
Chapter 6
Asymmetric Burst Correcting Inte-
ger Codes

The contents of this chapter are based on the paper mentioned below:

• Pokhrel, N. K., Das, P. K. and Radonjic, A. Integer codes capable of correcting

burst asymmetric errors. Journal of Applied Mathematics and Computing, 1-

14, 2022, doi:10.1007/s12190-022-01770-7.

99

Chapter 6

Asymmetric Burst Correcting Integer Codes

6.1 Overview

The codes discussed in this chapter are similar to the ones discussed in Chapter

5. In fact, these are a generalisation of Chapter 5. The occurrence of bursts and

asymmetric patterns has already been discussed in Chapter 1. We present a class

of integer codes capable of correcting asymmetric burst errors of length up to l. We

name these codes as integer (BlAEC)b codes. The presented codes are constructed

with the help of a computer and have the potential to be used in various practical

systems, such as optical networks and VLSI memories. In order to evaluate the

performance of the proposed codes, the probability of erroneous decoding for differ-

ent Bit Error Rates (BERs) is calculated in Section 6.3. Based on existing integer

codes, the codes presented here are a generalisation of the integer codes discussed in

Definition 1.21. The presented codes are also analysed from a rate-efficiency point

of view in Section 6.3. The obtained results show that for many data lengths they

require less check-bits than optimal burst error-correcting codes.

6.2 Construction of codes

For the construction of the codes, we continue with Definition 1.21 and introduce

the syndrome set for the other case as done in Chapter 5.

100

6.2.1 Encoding procedure

The encoding technique is identical to Chapter 5, where the set of syndromes is

separated into two categories based on the location of occurrence.

Definition 6.1. The syndrome set of all asymmetric bursts of length up to l cor-

rupting b-bit byte is defined by

S1 =
k+1
∪
i=1

[
− Ci.εb,l

]
(mod 2b − 1), (6.1)

where εb,l = eb,1 ∪ eb,2 ∪ · · · ∪ eb,l with eb,t = 2r(1, 3, . . . , 2t − 1), 0 ≤ r ≤ b− t.

Definition 6.2. The syndrome set of all asymmetric bursts up to length l corrupting

two adjoining b-bit bytes (including check byte) is defined by

S2 =
k
∪
i=1

[
CiPr + Ci+1Qs

]
(mod 2b − 1), (6.2)

where Ck+1 = −1, Pr = {−2r−1 + pr−22r−2 + · · ·+ p0}, Qs = {qb−12b−1 + qb−22b−2 +

· · ·+ (−1)2b−s}, pi, qi ∈ {−1, 0}, 1 ≤ r, s < l and max{r + s} = l.

Note: While choosing the coefficient Ci’s in (6.1) and (6.2), we have to ensure

that the collection C1, C2, . . . , Ck, Ck+1 is such that the sets −C1εb,l, −C2εb,l, . . . ,

−Ckεb,l, εb,l, and CiPr+Ci+1Qs for 1 ≤ i ≤ k are mutually disjoint where Ck+1 = −1.

The coefficients can be obtained by using a suitable computer search result (python

code attached in Appendix F).

The expressions derived so far give us the idea of theoretical construction of the

((k+ 1)b, kb) integer (BlAEC)b codes. Using these construction methods, theorems

below give us the number of non-zero syndromes to be used in the construction of

the look-up table LUT2 for decoding purpose.

Theorem 6.3. A ((k+1)b, kb) integer (BlAEC)b code can correct asymmetric bursts

up to length l within a byte or occurring between two adjoining bytes if there exist k

mutually distinct coefficients Ci ∈ Z2b−1 \ {0, 1} such that

1. | S1 |= (k + 1)[2l−1(b− l + 2)− 1].

2. | S2 |= k
l∑

i=2
αi, where αi = (i− 1)2i−2.

101

3. S1 ∩ S2 = φ.

Proof. Condition 1 has been proved in Result 1.22.

For asymmetric burst of length 2 occurring between two adjoining b-bit bytes, the

syndrome element will be of the type CiP1 +Ci+1Q1 = Ci(−1)+Ci+1(−2b−1), which

has only one possibility leading to the order α2 = 1. For asymmetric burst of

length 3 occurring between two adjoining b-bit bytes, the syndrome elements are of

the type CiP1 + Ci+1Q2 and CiP2 + Ci+1Q1. Possibilities in this case are Ci(−1) +

Ci+1(qb−12b−1−2b−2) and Ci(−21+p0)+Ci+1(−2b−1) leading to the order α3 = 2×2 =

4. Again, for the case of length 4, CiP1 +Ci+1Q3, CiP2 +Ci+1Q2 and CiP3 +Ci+1Q1

are the possibilities for the syndrome which makes the syndrome element pattern as

Ci(−1) +Ci+1(qb−12b−1 + qb−22b−2 − 2b−3), Ci(−2 + p0) +Ci+1(qb−12b−1 − 2b−2) and

Ci(−22 + p121 + p0) + Ci+1(−2b−2) and the order α4 = 3 × 22 = 12. Following this

pattern, we observe that the possibilities for syndrome elements corresponding to an

asymmetric burst of length l occurring between two b-bit bytes is CiP1 + Ci+1Ql−1,

CiP2 + Ci+1Ql−2, . . . , CiPl−1 + Ci+1Q1. Thus, the pattern of syndrome elements in

this case will be Ci(−1) + Ci+1(qb−12b−1 + · · · + qb−l−12b−l−1 − 2b−l), Ci(−2 + p0) +

Ci+1(qb−12b−1 + · · ·+ qb−l−22b−l−2− 2b−l−1), . . . , Ci(−2b−l + pb−l+12b−l+1 + · · ·+ p0) +

Ci+1(−2b−1) and αl = (l − 1)2l−2. Taking account of the orders α1, α2, . . . , αl and

k + 1 distinct coefficients, we conclude that | S2 |= k
l∑

i=2
αi. Finally, Condition 3

ensures that the syndromes caused by the asymmetric bursts corrupting one b-bit

byte are different from those corrupting two adjacent b-bit bytes. Hence, the codes

satisfying Condition 1− 3 are ((k + 1)b, kb) integer (BlAEC)b codes.

Theorem 6.4. Let ζb,l = S1 ∪S2 be the set of syndromes for a ((k+ 1)b, kb) integer

(BlAEC)b code, then | ζb,l |= (k+1)[2l−1(b−l+2)−1]+k
l∑

i=2
αi, where αi = (i−1)2i−2.

Proof. From Theorem 6.3, it is clear that | ζb,l |= (k+1)[2l−1(b−l+2)−1]+k
l∑

i=2
αi.

102

Table 6.1: Possible coefficients for a few ((k + 1)b, kb) integer (BlAEC)b

codes

b l Coefficients

8 2 5, 7, 9, 25, 29

8 3 29

9 2 7, 11, 13, 23, 31, 37, 55, 61, 63, 103, 117, 119, 125

9 3 2, 19, 93

10 2 5, 7, 9, 29, 35, 41, 49, 53, 61, 63, 71, 73, 79, 89, 95, 115, 125, 127,

149, 205

10 3 2, 25, 101, 239

10 4 2, 53

11 4 19, 21, 311

12 3 2, 9, 29, 61, 97, 127, 159, 199, 245, 249, 251, 281, 447, 615, 669, 671

12 4 37, 77, 211

13 4 2, 31, 159, 269, 319, 463, 507, 675, 921, 2811

14 4 25,37, 143, 157, 269, 509, 739, 805, 829, 1627, 2495, 2797, 3581,

3949, 5983

15 4 19, 23, 41, 67, 103, 113, 131, 409, 509, 563, 599, 703, 725, 903,

1145, 1301, 1415, 1587, 1683, 1745, 1979, 2613, 3383, 4709, 6015,

6127, 6133, 7093, 7415, 7807, 7925

16 3 2, 11, 43, 61, 67, 79, 89, 101, 105, 107, 113, 117, 121, 127, 131,

139, 143, 149, 151, 153, 157, 163, 167, 169, 179, 181, 187, 191,

193, 197, 199, 207

16 4 47, 59, 61, 113, 121, 127, 169, 199, 251, 271, 33, 331, 383, 431,

437, 449, 493, 509, 551, 557, 563, 575, 577, 593, 609, 629, 647, 661,

683, 697, 701, 713

18 4 43, 71, 97, 107, 131, 151, 163, 173, 179, 181, 191, 227, 241, 269,

271, 277, 281, 283, 307, 311, 317, 323, 331, 337, 347, 349, 353, 357,

359, 361, 367, 373

Contd...

103

b l Coefficients

20 4 31, 81, 113, 149, 167, 179, 211, 223, 227, 233, 241, 245, 257, 263,

277, 281, 283, 289, 293, 307, 311, 313, 317, 323, 331, 337, 347,

349, 353, 357, 359, 361

25 4 23, 43, 131, 137, 149, 167, 173, 197, 199, 233, 241, 269, 271,

277, 281, 283, 289, 293, 307, 311, 317, 323, 331, 337, 347, 349, 353,

357, 359, 361, 367, 373

32 3 2, 19, 47, 61, 73, 97, 99, 103, 109, 117, 121, 127, 131, 137, 139,

143, 149, 151, 153, 157, 163, 167, 169, 171, 173, 179, 181, 187,

191, 193, 197, 199

32 4 31, 81, 113, 149, 167, 179, 211, 223, 227, 233, 241, 245, 257,

263, 269, 271, 277, 281, 283, 289, 293, 307, 311, 313, 317, 323, 331,

337, 347, 349, 353, 357

6.2.2 Decoding procedure

The decoding procedure is similar to Chapter 5 subject to the following changes in

the steps of decoding.

• For asymmetric burst of length up to l occurring within the check byte:

CB = [C̄B + e1] (mod 2b − 1);

where syndrome S = error e1 ∈ εb,l.

• For asymmetric burst of length up to l occurring within ith data byte (1 ≤ i ≤

k):

Bi = [B̄i + e1] (mod 2b − 1);

where syndrome S = −Ci × e1 (mod 2b − 1), with error e1 ∈ εb,l.

• For asymmetric burst of length up to l occurring between ith and (i+1)th data

byte (1 ≤ i ≤ k − 1):

Bi = [B̄i + e1] (mod 2b − 1), e1 ∈ εb,l, −e1 ∈ Pr;

104

Bi+1 = [B̄i+1 + e2] (mod 2b − 1), e2 ∈ εb,l, −e2 ∈ Qs;

where syndrome S = [Ci(−e1) + Ci+1(−e2)] (mod 2b − 1).

• For asymmetric burst of length up to l occurring between the last data byte

(kth byte) and the check byte:

Bk = [B̄k + e1] (mod 2b − 1), e1 ∈ εb,l, −e1 ∈ Pr;

CB = [C̄B + e2] (mod 2b − 1), e2 ∈ εb,l, −e2 ∈ Qs;

where syndrome S = [Ck(−e1) + e2] (mod 2b − 1).

The width representation of a syndrome table entry pertaining to the two types

of bursts discussed can be found in Figure 5.1-5.2. We now illustrate the encoding

and decoding methods with the help of an example for b = 8 and l = 2.

Table 6.2: LUT2 for (48,40) integer (B2AEC)8 code

Sl. Syndrome Error Error Error Error

No. (ζb,l) Loc. (e1) Loc. (e2)

1 1 6 1 0 0

2 2 6 2 0 0

3 3 6 3 0 0

4 4 6 4 0 0

5 6 6 6 0 0

6 8 6 8 0 0

7 12 6 12 0 0

8 15 1 48 0 0

9 16 6 16 0 0

10 21 5 96 0 0

11 23 5 8 0 0

12 24 6 24 0 0

13 30 1 96 0 0

14 31 2 32 0 0

Contd...

105

Sl. Syndrome Error Error Error Error

No. (ζb,l) Loc. (e1) Loc. (e2)

15 32 6 32 0 0

16 39 3 24 0 0

17 42 5 192 0 0

18 45 4 192 0 0

19 46 5 16 0 0

20 48 6 48 0 0

21 55 4 8 0 0

22 57 3 192 0 0

23 60 1 192 0 0

24 62 2 64 0 0

25 64 6 64 0 0

26 69 5 24 0 0

27 75 4 48 0 0

28 78 3 48 0 0

29 81 5 6 0 0

30 87 2 24 0 0

31 88 4 1 5 128

32 92 5 32 0 0

33 93 2 96 0 0

34 95 1 32 0 0

35 96 6 96 0 0

36 99 5 1 6 128

37 105 4 6 0 0

38 106 3 1 4 128

39 110 4 16 0 0

40 111 3 16 0 0

41 113 5 128 0 0

42 115 4 128 0 0

Contd...

106

Sl. Syndrome Error Error Error Error

No. (ζb,l) Loc. (e1) Loc. (e2)

43 116 2 1 3 128

44 119 1 1 2 128

45 123 3 120 0 0

46 124 2 128 0 0

47 125 1 128 0 0

48 128 6 128 0 0

49 135 1 24 0 0

50 138 5 48 0 0

51 139 5 4 0 0

52 143 2 16 0 0

53 147 3 12 0 0

54 150 4 96 0 0

55 155 4 4 0 0

56 156 3 96 0 0

57 162 5 12 0 0

58 165 4 24 0 0

59 168 5 3 0 0

60 171 2 12 0 0

61 174 2 48 0 0

62 175 1 16 0 0

63 180 4 3 0 0

64 183 3 8 0 0

65 184 5 64 0 0

66 185 4 64 0 0

67 186 2 192 0 0

68 189 3 64 0 0

69 190 1 64 0 0

70 192 6 192 0 0

Contd...

107

Sl. Syndrome Error Error Error Error

No. (ζb,l) Loc. (e1) Loc. (e2)

71 195 1 12 0 0

72 197 5 2 0 0

73 199 2 8 0 0

74 201 3 6 0 0

75 205 4 2 0 0

76 210 4 12 0 0

77 213 2 6 0 0

78 215 1 8 0 0

79 219 3 4 0 0

80 220 4 32 0 0

81 222 3 32 0 0

82 225 1 6 0 0

83 226 5 1 0 0

84 227 2 4 0 0

85 228 3 3 0 0

86 230 4 1 0 0

87 234 2 3 0 0

88 235 1 4 0 0

89 237 3 2 0 0

90 240 1 3 0 0

91 241 2 2 0 0

92 245 1 2 0 0

93 246 3 1 0 0

94 248 2 1 0 0

95 250 1 1 0 0

Example 6.5. Let b = 8, l = 2 with C1 = 5, C2 = 7, C3 = 9, C4 = 25, C5 = 29

and C6 = −1 with | ζ8,2 |= 95 syndromes listed in Table 6.2. Suppose we want to

transmit 5 8-bit data bytes 11011011 00110101 10100111 10101010 01010011, then

108

check byte will be CB = 191 = 10111111.

Case I (Asymmetric burst within a data byte): Suppose the decoder receives

11000011 00110101 10100111 10101010 01010011 10111111, then syndrome S = [71−

191] (mod 255) = 135 = −5 × 24 (mod 255) = −5 × [24 + 23] (mod 255). Thus

the error has occurred in B1 at 4th and 5th positions. So the corrected data byte

B1 = [195 + 24] (mod 255) = 219 = 11011011.

Case II (Asymmetric burst within the check byte): Suppose the decoder receives

11011011 00110101 10100111 10101010 01010011 10110011, then syndrome S = [191−

179] (mod 255) = 12 = 22 + 23. Thus the error has occurred in the check byte

at 5th and 6th positions. So the corrected check byte will be CB = [179 + 12]

(mod 255) = 191 = 10111111.

Case III (Asymmetric burst between two data bytes): Suppose the decoder

receives 11011011 00110101 10100110 00101010 01010011 10111111, then syndrome

S = [42 − 191] (mod 255) = 106 = [9(−1) + 25(−128)] (mod 255). Thus the er-

ror has occurred between 3rd(B3) and 4th(B4) data bytes, where error 1 = 20 in 8th

component of B3 and error 128 = 27 in 1st component of B4. So the corrected data

bytes will be B3 = [166 + 1] (mod 255) = 167 = 10100111 and B4 = [42 + 128]

(mod 255) = 170 = 10101010.

Case IV (Asymmetric burst occurring between last data byte and the check

byte): Suppose the decoder receives

11011011 00110101 10100111 10101010 01010010 00111111, then syndrome S = [162−

63] (mod 255) = 99 = [29(−1) + 128] (mod 255). Thus the error has occurred be-

tween B5 and CB, where error 1 = 20 in 8th component of B5 and error 128 = 27 in

1st component of CB. So the corrected 8-bit bytes will be B5 = [82 + 1] (mod 255) =

83 = 01010011 and CB = [63 + 128] (mod 255) = 191 = 10111111.

6.3 Comparison and probability

In this section, we discuss the comparison and the probability of erroneous decoding.

109

Table 6.3: Comparison of redundancy (ρ) with linear codes

Code length b l Redundancy for Redundancy for

linear codes proposed codes

16 8 3 ρ ≥ 8 ρ = 8

30 10 4 ρ > 10 ρ = 10

36 9 3 ρ > 9 ρ = 9

44 11 4 ρ > 11 ρ = 11

143 13 4 ρ > 13 ρ = 13

204 12 3 ρ ≥ 12 ρ = 12

528 16 4 ρ ≥ 16 ρ = 16

6.3.1 Comparison

In coding theory, codes are compared based on the code rates with the same number

of information bits. Codes with lesser check bits are considered to be more efficient

since the encoding can be carried out by maintaining fewer bit consumption. For

this comparison, we try to bring the parameters on the same line. A codeword in

[96] is constructed using m b-bit data/information bytes X1, X2, . . . , Xm and b + l

check symbols in the form of a b-bit byte Xm and another l-bit byte y. Thus the

code rate R1 for the presented codes here will be R1 = mb
mb+b = 1

1+ 1
m

and code rate

for the codes in [96] with b = l will be R2 = mb
mb+2b = 1

1+ 2
m

< R1. This clearly imply

the efficiency of these codes turning out to be better than that of [96] in terms of

its different applications.

Campopiano upper bound [24] can be considered as the least possible redundancy

for linear codes capable of correcting a single burst. This bound for (n, k) linear

codes defined over the field GF (q) is given by qn−k > q2(l−1)[(q−1)(n−2l+1)+1], by

considering q = 2, the upper bound further gets reduced to 2n−k > 22(l−1)[n−2l+2].

Now, by comparing the proposed codes on the lines of a linear code having the same

code length, upon the existence of the codes, we observe in many cases the proposed

codes have less or equal redundancy, leading to a better code rate as highlighted

110

Table 6.4: Check-bit lengths of various codes correcting asymmetric bursts

Data word
Proposed Codes from Codes from

length(bits)
codes [97] Definition 1.21

l = 2 l = 3 l = 4 l = 2 l = 3 l = 4 l = 2 l = 3 l = 4

K = 128 10 12 13 12 13 14 9 11 12

K = 256 11 13 15 13 14 15 10 11 13

K = 512 12 14 16 15 16 17 11 13 14

K = 1024 13 15 17 16 17 18 12 13 15

K = 2048 14 16 18 17 18 19 13 14 16

K = 4096 15 17 19 18 19 20 14 15 17

in Table 6.3. By checking the existence of linear codes using Campopiano bound

and existence of the proposed codes using the computer search result for same code

length l, we can show that the proposed codes require less number of bits in the

syndrome table to perform the error correcting process. For this, consider q = 2

and divide code length (k + 1)b of a linear code capable of correcting bursts up to

length l into k + 1 b-bit bytes. Consider X to be the number of asymmetric bursts

occurring within the divided b-bit blocks and Y to be the number of asymmetric

bursts occurring between two adjoining b-bit blocks.

From Table 6.4, we see that, for the values of l = 2, 3, 4, the proposed codes use up

to three check bits less than Saitoh-Imai codes [97]. Of course, the proposed codes

cannot be more rate-efficient than those discussed in Definition 1.21, but in turn

they correct all asymmetric bursts (regardless of their position). Since linear codes

correcting bursts also use syndrome table, so we now compare the bits consumed by

the syndrome table for both linear and integer codes.

• In case of the proposed integer code, each syndrome entry corresponding to

an asymmetric burst occurring within a b-bit byte has 2b+ dlog2(k+ 1)e bits,

whereas in case of a linear code, this number is kb + 2b, clearly X × (2b +

dlog2(k + 1)e) < X × (kb+ 2b).

111

Figure 6.1: The dependence of the BER and the Pd(AB) on the code rate

of integer (BlAEC)b codes (ε = 0.1)

(a) (B2AEC)10 code

0.5 0.6 0.7 0.8 0.9
0

5 · 10−2

0.1

0.15

0.2

0.25

Code Rate

BER
Probability

(b) (B4AEC)16 code

0.5 0.6 0.7 0.8 0.9
0

5 · 10−2

0.1

0.15

Code Rate

BER
Probability

(c) (B4AEC)20 code

0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

·10−2

Code Rate

BER
Probability

(d) (B3AEC)32 code

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

0.5

1

1.5

2

2.5

·10−2

Code Rate

BER
Probability

• Similarly, one syndrome entry from integer code corresponding to asymmetric

burst occurring between two adjoining b-bit bytes has b+2(l−1)+dlog2(k)e bits,

whereas the syndrome entry for linear codes in this case has kb+2b bits. Since

l < b
2 for existence of the code in both cases, so Y × (b+2(l−1)+ dlog2(k)e) <

Y × (kb+ 2b).

Hence, we are able to highlight a few positive points of the proposed codes over the

traditional linear codes.

6.3.2 Probability of erroneous decoding and BER

For BER, we get the following result, which is similar to what was discussed in the

previous chapters.

Theorem 6.6. Bit Error Rate for a ((k + 1)b, kb) integer (BlAEC)b code is given

112

by
1

l(k + 1)b

[l2 + 5l− 2
4

]
.

Proof. For a burst of length 1, 2, 3, and 4, BER of a ((k+ 1)b, kb) integer (BlAEC)b
code will be 1

(k+1)b ,
2

(k+1)b ,
2+3

2(k+1)b , and 2+3+4
3(k+1)b respectively. Continuing this, for a

burst of length l, BER will be 2+3+...+l
(l−1)(k+1)b . Thus BER for the proposed code will be

= 1
l(k + 1)b

[
1 + 2 + 2 + 3

2 + . . .+ 2 + 3 + 4 + . . .+ l
l− 1

]

= 1
l(k + 1)b

[
1 +

l∑
j=2

j∑
i=2

i

j − 1

]

= 1
l(k + 1)b

[
1 +

l∑
j=2

(2
j − 1 + 3

j − 1 + . . .+ j

j − 1)
]

= 1
l(k + 1)b

[
1 +

l∑
j=2

1
j − 1(2 + 3 + . . .+ j)

]

= 1
l(k + 1)b

[
1 +

l∑
j=2

2 + j

2

]

= 1
l(k + 1)b

[
1 + 1

2

l∑
j=2

2 + 1
2

l∑
j=2
j
]

= 1
l(k + 1)b

[4l + (l− 1)(l + 2)
4

]

= 1
l(k + 1)b

[l2 + 5l− 2
4

]
.

In our study, since the codes are considered over a Z-channel (refer Figure 1.1),

we obtain the probability of erroneous decoding as follows:

Theorem 6.7. For transition probability ε of the occurrence 1→ 0, the probability

of erroneous decoding Pd(AB) for a ((k + 1)b, kb) integer (BlAEC)b code will be

(k+ 1)bε1(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

((1
1−ε

)l−1
− 1

) (
1−ε
ε

) (
(k + 1)b+

(
1−ε
ε

))

− (l− 1)
(

1−ε
ε

) (
1

1−ε

)l−1
.

Proof. The proposed code deals with asymmetric bursts up to length l where the

bursts can occur anywhere throughout the (k + 1) b-bit bytes, so we shall proceed

by determining the probabilities for each length 1, 2, . . . , l. For an asymmetric burst

113

of length 1, as discussed earlier, 1 bit will be erroneous and the remaining (k +

1)b − 1 bits will be non-erroneous. Thus the probability in this case will be ε1(1 −

ε)(k+1)b−1, as there are (k + 1)b number positions for such bursts, therefore the

probability will be (k + 1)b[ε1(1 − ε)(k+1)−1]. Similarly for asymmetric bursts of

length 2, the probability will be ((k+ 1)b− 1)
[
ε2(1− ε)(k+1)b−2

]
, for length 3, there

are asymmetric bursts having non-zero components at 2 or 3 places, as there are

(k + 1)b − 2 number of positions for these bursts to occur, so the probability will

be ((k + 1)b − 2)
[(

1
0

)
ε2(1− ε)(k+1)b−2 +

(
1
1

)
ε3(1− ε)(k+1)b−3

]
. Continuing this, for

(k + 1)b − l + 1 number of positions for asymmetric bursts of length l, we have

the probability equal to ((k + 1)b− l + 1)
[

l−2∑
i=0

(
l−2
i

)
εi+2(1− ε)(k+1)b−i−2

]
. Finally by

adding up the probabilities up to length l, we get

Pd(AB) = (k + 1)bε1(1− ε)(k+1)b−1 + ((k + 1)b− 1)
0∑
i=0

(
0
i

)
εi+2(1− ε)(k+1)b−i−2

+ ((k + 1)b− 2)
1∑
i=0

(
1
i

)
εi+2(1− ε)(k+1)b−i−2 + . . .

. . .+ ((k + 1)b− l + 1)
l−2∑
i=0

(
l− 2
i

)
εi+2(1− ε)(k+1)b−i−2

=(k + 1)bε1(1− ε)(k+1)b−1 +
l−1∑
j=1

j−1∑
i=0

((k + 1)b− j)
(
j − 1
i

)
εi+2(1− ε)(k+1)b−i−2

=(k + 1)bε1(1− ε)(k+1)b−1

+ ε2(1− ε)(k+1)b−2
l−1∑
j=1

j−1∑
i=0

((k + 1)b− j)
[(
j − 1
i

)(
ε

1− ε

)i]

=(k + 1)bε1(1− ε)(k+1)b−1

+ ε2(1− ε)(k+1)b−2
l−1∑
j=1

((k + 1)b− j)
(j − 1

0

)(
ε

1− ε

)0
+
(
j − 1

1

)(
ε

1− ε

)1
+ . . .

. . .+
(
j − 1
j − 1

)(
ε

1− ε

)j−1


=(k + 1)bε1(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2
l−1∑
j=1

((k + 1)b− j)
(

1 + ε

1− ε

)j−1

=(k + 1)bε1(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2
l−1∑
j=1

((k + 1)b− j)
(1

1− ε

)j−1

=(k + 1)bε1(1− ε)(k+1)b−1

114

+ ε2(1− ε)(k+1)b−2

(k + 1)b
l−1∑
j=1

(1
1− ε

)j−1
−

l−1∑
j=1
j
(1

1− ε

)j−1


=(k + 1)bε1(1− ε)(k+1)b−1

+ ε2 (1− ε)(k+1)b−2

(k + 1)b

(
1

1−ε

)l−1
− 1(

1
1−ε

)
− 1

−

1
(1

1− ε

)0
+ 2

(1
1− ε

)1

+ 3
(1

1− ε

)2
+ . . .+ (l− 1)

(1
1− ε

)l−2

 (

∵
∣∣∣∣ 1
1− ε

∣∣∣∣ > 1
)

=(k + 1)bε1(1− ε)(k+1)b−1

+ ε2(1− ε)(k+1)b−2

(k + 1)b(1− ε)
ε

((1
1− ε

)l−1
− 1

)

+
(1− ε

ε

)2 ((1
1− ε

)l−1
− 1

)
− (l− 1)

(1− ε
ε

)(1
1− ε

)l−1


=(k + 1)bε1(1− ε)(k+1)b−1

+ ε2(1− ε)(k+1)b−2
[((1

1− ε

)l−1
− 1

)(1− ε
ε

)(
(k + 1)b+

(1− ε
ε

))

− (l− 1)
(1− ε

ε

)(1
1− ε

)l−1]
.

A few graphs in Figure 6.1 show the changes in the BER and the Pd(AB) for

some integer (BlAEC)b codes. We notice that, in all cases, the BER and the Pd(AB)

decrease with increasing code rate. In other words, the higher the value of k, the

lower the BER and the Pd(AB). We also observe that as the code rate increases,

the Pd(AB) decreases much faster than the BER.

6.4 Conclusion

In this chapter, we have presented a class of integer codes capable of correcting

asymmetric burst errors. We have shown that the presented codes are very efficient

in terms of redundancy. More precisely, it has been shown that they are more rate-

efficient not only than their linear counterparts, but also than the optimal burst

error correcting codes. In addition, the proposed codes use operations that are

115

supported by all processors, which makes them attractive for use in systems that

display asymmetric errors. The best-known examples of such systems are optical

networks and VLSI memories.

116

	10_chapter 6

