

B−L ≃ 9.2×10−3n f
B−L, (3.37)

At the time of final lepton asymmetry production, the effective relativistic degrees of freedom

is given by g∗ = 110.75, whereas at the recombination epoch the effective degrees of freedom

is g0
∗ =

43
11 . The sphaleron conversion factor is given by asph = 8

23 . The cosmological

constraint on the observed BAU(nobs
B ) is found to be (6.04±0.08)×10−10[210] as given by

Planck limit 2018. In our analysis, the free parameters chosen are successful in satisfying the

Planck bound for BAU. As we have also studied LFV for this framework, we look forward to

satisfying the bounds on it while simultaneously generating the observed BAU. The quartic

coupling, λ5 is a significant parameter which can be fine tuned so that the constraints on the

model are obeyed. In our work, we have taken it in the range 10−3 −1 and carried out our

numerical analysis.

3.3.4 Scalar dark matter

As the expansion rate of the Universe becomes more than the pair annihilation rate, the

particles decouples from the cosmic plasma, thereby losing its equilibrium state. On solving

the Boltzmann equation[226, 92], we can obtain the relic densities of the thermally produced

dark matter candidates:

ṅDM +3HnDM =−< σv > (n2
DM − (neq

DM)2), (3.38)

where, the number density of the dark matter candidate and the number density of the dark

matter candidate in thermal equilibrium is denoted by nDM and neq
DM respectively .A simplified

analytical form for the approximation of DM relic abundance is expressed as[227],

Ωh2 ≈ 3×10−27cm3s−1

< σv >
(3.39)
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The corresponding thermal averaged annihilation cross section is further given by[228];

< σv >=
1

8m4
DMT K2

2 (mDM/T )

∫
∞

4m2
DM

σ(s−4m2
DM)

√
sK1(

√
s/T )ds, (3.40)

where, K1 and K2 are the modified Bessel functions, mDM is the mass of dark matter candidate

and T is the temperature. In this A4 ⊗Z4 realisation of the scotogenic model, the lightest of

the neutral component of the scalar doublet η , i.e. η0 is considered to be the dark matter

candidate[33, 199, 200, 73, 72, 201–205, 34, 206, 75, 207, 36]. The effective cross-section

is given by[229]:

σe f f =
N

∑
i, j

< σi jv >
gig j

g2
e f f

(1+∆i)
3/2(1+∆ j)

3/2e(−x f (∆i+∆ j)), (3.41)

with, ∆i =
mi−mDM

mDM
and ge f f = ∑

N
i=1 gi(1+∆i)

3/2e−x f ∆i.

Here, mi is the mass of the heavier inert Higgs doublet. Thus, we can express the

thermally averaged cross section by:

< σi jv >=
x f

8m2
i m2

jmDMK2(
mix f
mDM

)K2(
m jx f
mDM

)
×
∫

∞

(mi+m j)2
σi j(s−2(m2

i +m2
j))

√
sK1
(√sx f

mDM

)
ds.

(3.42)

In our work, we have shown the relic abundance for a certain range of dark matter, i.e

MDM = 450−750 GeV by the usage of MicrOmega 5.0.4[234]. Due to the choice of RHN

masses being heavier than the DM mass, its influence in the dark matter sector is negligible,

i.e. it doesn’t alter the relic abundance generated for the lightest inert scalar.

The parameters playing a crucial role in the generation of relic abundance is the DM-Higgs

coupling (λL) and the inert scalar mass splittings. By appropriate choosing these parameters

we can successfully obtain the correct relic abundance for DM mass, i.e. around 450−500

GeV. We have done a comparative study so as to show how crucial the mass splitting between

the inert scalar can be for the production of observed relic abundance. We have chosen

two cases, ∆Mη± = ∆M
η0

I
= 8 GeV and ∆Mη± = ∆M

η0
I
= 0.9 GeV respectively in fig.(3.4),
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Fig. 3.3 Contour plot between the DM-Higgs coupling λL and DM mass MDM w.r.t the
allowed space of relic abundance of DM. The left panel is for ∆Mη± = ∆M

η0
I
= 8 GeV and

the right panel is for ∆Mη± = ∆M
η0

I
= 0.9 GeV

Fig. 3.4 Variational plot between relic abundance of DM (ΩDMh2) and DM mass(MDM)
with benchmark value λL = 0.00005 for two different values of mass splitting between inert
scalars, i.e. ∆Mη± = ∆M

η0
I
= 8 GeV and ∆Mη± = ∆M

η0
I
= 0.9 GeV.

where we can observe that for small mass splitting the relic is achieved for MDM ∼ 480

GeV, whereas for large mass splitting we get the relic for DM mass above 500 GeV. From

fig.(3.3), we have analysed the parameter space of λL for two different values of scalar mass

splittings which satisfy the Planck limit for relic abundance of DM. The left panel of fig.(3.3)

corresponds to ∆Mη± = ∆M
η0

I
= 8 GeV, where the DM mass satisying the observed relic

abundance limit is above 580 GeV for the values of λL upto 0.08×10−2. Whereas for ∆Mη±

= ∆M
η0

I
= 0.9 GeV, relic abundance is satisfied for MDM ∼ 490− 500 GeV for the same

range of λL as can be seen in the right panel of fig.(3.3).
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3.4 Results and analysis

We have discussed in Sec.(3.2) an A4⊗Z4 extension of the minimal Scotogenic model. By the

choice of three different sets of vev alignment, we are able to show three distinct structures of

Yukawa coupling matrices bearing a zero component in one of the matrix elements. However,

two of the structures can be discarded from the µ − τ symmetry point of view. The first two

cases of one zero texture are seen to take the form of µ − τ symmetry when incorporated

in the mass matrix of the model. We are therefore left with only one structure of one zero

texture Yukawa coupling matrix which breaks the µ − τ symmetry and thus is allowed in the

model.

Fig. 3.5 Variation of the lightest active neutrino mass(ml) with effective mass(mββ ) in Case III
for NH/IH. The KamLAND-Zen limit mββ (eV )∼ 0.1(eV ) is shown by the horizontal(black)
line.

Also, a notable kind of parametrization known as the Casas-Ibarra parametrization [213]

is used in our work to numerical obtain the numerical values of the model parameters. This

also helps us in relating the Yukawa coupling with the light neutrino parameters. The 3σ

values neutrino oscillation parameters are taken from the literature[250].

Y =U
√

Mdiag
ν R†

√
Λ, (3.43)
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Fig. 3.6 We showcase plots of baryon asymmetry w.r.t four parameters namely lightest RHN
mass (M1), quartic coupling (λ5), lightest neutrino mass eigenvalue(ml) and dark matter
mass(MDM)respectively for Case III. The black horizontal line gives the current Planck limit
for BAU.

where R is a complex orthogonal matrix which obeys the condition RT R = 1. We, thus

choose the orthogonal complex matrix R as:

R =

 0 0 1

cosZ −sinZ 0

sinZ cosZ 0

 , (3.44)
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Fig. 3.7 Contour plot showing the parameter space of model parameters a,b and c w.r.t
effective mass(mββ ) for NH for Case III.

Fig. 3.8 Contour plot showing the parameter space of model parameters a,b,c and rotational
angle θ w.r.t effective mass(mββ ) for IH for Case III.

which can be further expressed as:

R =

 0 0 1

θ −
√

1−θ 2 0√
1−θ 2 θ 0

 , (3.45)

where, θ = cosZ. The numerical value of θ is solved for the three different structures of the

Yukawa coupling matrix discussed in section (3.2).

Since Case I and Case II are discarded, we carry out our study only considering Case

III. On interchanging the choice of vev alignment of the flavons χ , χ
′

and χ
′′
, we can

achieve a Yukawa coupling matrix with one zero element at the Y
′′′
22 position as given in

Eq.(3.6). As analysed earlier in the previous subsections, we follow a similar study for

this particular structure of Y
′′′

. From fig.(3.5), we see that in the plot for NH, all the points
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Fig. 3.9 Variation of Br(µ → eγ) and Br(µ → 3e) with ρN( ρN = ( MN
m

η+
)2)(left panel), plot

depicting Br(µ → eγ) and Cr(µ → e,Ti) as a function of ρN(middle) and Br(µ → eγ) and
Br(µ → 3e) w.r.t the lightest neutrino mass eigenvalue(ml) is shown in the right panel in
Case III for NH. The upper bounds are shown by the horizontal lines.

Fig. 3.10 Variation of Br(µ → eγ) and Br(µ → 3e) with ρN( ρN = ( MN
m

η+
)2)(left panel), plot

depicting Br(µ → eγ) and Cr(µ → e,Ti) as a function of ρN(middle) and Br(µ → eγ) and
Br(µ → 3e) w.r.t the lightest neutrino mass eigenvalue(ml) is shown in the right panel in
Case III for IH. The upper bounds are shown by the horizontal lines.

fall on the allowed region as per the KamLAND-Zen limit. However, in the right panel of

fig.(3.5), i.e. for IH, ml = 10−19 −10−16 eV is successful in generating the effective mass

of active neutrinos in the allowed region. We show variation of different parameters vs

baryon asymmetry of the Universe in fig.(3.6). For NH, the mass range considered for M1

satisfies the BAU limit given by Planck, however we have maximum points only in the region

M1 = 4× 104 − 105 GeV in case of IH which generates the desired BAU. The parameter

space of λ5 satisfying the BAU constraint is between 10−1 −1 for both NH and IH. In the

third row of fig.(3.6), we can conclude a definite range of lightest active neutrino which

produces the desired BAU. For NH, ml = 10−19 −10−17 eV and for IH, ml = 10−18 −10−16

eV obeys the Planck limit for BAU. Again, considering the variation of MDM as a function

of BAU, the entire range of DM mass, i.e. MDM = 450− 750 GeV is seen to satisfy the
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Fig. 3.11 A correlation plot of effective mass of active neutrinos(mββ ) w.r.t the baryon
asymmetry of the Universe(nB) is shown for Case III. The Planck limit for BAU is given
by the horizontal line(black) and the KamLAND-Zen upper limit (mββ (eV )∼ 0.1(eV )) is
depicted by the vertical line(red).

Planck limit for BAU in case of both NH as well as IH. Unlike the other cases discussed

above, here the orthogonal matrix R for NH has no variation in the matrix elements, i.e. the

absolute value of all elements is found to be 1. Therefore, in fig.(3.7), contour plots of only

a,b and c w.r.t mββ is shown. However, we obtain a different matrix for IH, thus we have

shown plots considering its variation with other model parameters w.r.t mββ as can be seen

in fig.(3.8). The allowed parameter space for the model parameters considered from the

fig.(3.7) and fig.(3.8) is shown in a tabular form in Tab.3.2. In case III, we can draw analysis

from fig.(3.9) and fig.(3.10) that the variations of ρN and ml w.r.t the branching ratios and

conversion ratio is same for both NH and IH. Thus, we have Br(µ → 3e) lies in the range

10−49 −10−39 and Br(µ → eγ)∼ 10−26 −10−22 w.r.t ρN and ml . And the conversion ratio

ranges from Cr(µ → e,Ti) ∼ 10−49 −10−39. In our attempt to correlate the BAU and the

effective mass of neutrinos mββ , we have shown a correlation plot in fig.(3.11). Here, we

observe that for mββ = 10−4 −10−3eV the desired BAU is obtained in NH, whereas for IH,

mββ = 10−2 −10−1eV is the allowed range generating correct BAU.

Analogous to the framework based on texture zeroes studied in[244], where it is seen that

the results obtained for LFV are not very satisfactory incase of two zero texture compared

to that in one zero texture. Also as already mentioned in[241], two zero texture has been
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Parameter NH IH
a 0.05×10−8 −0.2×10−8 0.02×10−10 −0.10×10−10

b 0.01×10−7 −0.15×10−7 0.03×10−3 −0.35×10−3

c 0.1×10−3 −0.7×10−3 0.1×10−3 −1.6×10−3

θ 1 0.7−1.9

Table 3.2 Model parameters of the model and their respective parameter space satisfying
effective mass of light neutrinos(mββ ) for Case III.

discarded from the LFV point of view. Thus, we have solely generated only one zero texture

of the Yukawa coupling matrix from our model to study its significance in neutrino sector.

3.5 Summary

We have extensively studied the scotogenic model realised with the help of discrete flavor

symmetries A4 ⊗Z4. Our work mainly focuses on the condition required to generate texture

one zero in the Yukawa coupling matrix. The various vev alignments mandatory in this

aspect is been discussed in Sec.(3.2). With due change in the consideration of the vev

alignments of the flavons χ , χ
′
and χ

′′
, we are able to construct three different structures of

Yukawa coupling matrix with a zero element in it. Since, broken µ − τ symmetry is a crucial

requirement, two structures of Yukawa coupling matrix (i.e. Case I and Case II) are forbidden

and only Case III is allowed. The neutrino oscillation parameters θ12 and θ13 are also in

the 3σ global fit credible region (CR) for the allowed structure of Yukawa coupling matrix.

Additionally, we take some particular range of free parameters such as M1 = 104 −105 GeV,

M2 = 106 −107 GeV, M3 = 5×107 −108 GeV, m
η0

R
= 450−750 GeV, ml = 10−13 −10−11

eV and λ5 = 10−3 − 1 , and proceed with the calculation of various phenomena for the

allowed Yukawa coupling matrix. In order to make the model feasible, we have studied the

neutrino phenomenology like 0νββ , lepton flavor violation and also have added a tinch of

cosmology via BAU. The one zero texture matrix in eq.(3.6) is evaluated in our work. We

see that the allowed Case III satisfies the KamLAND-Zen limit and Planck limit for mββ
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and BAU respectively from fig.(3.5) and fig.(3.6). Thus, from the extensive analysis we

have carried out, we can consider Case III to abide by the experimental constraints along

with a naturally broken µ − τ symmetry. Furthermore, for the validity of the model w.r.t

dark matter phenomenology, we have assumed the dark matter (lightest of the inert doublet

scalar) mass MDM in the range 450−750 GeV. As we have considered two distinct values

of the mass splittings between the inert scalars, we can draw conclusion that for the lower

value of mass splitting, i.e. ∆Mη± = ∆M
η0

I
= 0.9 GeV, a wider range of allowed DM mass

is obatined. The consistency of this result is shown for a benchmark value of DM-Higgs

coupling λL = 0.00005 as well as for quite a broad space of λL as can be seen in fig.(3.3)

and fig.(3.4). Thus, as a whole we can contemplate this discrete flavor realisation of the

scotogenic model to be sound in explaining various beyond standard model phenomenologies

and also plays a crucial role in distinguishing between the most desirable structure of the

Yukawa coupling matrices.
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