
Chapter 7
Probability of Erroneous Decoding
for Integer Codes Correcting Asym-
metric and Symmetric Errors

The contents of this chapter are based on the paper mentioned below:

• Pokhrel, N.K. and Das, P.K. Probability of erroneous decoding for integer

codes correcting burst asymmetric/unidirectional/symmetric errors within a

byte and up to double asymmetric errors between two bytes. Kuwait Journal

of Science, 2022, doi: 10.48129/kjs.online.
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Chapter 7

Probability of Erroneous Decoding for In-

teger Codes Correcting Asymmetric and

Symmetric Errors

7.1 Overview

We frequently need enough knowledge about the likelihood of error patterns oc-

curring in order to use a code’s error-correcting mechanism in a communication

channel. Therefore, irrespective of the pattern of error, knowing an error-correcting

code in terms of its decoding probability becomes important. In this chapter, we

have derived the probability of erroneous decoding for the integer (BlEC)b codes

discussed in Definition 1.17-1.20. This class of integer code is capable of correct-

ing symmetric burst errors within a b-bit byte. So it is suitable to study this class

over a BSC (Figure 1.2). Other than this class of integer codes discussed over the

BSC, we have considered the integer SBEC and SEC-(BlAEC)b codes discussed

in Definition 1.27 and Definition 1.40-1.41 respectively. The SBEC code is capable

of correcting single, double (random) and triple adjacent errors within a b-bit byte,

whereas the integer SEC-(BlAEC)b code is capable of correcting single symmetric

and asymmetric burst errors within a b-bit byte. Also, we have considered integer

IDAEC codes discussed in Result 1.23, which is defined over the Z-channel (Figure

1.1). This class of integer code is capable of correcting single and double asymmetric
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errors occurring within and between any two b-bit bytes.

7.2 Probability and BER

In this section, we discuss the probability of erroneous decoding in the integer codes

discussed in the preceding section. It is followed by the BER and a graphical analysis

of the probability and BER for different code rates. The next theorem determines

the probability of erroneous decoding for integer (BlEC)b codes.

Theorem 7.1. The probability of erroneous decoding for a ((k + 1)b, kb) integer

(BlEC)b code is

(k + 1)
2bε(1 − ε)(k+1)b−1 + 4ε2(1 − ε)(k+1)b−2

(
(1−ε)b

2ε

{(
1+ε
1−ε

)l−1
− 1

}
−
(

1−ε
2ε

)2
(

1 +

2εl(1+ε)l−1

(1−ε)l −
(

1+ε
1−ε

)l
)), where ε is the crossover probability in the BSC.

Proof. A received codeword will have (k+1)b bits divided into k+1 b-bit bytes. In the

case of a ((k+1)b, kb) integer (BlEC)b code, there are 2(k+1)b symmetric bursts of

length 1. In particular, these are 100 . . . 0︸ ︷︷ ︸
(k+1)b−bits

, 010 . . . 0︸ ︷︷ ︸
(k+1)b−bits

, . . . , 000 . . . 1︸ ︷︷ ︸
(k+1)b−bits

. Thus the prob-

ability for l = 1 will be 2(k+1)bε(1−ε)(k+1)b−1. Similarly for l = 2, there are 4(b−1)

symmetric bursts of length 2. These are 110 . . . 0︸ ︷︷ ︸
(k+1)b−bits

, −110 . . . 0︸ ︷︷ ︸
(k+1)b−bits

, 1− 10 . . . 0︸ ︷︷ ︸
(k+1)b−bits

, −1− 10 . . . 0︸ ︷︷ ︸
(k+1)b−bits

continued up to the bursts of the form 00 . . . 11︸ ︷︷ ︸
(k+1)b−bits

. So the probability here will

be 4(k + 1)(b − 1)ε2(1 − ε)(k+1)b−2. In general for l < b, the probability will be

4(b− l+1)
[
ε2(1− ε)(k+1)b−2 +

(
l−2
1

)
2ε3(1− ε)(k+1)b−3 + . . .+

(
l−2
l−2

)
2l−2εl(1− ε)(k+1)b−l

]
.

Thus the probability of erroneous decoding for a ((k+ 1)b, kb) integer (BlEC)b code

correcting symmetric bursts of length up to l will be

2(k + 1)bε(1− ε)(k+1)b−1 + 4(k + 1)(b− 1)ε2(1− ε)(k+1)b−2+

4(k + 1)(b− 2)
[
ε2(1− ε)(k+1)b−2 +

(
2
1

)
21ε3(1− ε)(k+1)b−3

]
+ . . .

+ 4(k + 1)(b− l + 1)
ε2(1− ε)(k+1)b−2 +

(
l− 2

1

)
2ε3(1− ε)(k+1)b−3 + . . .

+
(

l− 2
l− 2

)
2l−2εl(1− ε)(k+1)b−l


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=(k + 1)
2bε(1− ε)(k+1)b−1 + 4

l−1∑
j=1

j−1∑
i=0

(b− j)
(

l− 2
i

)
(2ε)i(1− ε)−iε2(1− ε)(k+1)b−2


=(k + 1)

2bε(1− ε)(k+1)b−1 + 4ε2(1− ε)(k+1)b−2
l−1∑
j=1

j−1∑
i=0

(b− j)
(

l− 2
i

)( 2ε
1− ε

)i 
=(k + 1)

2bε(1− ε)(k+1)b−1+

4ε2(1− ε)(k+1)b−2
l−1∑
j=1

(b− j)
( 2ε

1− ε

)0
+
(

l− 2
1

)( 2ε
1− ε

)1
+ . . .

+
(

l− 2
l− 2

)( 2ε
1− ε

)j−1


=(k + 1)
2bε(1− ε)(k+1)b−1 + 4ε2(1− ε)(k+1)b−2

l−1∑
j=1

(b− j)
(1 + ε

1− ε

)j−1


=(k + 1)
2bε(1− ε)(k+1)b−1+

4ε2(1− ε)(k+1)b−2
( l−1∑
j=1
b
(1 + ε

1− ε

)j−1
−

l−1∑
j=1
j
(1 + ε

1− ε

)j−1 )
=(k + 1)

2bε(1− ε)(k+1)b−1 + 4ε2(1− ε)(k+1)b−2
(

(1− ε) b
2ε

{(1 + ε

1− ε

)l−1
− 1

}
−

(1− ε
2ε

)2 (
1 + 2εl(1 + ε)l−1

(1− ε)l −
(1 + ε

1− ε

)l )).

The next theorem determines the probability of erroneous decoding for integer

IDAEC codes.

Theorem 7.2. The probability of erroneous decoding for a ((k + 1)b, kb) integer

IDAEC code is (k + 1) b2ε(1 − ε)
n−2 (2 + ε((k + 1)b− 3)), where ε is the crossover

probability in the Z-channel.

Proof. The integer IDAEC codes are capable of correcting double asymmetric errors

occurring in two b-bit bytes simultaneously in addition to the double and single errors

occurring within a b-bit byte. The single asymmetric errors occurring within a b-bit

byte are of the form
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100 . . . 0︸ ︷︷ ︸
b−bits

000 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, 000 . . . 0︸ ︷︷ ︸
b−bits

001 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, . . .

. . . , 000 . . . 0︸ ︷︷ ︸
b−bits

000 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 1︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

.

So, the probability is (k + 1)bε(1− ε)(k+1)b−1.

Similarly for double asymmetric errors occurring within a b-bit byte, the errors

are of the form

110 . . . 0︸ ︷︷ ︸
b−bits

000 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, 000 . . . 0︸ ︷︷ ︸
b−bits

110 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, . . .

. . . , 000 . . . 0︸ ︷︷ ︸
b−bits

000 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 11︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

.

Thus, the probability is (k + 1)
((

b
2

)
ε2(1− ε)(k+1)b−2

)
= (k + 1) b2(b − 1)ε2(1 −

ε)(k+1)b−2.

Double asymmetric errors occurring between two b-bit bytes are of the form

001 . . . 0︸ ︷︷ ︸
b−bits

100 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, 000 . . . 0︸ ︷︷ ︸
b−bits

100 . . . 0︸ ︷︷ ︸
b−bits

. . . 001 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, . . .

. . . , 001 . . . 0︸ ︷︷ ︸
b−bits

000 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 1︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

.

Thus the probability is
(
k+1

2

)
b2ε2(1− ε)(k+1)b−2 = b2k(k+1)

2 ε2(1− ε)(k+1)b−2.

Since a ((k + 1)b, kb) integer IDAEC code is capable of correcting any one of

the mentioned types of errors at a time, therefore the probability will be

(k + 1)bε(1− ε)(k+1)b−1 + (k + 1) b2(b− 1)ε2(1− ε)(k+1)b−2+

b2k(k + 1)
2 ε2(1− ε)(k+1)b−2

=(k + 1)
[
ε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

(
b(b− 1)

2 + b2k

2

)]

=(k + 1)
[
ε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

(
(k + 1)b

2

2 −
b

2

)]

=(k + 1) b2ε(1− ε)
(k+1)b−2 (2 + ε ((k + 1)b− 3)) .
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The next two theorems determine the probability of erroneous decoding for in-

teger SBEC and SEC-(BlAEC)b codes.

Theorem 7.3. The probability of erroneous decoding for a ((k + 1)b, kb) integer

SBEC code is

2(k+1)ε(1−ε)(k+1)b−1
[
b+ b(b− 1)ε(1− ε)(k+1)b−1 + 4(b− 2)ε2(1− ε)(k+1)b−2

]
, where

ε is the crossover probability in the BSC.

Proof. The code discussed here is capable of correcting symmetric errors in the form

of single, double (random) and triple adjacent occurring within a b-bit byte. The

single symmetric errors are of the form

10 . . . 0︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, −10 . . . 0︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, 00 . . . 1︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

,

00 . . .− 1︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, . . ., 00 . . . 0︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 1︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, 00 . . . 0︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . .− 1︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

.

Since there are 2b(k+1) single symmetric errors in a codeword, the probability of

erroneous decoding for the symmetric single errors will be 2b(k+1)ε(1−ε)(k+1)b−1. In

case of double symmetric errors occurring randomly within a b-bit byte, the possible

patterns are

11 . . . 0︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, −11 . . . 0︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, 1− 1 . . . 0︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

,

−1− 1 . . . 0︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, . . ., 10 . . . 1︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

,

−10 . . .− 1︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, . . ., 0 . . . 00︸ ︷︷ ︸
b−bits

0 . . . 00︸ ︷︷ ︸
b−bits

. . . 0 . . .− 1− 1︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

.

There are (k + 1)
(
b
2

)
= (k + 1) b(b−1)

2 positions in a codeword to have double

errors randomly and there are 4 different patterns for each double symmetric error

position. So the probability of erroneous decoding for double symmetric errors

occurring within a b-bit byte randomly will be (k + 1)4 b(b−1)
2 ε2(1 − ε)(k+1)b−2 =

2(k + 1)b(b− 1)ε2(1− ε)(k+1)b−2.

For symmetric triple adjacent errors within a b-bit byte, the possible patterns are
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111 . . . 0︸ ︷︷ ︸
b−bits

000 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, −111 . . . 0︸ ︷︷ ︸
b−bits

000 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

,

. . ., −1− 1− 1 . . . 0︸ ︷︷ ︸
b−bits

000 . . . 0︸ ︷︷ ︸
b−bits

. . . 000 . . . 0︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

, . . ., 00 . . . 0︸ ︷︷ ︸
b−bits

00 . . . 0︸ ︷︷ ︸
b−bits

. . . 00 . . .− 1− 1− 1︸ ︷︷ ︸
b−bits︸ ︷︷ ︸

(k+1)b−bits

.

There are (k+1)(b−2) positions for triple adjacent errors to occur in a codeword

having k + 1 b-bit bytes and there are 8 different patterns for each triple adjacent

symmetric error position within a b-bit byte in the codeword. Thus the probability

of erroneous decoding in this case will be 8(k + 1)(b− 2)ε3(1− ε)(k+1)b−3.

Therefore, the total probability for the ((k+ 1)b, kb) integer SBEC code will be

(k + 1)
[
2bε(1− ε)(k+1)b−1 + 2b(b− 1)ε2(1− ε)(k+1)b−2 + 8(b− 2)ε3(1− ε)(k+1)b−3

]
=2(k + 1)ε(1− ε)(k+1)b−1

[
b+ b(b− 1)ε(1− ε)(k+1)b−1 + 4(b− 2)ε2(1− ε)(k+1)b−2

]
.

Theorem 7.4. The probability of erroneous decoding for a ((k + 1)b, kb) integer

SEC-(BlAEC)b code is

(k + 1)
2bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2


(
b+ 1− ε

ε

)(1− ε
ε

)(( 1
1− ε

)l−1
− 1

)

− (l− 1)
( 1

1− ε

)l−1 (1− ε
ε

)
, where ε is the crossover probability in the BSC.

Proof. The code discussed here is capable of correcting single symmetric errors and

asymmetric burst errors within a b-bit byte. As discussed in Theorem 7.3, the proba-

bility of erroneous decoding for single symmetric errors occurring within a b-bit byte

is 2bε(1− ε)(k+1)b−1. For asymmetric bursts of length 2, the pattern of errors within

a b-bit byte are 110 . . . 0︸ ︷︷ ︸
b−bits

, 011 . . . 0︸ ︷︷ ︸
b−bits

, . . . , 00 . . . 11︸ ︷︷ ︸
b−bits

. There are b− 1 such errors, so the

probability of erroneous decoding will be (b− 1)ε2(1− ε)(k+1)b−2. Similarly, the pat-

tern of errors for asymmetric bursts of length 3 are 111 . . . 0︸ ︷︷ ︸
b−bits

, 0111 . . . 0︸ ︷︷ ︸
b−bits

, . . . , 00 . . . 111︸ ︷︷ ︸
b−bits

and 101 . . . 0︸ ︷︷ ︸
b−bits

, 0101 . . . 0︸ ︷︷ ︸
b−bits

, . . . , 00 . . . 101︸ ︷︷ ︸
b−bits

. Here the length considered is 3, whereas

the number of non-zero components may be 2 or 3. Since the number of po-

sitions for such bursts is equal to b − 2, the corresponding probability will be

(b − 2)
[(

1
0

)
ε2(1− ε)(k+1)b−2 +

(
1
1

)
ε3(1− ε)(k+1)b−3

]
. Continuing this, the probabil-
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ity of erroneous decoding for asymmetric bursts of length l within a b-bit byte will

be (b− l + 1)
l−2∑
i=0

(
l−2
i

)
εi+2(1− ε)(k+1)b−i−2. Thus, by summing up these probabilities

we obtain the probability of erroneous decoding within a b-bit byte as

2b
{
ε(1− ε)(k+1)b−1

}
+ (b− 1)

{
ε2(1− ε)(k+1)b−2

}
+ (b− 2)

{
ε2(1− ε)(k+1)b−2

+ ε3(1− ε)(k+1)b−3
}

+ . . .+ (b− l + 1)
{
ε2(1− ε)(k+1)b−2 +

(
l− 2

1

)
ε3(1− ε)(k+1)b−3

+
(

l− 2
2

)
ε4(1− ε)(k+1)b−4 + . . .+

(
l− 2
l− 2

)
εl(1− ε)(k+1)b−l

}

=2bε(1− ε)(k+1)b−1 + (b− 1)
0∑
i=0

(
0
i

)
εi+2(1− ε)(k+1)b−i−2

+ (b− 2)
1∑
i=0

(
1
i

)
εi+2(1− ε)(k+1)b−i−2 + . . .

+ (b− l + 1)
l−2∑
i=0

(
l− 2
i

)
εi+2(1− ε)(k+1)b−i−2

=2bε(1− ε)(k+1)b−1 +
l−1∑
j=1

j−1∑
i=0

(b− j)
(
j − 1
i

)
εi+2(1− ε)(k+1)b−i−2

=2bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2
l−1∑
j=1

(b− j)


(

ε

1− ε

)0
+
(
j − 1

1

)(
ε

1− ε

)1
+ . . .

. . .+
(
j − 1
j − 1

)(
ε

1− ε

)j−1



=2bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2
l−1∑
j=1

(b− j)
(

1 + ε

1− ε

)j−1

=2bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2
l−1∑
j=1

(b− j)
( 1

1− ε

)j−1

=2bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

b l−1∑
j=1

( 1
1− ε

)j−1
−

l−1∑
j=1
j

 1
1− ε

j−1


=2bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

b

(

1
1−ε

)l−1
− 1(

1
1−ε

)
− 1


−

(l− 1)
( 1

1− ε

)l−1 (1− ε
ε

)
−
(1− ε

ε

)2 {( 1
1− ε

)l−1
− 1

}


=2bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

b(1− ε)
ε

{( 1
1− ε

)l−1
− 1

}

− (l− 1)
( 1

1− ε

)l−1 (1− ε
ε

)
+
(1− ε

ε

)2 {( 1
1− ε

)l−1
− 1

}
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=2bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

(b(1− ε)
ε

+
(1− ε

ε

)2){( 1
1− ε

)l−1
− 1

}

− (l− 1)
( 1

1− ε

)l−1 (1− ε
ε

).
This code is capable of correcting the discussed errors only one at a time which

occur within a b-bit byte and there are k+ 1 such b-bit bytes, so the probability will

be

(k + 1)
2bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

(b+ 1−ε
ε

) (
1−ε
ε

) ((
1

1−ε

)l−1
− 1

)

− (l− 1)
(

1
1−ε

)l−1 (1−ε
ε

)
.

Bit Error Rate (BER) is the ratio between the number of corrupted bits and

the number of bits transmitted. The number of corrupted bits in the case of codes

correcting burst and CT-burst errors remains the same for the length specified. So,

the BER for the integer (BlEC)b and SEC-(BlAEC)b codes discussed in this chap-

ter is similar to the BER in Chapter 2 and Chapter 6, which is 1
(k+1)bl

[
l2+5l−2

4

]
. Since

the number of corrupted bits in ((k+ 1)b, kb) integer IDAEC codes varies between

1 and 2, we consider the BER equal to 1.5
(k+1)b . Similarly, in ((k + 1)b, kb) integer

SBEC codes, the number of corrupted bits is 1, 2 and 3. So, the BER will be 2
(k+1)b .

Table 7.1-7.2 present the probability of erroneous decoding and BER for the

integer codes discussed in this chapter. The existence of the codes considered is

given in their respective studies. By considering a few examples and ε = 0.1,

Figure 7.1-7.2 show the change in probability and BER with respect to different

code rates for the discussed codes. In the graphs presented in Figure 7.1-7.2, it

can be observed that the code rate and BER decrease with the increase in the

code rate. In almost all of the cases, it can be seen that the rate of decrease in

probability is faster compared to the BER. However, this depends on the value of

ε. For instance, by considering ε = 0.0002 in integer SEC-(B5AEC)32 code, the

probability increases with the increase in code rate. In particular, for code rate =

0.5, 0.67, 0.75, 0.8, 0.83, 0.85, . . . , 0.9375, the probability is

0.0252888, 0.0376911, 0.0499342, 0.0620195, 0.0739486, 0.0857229, . . . , 0.18497 respec-
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Figure 7.1: Change in probability and BER in (BlEC)b and IDAEC codes

for different code rates
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(d) IDAEC code with b = 16
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Figure 7.2: Change in probability and BER in SEC-(BlAEC)b and SBEC

codes for different code rates
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(d) SBEC code with b = 15
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Table 7.1: Probability of erroneous decoding (ε = 0.1) and BER in (BlEC)b

and IDAEC codes

Codes b l k Probability BER

(BlEC)b

12 3 3 0.097055 0.0381944

12 3 6 0.00382636 0.0218254

12 3 16 3.00081× 10−8 0.00898699

16 4 30 3.81063× 10−21 0.00428427

16 4 60 8.15398× 10−43 0.0021772541

16 4 95 3.04871× 10−68 0.00138347

16 5 5 0.00174458 0.025

16 5 20 6.3674× 10−14 0.00714286

16 5 38 7.84604× 10−27 0.00384616

IDAEC

16 NA 2 0.122541 0.03125

16 NA 4 0.0104652 0.01875

16 NA 5 0.00271091 0.015625

24 NA 10 3.80906× 10−10 0.00568181

24 NA 20 1.40598× 10−20 0.0029761

24 NA 28 4.35482× 10−29 0.00215517

32 NA 20 5.09378× 10−28 0.00223214

32 NA 40 9.95672× 10−57 0.00114329

32 NA 64 1.79708× 10−91 0.000721154
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Table 7.2: Probability of erroneous decoding (ε = 0.1) and BER in SEC-

(BlAEC)b and SBEC codes

Codes b l k Probability BER

SEC-(BlAEC)b

16 3 8 9.11725× 10−6 0.012731481

16 3 16 2.39393× 10−11 0.0067401961

16 3 32 8.97964× 10−23 0.00347222

16 5 8 0.0000100477 0.016666667

16 5 16 2.63824× 10−11 0.0088235294

16 5 32 9.89606× 10−23 0.00454545

32 8 8 6.2426× 10−12 0.0110677083

32 8 16 2.27853× 10−23 0.005859375

32 8 32 1.65152× 10−46 0.0030184659

SBEC

15 NA 5 0.00152373 0.0222222

15 NA 15 5.56162× 10−10 0.0083333

15 NA 25 1.23717× 10−16 0.00512821

16 NA 10 3.45925× 10−7 0.011363636

16 NA 20 3.15217× 10−14 0.005952381

16 NA 30 2.22103× 10−21 0.004032259

20 NA 8 2.3212× 10−7 0.01111111

20 NA 16 .09276× 10−14 0.005882353

20 NA 24 1.46897× 10−21 0.004
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tively. But in the case of BER, a decrease will always be observed with an increase

in the code rate. This is because an increase in code rate leads to a gain in code

length, which increases the denominator value in its expression. Also, BER is in-

dependent of the crossover probability. Similar graphs can be plotted in all of the

cases by assuming different values of ε.

7.3 Conclusion

In this chapter, we have derived the probability of erroneous decoding for integer

codes having symmetric and asymmetric natures of errors. This simplifies the pro-

cess of analysing the codes to carry out research in different aspects of statistics used

in coding theory. By replicating the approaches developed above, we can obtain the

probabilities for any type of error in integer codes having symmetric and asymmetric

patterns. By using similar approach, probability can also be determined for binary

communication channels having different probabilities for 1→ 0 and 0→ 1.
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