
Chapter 1

Introduction

1.1 The evolution of coding theory

With the increasing usage of technological devices in our daily lives, it is crucial

to get signals right. Many disciplines are collaborating to make this process go

smoothly; electronic engineering, mathematics and computing are the foundations

of this mechanism. The invention of the telegraph and telephone drew the at-

tention of information scientists all over the world to the field’s potential. The

telegraph (the transmission of electrical signals through wires) was invented in the

early 1700s, while many scientists claimed to have worked on the signals, it was

New York University professor Samuel Finley Breese Morse who made the crucial

breakthrough. Samuel Morse built a telegraph line between Washington, D.C. and

Baltimore, Maryland in 1844, but he noticed a lot of issues with the electrical signals

that were sent through the underground wires. Incomprehensibly, putting the wires

on poles resulted in fewer complications. Similarly, in 1875, Alexander Graham

Bell invented the telephone, which again drew the attention of numerous scientists

looking for a way to solve the problem of electrical signals carried across the wires.

Information and coding theory are two branches of mathematics in which the

transmission of information is studied. The formal study of information theory be-

gan with the papers “Certain Factors Affecting Telegraph Speed” [67] and “Trans-

mission of Information” [41], written by Nyquist and Hartley respectively, in 1924

and 1928 at the Bell Laboratories in the United States of America. Coding theory is

1

the subject dealing with error detection and correction for data that efficiently and

accurately passes through a noisy communication channel. While working at Bell

Laboratories in the United States of America, Claude E. Shannon, often recognized

as the father of modern digital communications and information theory, produced

the seminal work “A Mathematical Theory of Communication” [98] in 1948. This

study is credited with bringing Information Theory to its initial evolutionary stage.

In a communication channel, information sent over it may get corrupted due to

various noise factors. Shannon discovered a number, called the channel capacity and

demonstrated that at any rate below the channel capacity, reliable communication is

achievable, whereas, reliable communication is not possible if the transmission rate

is greater than the channel capacity. Shannon’s results guarantee that data may be

encoded before transmission and then decoded to a certain degree of accuracy at the

receiver’s end. According to Shannon, in every communication channel, signals can

be encoded before being transmitted over a noisy channel using suitable encoding

and decoding procedures to reduce the likelihood of error. However, he never proved

how this is attainable practically. The encoding here is done by adding redundancy

to the information symbols, so it’s all about sensibly adding redundancy so that the

actual message can be recovered properly.

In our day-to-day life, we observe many noises in communication channels. The

noise here means we do not receive what was communicated, also known as an error.

For example, in deep space communication, the satellite is the message source, the

outer space with the hardware that sends and receives messages is the channel, and

the station on the earth is the receiver. The noise, in this case, may arise due to

thermal disturbance. In a compact disc, picture, video, audio, or any data stored

in the disc is a message. Disc itself is the channel and the viewer/listener is the

receiver, here a noise may arise due to some scratches or fingerprints on the disc.

Some other examples of communication channels are telephone, atmosphere, storage

devices like HDD, SSD, floppy, RAM, pen drive, etc. The main objective of coding

theory is to decode a received message correctly based on what is transmitted.

Shannon worked in an era when computers were widely used for large calcula-

tions. During this, the users were facing some errors. The computers then were

2

capable of detecting the errors but not correcting them. This led to the necessity of

configuring an algorithm capable of doing both things simultaneously. This problem

was solved to a large extent by the Hamming codes [40], named after an American

mathematician, Richard Wesley Hamming. This work was also carried out at the

Bell Laboratories. The discovery of this class of codes is a result of the rigorous work

done by him on automatic error-corrections on punched card readers. Hamming was

the first person in history to develop error-correcting codes.

On computer networks, there are two types of error-correcting codes: block codes

and convolutional codes. Block codes are a family of error-correcting codes where

data is encoded in blocks. A block code is called a linear code if it is a subspace

of the vector space Fnq over a finite field F, otherwise it is non-linear. A linear

code is represented as an (n, k) code, where n is the length of the code and k is

the dimension of the code. If we include the minimum distance d of the code, it

is written as (n, k, d) code. Block codes are memoryless, which means that one

block is independent of the other blocks in an encoded message. Therefore, accurate

frame synchronisation is required for decoding; frame synchronisation means that

the decoder is aware of the position of symbols in a received codeword. On the

other hand, convolutional codes [33] were introduced by Peter Elias in 1955. Here,

the information symbols are not independent of the other symbols and are spread

throughout the sequence. Unlike the block codes, these codes have memory. Our

study is focused on block codes, so we discuss some major developments in the field

of block codes.

Hamming codes are capable of correcting single errors and detecting double

errors. In later stages, these codes turned out to be of great importance from a

theoretical as well as practical perspective in the development of coding theory.

Hamming codes are perfect, which means they have the highest possible code rate

pertaining to the given parameters. Even though a general approach was elaborated

by Hamming for this construction, he focused on the (7, 4) Hamming code, where 4

information bits are transmitted by adding 3 parity check bits. Hamming introduced

the concept of minimum distance between two codewords in a code; this concept

follows the lines of a metric space, so has similar interesting properties. Shannon

3

and Hamming’s works were complementary to one another. Shannon’s work was on

a probabilistic approach, while Hamming focused on the combinatorial approach.

The development of Hamming codes was a significant step forward in coding

theory. The codes were capable of correcting only one-bit error at a time. Then a

contemporary Swiss-born mathematician, Marcel Jules Edouard Golay, was able to

develop two codes capable of correcting more bits at a time [38]. These constructions

were a generalisation of Hamming’s constructions. First, he constructed a binary

(23, 12, 7) code, which was capable of correcting 3 bit errors at a time. Second, he

constructed a ternary (11, 6, 5) code capable of correcting 2 bit errors at a time. A

fascinating fact about this paper is that, despite being barely one page in length, it

brought a revolution in coding theory and it has deep connections to number theory,

combinatorics, graph theory, game theory, group theory, and other similar fields.

The construction of error-correcting codes becomes easy due to their algebraic

structure, Irving Stoy Reed [91], David Eugene Muller [65], and David Slepian’s

[103] development should be credited for this. Reed and Muller demonstrated the

use of finite fields and rings in the construction of error-correcting codes, whereas

Slepian demonstrated group codes. After the code construction was done by Muller

[65], Reed [91] shortly developed the decoding algorithm where up to half the min-

imum distance decoding was possible. Together, this class of codes is known as the

Reed-Muller (RM) codes. This construction was a step forward in the development

of error-correcting codes as the flexibility for code size and the number of errors

possible to be corrected in a codeword was higher than the Hamming and Golay

codes. The Mariner mission to Mars in 1965 was able to successfully capture black

and white images of the surface there. The quality of pictures improved with the

Mariner 9 in 1972. The reason behind this is the use of RM codes for the trans-

mission, where 6 bits of information were encoded by adding 26 more bits [116].

Between 1969 and 1977, RM codes were a great choice for communication scientists.

However, this trend diminished with the construction of better codes. RM codes are

being examined again in optical communications due to their high-speed decoding

algorithm.

Another major contribution to error-correcting codes is the cyclic codes [75]

4

introduced by Eugene August Prange in 1957 at the Air Force Cambridge Research

Laboratory in Massachusetts. This is a class of linear block codes where the cyclic

shift of any codeword is again a codeword. This algebraic property turned out to be

a great choice for designing the codes smoothly. A generator polynomial of degree

n− k is used to generate an (n, k) cyclic code; these codes are also known as cyclic

residue check (CRC) codes. The Meggit decoder [62] can be used to decode this class

of codes. Since the complexity of the Meggit decoder increases exponentially as the

number of correctable erroneous bits increases, the use of CRC codes is confined to

single and double bit correction. These days, CRC codes are mainly used in error

detection rather than correction. Parallel to the construction of the cyclic codes,

Alexis Hocquenghem [43] in 1959 and Raj Chandra Bose and Dwijendra Kumar

Ray-Chaudhuri [21] in 1960 found a subclass of cyclic codes. Together, these codes

are known as the BCH codes of length n = qm − 1, where q is the order of the field

and m is a positive integer. A binary (n, k) BCH code is capable of correcting at

least n−k
m

errors. The extension of the BCH codes for non-binary cases was done by

Irving Stoy Reed and Gustave Solomon in 1960, known as the RS codes [92]. The

non-binary nature of the code made it suitable for the correction of burst errors.

However, these codes were considered for extensive applications after Elwyn Ralph

Berlekamp [12] developed an efficient decoding algorithm for RS codes in 1967. Since

then, these codes have been frequently used in VCD players, DVD players, and other

devices [14].

Other than the construction of codes over finite fields, Hamming was also inter-

ested in knowing the maximum possible number of codewords in a code of length

n with minimum distance d. This problem gave rise to the Sphere Packing Bound,

also known as the Hamming Bound [40]. Here, an upper bound on the number of

codewords is derived for codes having minimum distance d and length n defined

over a Galois field. Any code attaining Hamming bound is called a perfect code.

Following it, in coding theory, many upper and lower bounds on the number of

codewords have been found. The first lower bound on the number of codewords

with a fixed length and minimum distance is due to Edgar Nelson Gilbert [37] and

Rom Rubenovich Varshamov [113], commonly known as Gilbert-Varshamov bound.

5

Gerald Enoch Sacks [95] further gave a much simpler proof of this bound. Plotkin

bound by Moriss Plotkin [72] further improved the Hamming bound, which is valid

if the minimum distance d is close to the code length n.

James H. Griesmer developed the Griemer bound [39] on the length of the code

for linear codes, which determines the existence of a linear code. Later on, Solomon

and Stiffler [104] and Belov [10] found simplex codes satisfying the Griesmer bound.

The Singleton bound is a very simple upper bound developed by Robert C. Single-

ton [102]. This bound leads to the class of Maximum Distance Separable (MDS)

codes, which contains the RS-codes. Assmus, Mattson and Turyn [7], Forney [35]

and Kassami, Lin and Peterson [50] further carried out this study independently. S.

Reiger developed bounds for codes detecting and correcting bursts simultaneously,

called the Reiger bound [93]. Some of these results were similar to the Fire bound

[34]. Later, Campopiano [24] got a bound for linear codes correcting single burst,

called the Campopiano bound. Following Plotkin’s approach, S. Johnson [47] de-

veloped restricted and unrestricted upper bounds on the number of codewords for

constant weight codes. Using these bounds, the Johnson upper bound was found.

Some review articles which are worth mentioning in this direction are Kautz and

Levitt [51], Wolf [116], Assmus and Mattson [6], van Lint [109], Valenti [107], Dass

and Das [29], etc. Some noteworthy books in coding theory in chronological order

can be mentioned as - Peterson [69], Abramson [2], Gallagher [36], Berlekamp [13],

van Lint [108], Peterson and Weldon [70], Blake [16], Blake and Mulin [18], McEliece

[61], Clark (Jr) and Cain [26], MacWilliams and Sloane [60], Lin and Costello [58],

Hill [42], Rhee [94], Vanschot and Oorschot [111], Poli, Hugnet and Craig [73],

Vermani [114], Pless [71], Baylis [9], Lee [56], Morelas-Zaragoza [64], Huffman and

Pless [45], Justesen and Hoholdt [49], Ling and Xing [59], van Lint [110], Klove [53],

Neubauer, Freudenberger and Kuhn [66], Bose [20], etc.

The codes discussed so far were defined mainly over finite fields Fq; codes are also

studied over the ring Zp (p, a prime number) [17]. By doing so, the codes worked

fine, but several interesting problems from a ring theoretic point of view remained

unsolved in popular codes like the BCH codes [17]. It was found that the codes

defined over integer residue rings were more useful for use in computer-to-computer

6

communications compared to the traditional codes defined over finite fields (having

non-prime order) [17]. Ease in the arithmetic among integers can be considered a

reason for this. Mathematicians became interested in researching codes over rings

as a result of this. Early work in this regard is due to Blake ([17], [15]) and Spiegel

[105]. Based on the work of Varshamov and Tenengolz [112] and Levenshtein and

Vinck [57], in 1998, Vinck and Morita [115] studied a class of codes defined over the

ring of integers, Zm, termed as integer codes.

1.2 Integer codes

Integer codes are a class of codes defined over the ring of integers modulo m. The

inception of defining codes exclusively over the ring of integers modulo m began

with the codes defined by Ian F. Blake [15] in 1972. He constructed cyclic codes

over the ring Zm, where m is a product of distinct primes. Continuing this, in 1975,

Blake [17] again constructed another class of codes over Zm, where m is a power of

prime. In 1977, Eugene Spiegel [105] generalised this concept with the help of ring

isomorphisms and constructed codes for any random value of m.

Based on the early work of Varshamov and Tenengolz [112] and from the results of

perfect (d, k) codes [57] that corrected single peak-shifts, Vinck and Morita [115] gave

us a class of codes over the ring Zm, which is today popularly known as the integer

codes. These codes are suitable for channels where symbols can be represented by

integers. This is mainly observed in magnetic recording and coded modulation. In

discussing the applications of integer codes, single peak-shifts, single square errors,

single cross errors, etc. correcting codes are demonstrated in [115] for magnetic

recording systems. They used computer search results to construct the parity check

matrix for the integer codes capable of correcting these errors.

Coded modulation is a strategy that effectively combines coding and modulation

techniques. Each point in the signal constellation represents a symbol from the ring

Zm in block coded modulation. Thus, the information symbols are mapped to the

integers in Zm and the error-correcting procedure is carried out over Zm. In integer

7

codes, possible error patterns occurring in several channels are identified and a parity

check matrix is constructed for developing the code capable of correcting these preva-

lent errors. Single ±1 error-correcting integer codes can be found in [55], where the

ring considered is of the type Z2l . A general construction for codes over the rings of

the types Zm with m equal to p, 2p, pq, pk and tk+1 are discussed in [54] (here p and q

are primes and t ∈ N). The codes are capable of correcting single (±e1,±e2, . . . ,±es)

errors; in a particular case, (±e1,±e2, . . . ,±es) = (±1,±t, . . . ,±tk−1) is considered.

Another class of integer codes is constructed over the rings of the type Z2b−1

by Radonjic and Vujicic [81]. The type of error considered here is a burst, which

may occur within a b-bit byte. Unlike the traditional way, the symbols are first

converted into binary b-tuples and then the error-correcting procedure is carried

out. The error-correcting procedure could be efficiently carried out since a non-

zero integer in the ring Z2b−1 can be uniquely represented in its binary form. By

converting the symbols into binary form tuples, these classes of integer codes become

suitable for implementation in channels where asymmetric errors are evident.

Continuing the study on integer codes over the ring Z2b−1, Radonjic and Vujic

have contributed immensely in this area (see next paragraph). They have also shown

the implementation of these codes in multi-core processors (quad-core, octa-core,

dual-core, etc.). The encoding procedure in this class is based on a predetermined

parity check matrix consisting of coefficients Ci, which are found by suitable com-

puter search results. For decoding, look-up table operations are used. Due to this,

very little memory is consumed during the process.

Integer codes correcting double asymmetric errors [89], spotty byte asymmetric

errors [82], random and asymmetric errors [85], high-density byte asymmetric errors

[83], single errors and burst asymmetric errors [84], sparse byte errors [86], burst

asymmetric and double asymmetric errors [87], single errors (perfect) [77], double

errors and triple adjacent errors [78], single errors and detecting burst errors [79],

etc. are some of the major contributions in this direction.

8

1.3 Some specific error patterns

Developing various approaches in coding theory is nothing more than a contribution

to the code’s ability to detect and correct errors. Every time a new error-correcting

technique is developed, it is attempted to increase the efficiency of the code while also

pursuing better encoding and decoding methods. During transmission, errors may

occur anywhere, randomly and independently of each other. These types of errors

are called “random errors”. In deep space, satellite channels, etc., these errors are

prevalent. For Additive White Gaussian Channel (AWGN) channels, many random

error-correcting schemes have been developed [101].

The occurrence of errors is entirely dependent on the communication channel’s

nature. Messages are generally sent over a channel in the form of a long string of

signals and are placed one after another. During transmission, due to noise, the

signals may be erased, faded, or altered. This will lead to an erroneous form of

the message at the receiver’s end. Sometimes, the message may be erased, faded, or

altered in consecutive positions. Abramson and Elspas [1] pioneered the development

of consecutive error-correcting codes after Hamming’s code [40] on single error. He

presented a class of codes capable of correcting single and double consecutive errors.

Generalising this, Fire [34] discovered a general type of error which occurred in

consecutive positions in the form of vectors and termed these types of errors “burst

errors”. In the report submitted to the Sylvania Reconnaissance Systems Laboratory,

Fire [34] defined “open-loop bursts” as follows.

Definition 1.1. [34] An open loop burst (or simply burst) of length l is an n-tuple

in which non-zero components are confined to some l consecutive positions, the first

and last components of which are necessarily non-zeros.

(1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 1, 0), (1, 1, 1, 1, 0, 0, 1, 0) are examples of (open

loop) bursts of length 2, 5 and 7 respectively.

Performance of burst error-correction codes can be improved by using interleav-

ing techniques in the scheme [44]; interleaving means rearrangements in the code.

After the discovery of burst errors, researchers continued this to find other types of

9

bursts occurring in different communication channels under various circumstances.

In 1965, Chien and Tang [25] identified some channels where it is not necessary

for a burst error to have the last component non-zero. This type of burst is called

CT-burst.

Definition 1.2. [25] A CT-burst of length l is an n-tuple having non-zero compo-

nents confined to l consecutive positions, first of which is non-zero.

For example, (0, 0, 0, 1, 0, 1, 0, 0) can be considered as a CT-burst of length 3, 4

as well as 5. It has been discovered that CT-bursts are useful for analysing errors

in the experiments of telephone lines [3]. Dass [28] in 1980 modified the definition

of CT-bursts for channels and named it as burst of length l (fixed). In the modi-

fied definition, Dass considered the bursts that do not occur after the (n− l + 1)th

position.

For a low-intensity burst, the number of erroneous components inside the bursts

is very low. This was observed by Wyner [117] in 1963, and he named such bursts as

low-density bursts. For high-intensity burst, the number of erroneous components

inside the burst is very high. Such bursts are called high-density bursts ([22], [11]).

So, applying the usual error-correcting techniques will lead to complexity and excess

memory consumption in both of the types discussed above.

In the same way, we can reduce the undesirable complexity by separating CT-

bursts into low-density and high-density types. The code’s efficiency improves as a

result of this. Solid burst is another type of burst that is prevalent in supercomputer

storage systems [5], semiconductor memory data [46], etc. Here, all components

inside the burst length are non-zeros, this type of burst is also known as an adjacent

burst. The codes developed for correcting this class of bursts are mainly double and

triple adjacent error-correcting.

Definition 1.3. [100] A solid burst of length l is a burst of length l in which all the

l components are non-zeros.

For example, the bursts (1, 1, 1, 1, 1, 0, 0, 0) and (0, 1, 1, 1, 1, 1, 1, 0) are solid bursts

of length 5 and 6 respectively, whereas (0, 0, 1, 0, 1, 1, 1, 0) is not a solid burst as there

10

Figure 1.1: Z-channel with crossover probability ε

1 1

0 0

1− ε

ε

exists a component 0 within length 5. However, the latter error can be considered

as a burst of length 5 and a CT-burst of length 5 or 6.

In binary-oriented codes, possible error patterns can arise due to 1 → 0 and

0 → 1. It depends on the channel what the probability of 1 → 0 and 0 → 1 is.

In some practical systems, the occurrence of 1 → 0 is extremely high [85]. Optical

networks without optical amplifiers is an example regarding this [90]. We consider

Z-channel (Figure 1.1) for binary asymmetric channels (BAC) where the probability

of 0 → 1 is zero. Therefore, we redefine bursts, CT-bursts, low-density and high-

density CT-bursts, solid bursts for Z-channel as the respective bursts that follow

only the pattern 1→ 0.

Definition 1.4. A binary oriented burst where only 1 → 0 is a possibility of error

is called an asymmetric burst.

Definition 1.5. A binary oriented CT-burst where only 1 → 0 is a possibility of

error is called an asymmetric CT-burst.

Definition 1.6. A binary oriented solid burst where only 1 → 0 is a possibility of

error is called an asymmetric solid burst.

For example, (0, 0, 0, 1, 1, 0, 1, 0) can be considered as an asymmetric CT-burst

of length 4 or 5, also it can be considered as an asymmetric burst of length 4.

(1, 1, 1, 1, 0, 0, 0, 0) is an example of asymmetric solid burst of length 4. In the case

of a low-density CT-burst, we specify the weight w (in Hamming sense) and consider

11

Figure 1.2: Binary symmetric channel

1 1

0 0

1− ε

ε

1− ε

ε

the CT-bursts that have a weight up to w. Similarly, for high-density, we consider

CT-bursts that have a weight of at least w.

Definition 1.7. A low-density asymmetric CT-burst (LACTBd/l) is an asymmetric

CT-burst of length l in which the number of inverted (erroneous) bits d is between 1

and b l
2c, 1 ≤ d ≤ b l

2c.

Definition 1.8. A high-density asymmetric CT-burst (HACTBh/l) is an asymmet-

ric CT-burst of length l in which the number of inverted (erroneous) bits h is between

d l
2e and l, d l

2e ≤ h ≤ l.

(1, 0, 0, 1, 0, 0, 0, 0) and (1, 0, 1, 0, 1, 0, 0, 0) are examples of low-density and high-

density CT-bursts of length 4 and 5, with weight 2 and 3 respectively.

In some VLSI circuits, both of the patterns 1→ 0 and 0→ 1 may occur, but not

both at the same time. Unidirectional errors occur as a result of this ([74], [4]). This

can be modelled with the help of a binary symmetric channel (BSC)(Figure 1.2),

where occurrences of both 1 → 0 and 0 → 1 are equally likely with the crossover

probability ε. Thus, we define unidirectional solid bursts as following:

Definition 1.9. A binary-oriented solid burst where errors occur either in the pat-

tern 1→ 0 or 0→ 1, but not simultaneously, is called a unidirectional solid burst.

The likelihood of the pattern 1→ 0 or 0→ 1 occurring is not known in advance.

For example, (1, 1, 1, 0, 0, 0, 0, 0) and (0, 0, 0,−1,−1,−1,−1, 0) are unidirectional

12

solid bursts of length 3 and 4 respectively. But, the solid burst (0, 0, 0,−1, 1, 1, 0, 0)

will not be unidirectional.

So far, we have discussed asymmetric or unidirectional burst/CT-burst (low and

high-density)/solid burst errors that are studied in this thesis. Other than these

types of errors, the following error types are also used in our study.

Definition 1.10. [86] Sparse byte error is a type of error where the bits are distorted

in one, two, or three adjacent positions.

Definition 1.11. [82] A t-spotty byte error is an error occurring at t random po-

sitions. Further, the errors following an asymmetric pattern, 1 → 0, are called

t-spotty byte asymmetric errors.

For example, (1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0,−1,−1, 0, 0), (−1, 1,−1, 0, 0, 0, 0, 0)

are sparse byte errors and (1, 1, 0, 0, 0, 1, 0, 0) is a 3-spotty byte asymmetric error.

1.4 Previous results on integer and linear codes

In this section, we briefly discuss the preliminary results and ideas that are used

in our study. The definition of integer codes is given by Vinck and Morita [115] as

follows.

Definition 1.12. [115] Let m,M,N ∈ N, H ∈ ZM×Nm and d ∈ ZMm . The integer

code is defined by {a ∈ ZNm : aHT = d,HT is the transpose of matrix H}. Here H is

the check matrix for the integer code.

Note: Without the loss of generality, we may assume that d = 0. An integer code

with d 6= 0 can also be transformed into an integer code with d = 0 by subtracting

one codeword from all other codewords of the code. The following result is important

for the enumeration of the number of different codes.

Result 1.13. [115] If the greatest common divisor (gcd) of the M ×M subdetermi-

nants of a matrix H is equal to a unit in Zm, then the check matrix H defines mM

different integer codes of equal size mN−M .

13

Definition 1.14. [115] Let C be an integer code with check matrix H and d = 0.

Then the syndrome S of a received word r ∈ ZNm is defined by S = rHT = eHT ,

where e is the error vector.

Definition 1.15. [115] An integer code is called s-error-correcting integer code of

error size t if all errors e = (e1, e2, . . . , eN) with weight(e) ≤ s and ei ∈ {−t,−t +

1, . . . , t − 1, t} for all i can be corrected, here weight(e) is the number of non-zero

components in e.

In relation to the codes discussed above, Strocks [106] proved the following two

results.

Result 1.16. [106] For the check matrix H = (h1, h2, . . . , hN) of a perfect integer

code with M = 1 and s = 2, the following must hold:

• ∀i ∃ j 6= i and ∃ A ∈ {−t, . . . , t}: (Ahj = (2t+ 1)hi).

• ∀i, ∀ j 6= i and ∀ A ∈ {−t, . . . , t}: (hj 6= Ahi).

Using the results above and similar approaches, some error-correcting codes are

discussed in [55] and [54]. Other similar works can be found in their references.

Using the concept of integer codes based on a predetermined parity check matrix,

Radonjic and Vujicic [81] introduced another form of integer codes over the ring

Z2b−1. In this class, k information integers are converted into k b-bit bytes by

using the binary representation of the information integers. They derived a number

of results for channels having asymmetric errors in different ways. Some of the

error patterns, results, and encoding/decoding techniques in this regard that will be

helpful in our study have been mentioned below.

Let B = (xb−1, xb−2, . . . , x0) be the sent and B̄ = (x′b−1, x
′
b−2, . . . , x

′
0) be the

received vector affected due to the t-bit burst (0 < t < b) (refer Definition 1.1).

Then, error e = B − B̄ = 2r(cr+t−12t−1 + cr+t−22t−2 + . . .+ c020),

0 ≤ r ≤ b− t and cr+j = xr+j − x′r+j =


±1, j = 0, t− 1

0,±1, j = 1, 2, . . . , t− 2.
It is obvious that e = ±2rm, m is odd and 1 ≤ m ≤ 2t − 1.

14

Definition 1.17. [81] The set of all t-bit bursts occurring within a b-bit byte is

eb,t = {±2r(1, 3, 5, . . . , 2t − 1) : r = 0, 1, 2, . . . , b− t}.

Definition 1.18. [81] The set of all bursts up to length l occurring within a b-bit

byte is defined by εb,l = eb,1 ∪ eb,2 ∪ . . . ∪ eb,l, i.e., union of all bursts upto length l.

Result 1.19. [81] The cardinality of the set εb,l is |εb,l| = 2l(b− l + 2)− 2.

Using the definitions and result above, integer (BlEC)b codes are developed,

capable of correcting burst up to length l. This is done by finding coefficients from

the ring Z2b−1 satisfying the condition given below.

Definition 1.20. [81] The syndrome set for ((k + 1)b, kb) integer (BlEC)b-codes is

defined by ζb,l =
k+1
∪
i=1

{
Ciεb,l (mod 2b − 1)

}
, where the coefficients Ci ∈ Z2b−1 \ {0, 1},

for i = 1, 2, . . . , k are chosen in such a way that each Ci multiplied with each element

of εb,l (mod 2b − 1) yields a different result and Ck+1 = −1.

For encoding purpose, a new b-bit byte called check byte CB is calculated as

CB = [C1B1 +C2B2 + . . .+CkBk] (mod 2b − 1). The decoder constructs a look up

table by using the elements of the syndrome set and further categorize the elements

as εb,l and Ciεb,l, εb,l pertains to an error in the check byte, whereas Ciεb,l pertains

to an error in the ith data byte.

Suppose a transmitted messageB1B2 . . . BkCB is received as B̄1B̄2 . . . B̄kC̄B, then

the decoder calculates syndrome S = CB̄ − C̄B (mod (2b − 1)). If S = 0, then the

message is considered to be free of error; if S 6= 0 and is available in the look up

table, the decoder will be able to decode it, else it is beyond the scope of the decoder.

In asymmetric burst, the error is of 1 → 0 type. Thus, the pattern of possible

asymmetric burst errors will be er,l = −2r(2l−1 + al−22l−2 + . . . + a12 + 20), where

0 ≤ r ≤ b − l and aj ∈ {0, 1} for 1 ≤ j ≤ l − 2. In [88], error-correcting method

for integer codes correcting asymmetric burst errors within a byte is done similar to

the symmetric burst errors [81].

Definition 1.21. [88] Let 0 ≤ r ≤ b − l, 3 ≤ m ≤ 2l − 1, where m is odd and let

er,m = 2rm be the difference between the integer values of the correct b-bit byte and

15

its erroneous counterpart affected by the asymmetric burst error of length l within

the b-bit byte. Then, the set of syndromes corresponding to the asymmetric burst

errors is defined as

S =
{

b−l
∪
r=0

2l−1
∪
m=3

k+1
∪
i=1

(−er,mCi) (mod (2b − 1))
}
.

In the definition above, the coefficients Ci ∈ Z2b−1 \ {0, 1} for i = 1, 2, . . . , k are

chosen in such a way that each Ci multiplied by each element of −er,m (mod 2b−1)

yields a different result.

Result 1.22. [88] The code defined above can correct all asymmetric burst errors of

length 2 ≤ l ≤ b− 1 if and only if there exist k coefficients Ci ∈ Z2b−1 \ {0, 1} such

that |S| = [2l−1(b− l + 2)− 1](k + 1).

In [89], integer codes correcting double asymmetric errors (IDAEC codes) are

presented. Here, a single asymmetric error of the type 1→ 0 is considered simulta-

neously in two data bytes, or one in a data byte and another in the check byte, or

a single error in a data byte or check byte. After considering the error pattern in

single asymmetric error, the set of syndromes is as follows:

s1 =
{

2r (mod (2b − 1)) : 0 ≤ r ≤ b− 1
}

, error in the check byte,

s2 =
{ k
∪
i=1

(−2rCi) (mod (2b − 1)) : 0 ≤ r ≤ b− 1
}

, error in ith data byte,

d1 =
{

(2r + 2s) (mod (2b − 1)) : 0 ≤ r < s ≤ b− 1
}

, both errors in the check byte,

d2 =
{ k
∪
i=1

[(−2r − 2s)Ci] (mod (2b − 1)) : 0 < r < s ≤ b − 1
}

, both errors in the

same ith data byte,

d3 =
{ k
∪
i=1

[−2rCi + 2s] (mod (2b− 1)) : 0 ≤ r, s ≤ b− 1
}

, first error in ith data byte

and another in the check byte,

d4 =
{ k−1
∪
i=1

k
∪

j=i+1
[(−2rCi − 2sCj)] (mod (2b − 1)) : 0 ≤ r, s ≤ b− 1

}
, first and second

error in ith and jth data byte respectively.

Result 1.23. [89] The IDAEC code can correct all single and double asymmetric

errors if and only if there exist k mutually different coefficients Ci ∈ Z2b−1 \ {0, 1}

such that

|s1| = b

|s2| = bk

16

|d1| = b
2(b− 1)

|d2| = b
2(b− 1)k

|d3| = b2k

|d4| = b2

2 (k − 1)k

s1 ∩ s2 ∩ d1 ∩ d2 ∩ d3 ∩ d4 = φ.

Result 1.24. [89] The cardinality of the syndrome set of a ((k + 1)b, kb) integer

IDAEC code is b
2(k + 1) + b2

2 (k + 1)2.

The results mentioned below are for integer codes correcting spotty byte asym-

metric errors.

Definition 1.25. [82] The set of syndromes corresponding to t-spotty byte asymmet-

ric error within a b-bit byte is S =
{

t
∪
m=1

k+1
∪
i=1

(−Ciem) (mod 2b − 1) : 1 ≤ t < b
}

,

where em = {2x1 + 2x2 + . . .+ 2xm} with 0 ≤ x1 < . . . < b and 1 ≤ m ≤ t.

Result 1.26. [82] An integer code can correct all t-spotty byte asymmetric errors if

and only if there exist k mutually distinct coefficients Ci ∈ Z2b−1 \ {0, 1} such that

|S| = (k + 1)
t∑

m=1

(
b
m

)
.

The results mentioned below are for sparse byte errors.

Definition 1.27. [86] The syndrome set for an integer code correcting sparse byte

within a b-bit byte will be S = ε1 ∪ ε2 ∪ ε3, where

ε1 =
{
k+1
∪
i=1

(±2rCi) (mod 2b − 1) : 0 ≤ r ≤ b− 1
}

,

ε2 =
{
k+1
∪
i=1

[(±2r ± 2s)Ci] (mod 2b − 1) : 0 ≤ r < s ≤ b− 1
}

,

ε3 =
{
k+1
∪
i=1

[(±20 ± 21 ± 22) 2mCi] (mod 2b − 1) : 0 ≤ m ≤ b− 3
}

.

Result 1.28. [86] An integer code can correct all sparse byte errors if and only

if there exist k mutually distinct coefficients Ci ∈ Z2b−1 \ {0, 1} such that |S| =

(k + 1) [2(b− 1)2 − 2].

In [78], integer codes correcting double errors within and across two b-bit bytes

and triple adjacent errors within a b-bit byte are discussed. The results pertaining

to the codes are given below:

17

Definition 1.29. [78] The set of syndromes belonging to double errors is given by

S1 = ε1 ∪ ε2, where

ε1 =
{
k+1
∪
i=1

(±2r ± 2s)Ci (mod 2b − 1) : 0 ≤ r < s ≤ b− 1
}

,

ε2 =
{

k
∪
i=1

k+1
∪

j=i+1
(±2rCi ± 2sCj) (mod 2b − 1) : 0 ≤ r, s ≤ b− 1

}
.

Definition 1.30. [78] The set of syndrome for triple adjacent errors occurring within

a b-bit byte will be

ε3 =
{
k+1
∪
i=1

(±22 ± 21 ± 20) 2rCi (mod 2b − 1) : 0 ≤ r ≤ b− 3
}

.

By combining the syndrome sets above, we get the syndrome set (S) pertaining

to both the errors.

Result 1.31. [78] An integer code can correct double errors (throughout) and triple

adjacent errors within a b-bit byte if and only if there exist k mutually distinct

coefficients Ci ∈ Z2b−1 \ {0, 1} such that |S| = 2 [b(k + 1)− 1]2 − 2.

Whenever double errors are in two different bytes, technique from [89] is followed,

and for triple adjacent errors in a b-bit byte, technique from [81] is followed. In [87],

integer codes correcting asymmetric burst errors within a b-bit byte and double

asymmetric errors throughout the codeword have been presented. The results for

the same are as follows:

Definition 1.32. [87] The set of syndromes corresponding to asymmetric burst er-

rors occurring within a b-bit byte is ε1 = S1 ∪ S2, where

S1 =
{
−2r(2m− 1)Ci (mod 2b − 1) : 0 ≤ r ≤ b− l, 1 ≤ m ≤ 2v−1, 1 ≤ v ≤ l, 1 ≤ i ≤ k

}
,

S2 =
{

2r(2m− 1) (mod 2b − 1) : 0 ≤ r ≤ b− l, 1 ≤ m ≤ 2v−1, 1 ≤ v ≤ l
}

.

Definition 1.33. [87] The set of syndromes corresponding to double asymmetric

errors occurring within a b-bit byte is ε2 = S3 ∪ S4, where

S3 =
{
−2r(2s−r + 1)Ci (mod 2b − 1) : 0 ≤ r < s ≤ b− 1, 1 ≤ i ≤ k

}
,

S4 =
{

2r(2s−r + 1) (mod 2b − 1) : 0 ≤ r < s ≤ b− 1
}

.

Definition 1.34. [87] The set of syndromes corresponding to double asymmetric

errors occurring in two b-bit bytes is ε3 = S5 ∪ S6, where

S5 =
{
−2rCi − 2sCj (mod 2b − 1) : 0 ≤ r, s ≤ b− 1, 1 ≤ i < j ≤ k

}
,

S6 =
{
−2rCi + 2s (mod 2b − 1) : 0 ≤ r, s ≤ b− 1, 1 ≤ i ≤ k

}
.

18

Definition 1.35. [87] The set of syndromes corresponding to double asymmetric

errors excluding the asymmetric burst errors is ε4 = S7 ∪ S8, where

S7 =
{
−2r(2s−r + 1)Ci (mod 2b − 1) : l ≤ r + l ≤ s ≤ b− 1, 1 ≤ i ≤ k

}
,

S8 =
{

2r(2s−r + 1) (mod 2b − 1) : l ≤ r + l ≤ s ≤ b− 1
}

.

Let S be the set of all the syndromes discussed above. Result below discusses

the number of syndrome elements.

Result 1.36. [87] A ((k+ 1)b, kb) integer code can correct asymmetric burst errors

within a b-bit byte and double asymmetric errors throughout the codeword if and

only if there exist k mutually distinct coefficients Ci ∈ Z2b−1 \ {0, 1} such that

|S| = (k + 1)
[

2l(b−l+2)+b2k+(b−l+1)(b−l)−2
2

]
.

In [85], integer codes are constructed that are capable of correcting asymmetric

burst and random asymmetric errors of length l and t respectively, within a b-bit

byte.

Definition 1.37. [85] Let e1 = {1} and ew = {2w−1 + 1, 2w−1 + 1, . . . , 2w − 1}, then

the set of syndromes corresponding to l/b asymmetric burst errors occurring within

a b-bit byte is defined by ε1 = S1 ∪ S2, where

S1 =
{

l
∪
m=1

(2rem) (mod 2b − 1) : 0 ≤ r ≤ b−m
}

,

S2 =
{

l
∪
m=1

k
∪
i=1

(−Ci2rem) (mod 2b − 1) : 0 ≤ r ≤ b−m
}

.

Definition 1.38. [85] Let f2 = {2s+2z} and fv = {2s+2x1 +2x2 + . . .+2xv−2 +2z},

then the set of syndromes corresponding to t/b random asymmetric errors within a

b-bit byte is defined by ε2 = S3 ∪ S4, where

S3 =
{

l
∪
n=2

(fn) (mod 2b − 1) : 2 ≤ t < l
}

,

S4 =
{

t
∪
n=2

k
∪
i=1

(−Cifn) (mod 2b − 1) : 2 ≤ t < l
}

.

By considering the union of the sets discussed above, the set of syndromes cor-

responding to asymmetric bursts and random asymmetric errors of length l and t

respectively, will be S = ε1 ∪ ε2.

Result 1.39. [85] A ((k + 1)b, kb) integer code can correct asymmetric bursts and

random asymmetric errors of length l and t respectively, if and only if there exist k

19

mutually distinct coefficients Ci ∈ Z2b−1 \ {0, 1} such that

|S| = (k + 1)
[
2l−1(b− l + 2)− 1 + (b−l)2+b−l

2

]
for t = 2,

|S| = (k + 1)
[
2l−1(b− l + 2)− 1 + (b−l)2+b−l

2

]
− (k + 1)

[
2(b−l)3+3(b−l)2+b−l

6

]
for t = 3.

In [84], integer codes are constructed that are capable of correcting single sym-

metric errors and asymmetric burst errors up to length l within a b-bit byte. Sym-

metric errors mean that the errors may occur as a result of both 1→ 0 and 0→ 1.

Definition 1.40. [84] Let 0 ≤ r ≤ b− 1 and let er = ±2r be the difference between

the integer values of the correct b-bit byte and its erroneous counterpart affected by

single error. Then, the set of syndromes corresponding to single errors is defined as

s1 =
b−1
∪
r=0

k+1
∪
i=1

erCi (mod 2b − 1).

Definition 1.41. [84] Let 0 ≤ r ≤ b − l, 3 ≤ m ≤ 2l − 1, where m is odd, and

let em = 2rm be the difference between the integer values of the correct b-bit byte

and its erroneous counterpart affected l/b BA error. Then, the set of syndromes

corresponding to l/b BA errors is defined as s2 =
b−l
∪
r=0

2l−1
∪
m=3

k+1
∪
i=1

(−er,mCi) (mod 2b−1).

Result below determines the number of elements in the syndrome set of the

integer code discussed in [84].

Result 1.42. [84] The codes defined by Definition 1.40-1.41 can correct all single

errors and all l/b BA errors if and only if there exist k mutually different coefficients

Ci ∈ Z2b−1 \ {0, 1} such that

|s1| = 2b(k + 1)

|s2| = (k + 1)
[
2l−1(b− l + 2)− b− 1

]
s1 ∩ s2 = φ.

Apart from the integer codes, our study contains some linear and non-linear

codes used for comparison. The existence and study of these codes are mentioned

below.

Result 1.43. [68] Any code that corrects an asymmetric/unidirectional burst of

length b must have at least b+log2(k) check bits, where k is the number of information

bytes.

20

Below are the necessary and sufficient conditions respectively, used for the exis-

tence of the linear codes discussed in [30].

Result 1.44. [30] The number of parity check digits in an (n, k) linear code cor-

recting all bursts of length l1 (fixed) in the first block of length n1, and all bursts of

length l2 (fixed) in the second block of length n2 (n = n1 + n2) is at least

logq
[
1 + {(n1 − l1 + 1)ql1−1 + (n2 − l2 + 1)ql2−1(q − 1)}

]
.

Result 1.45. [30] Given positive integers l1 and l2, there exists an (n, k) linear

code that corrects all bursts of length l1 (fixed) in the first block of length n, and all

bursts of length l2 (fixed) in the second block of length n2(n = n1 +n2) satisfying the

inequality

qn−k > max
[
ql2−1{1+(n2−2l2 +1)(q−1)ql2−1}, ql1−1{1+(n1−2l1 +1)(q−1)ql1−1 +

(n2 − l2 + 1)(q − 1)ql2−1}
]
.

Below are the necessary and sufficient conditions respectively, used for the exis-

tence of the linear codes discussed in [31].

Result 1.46. [31] The number of parity check digits r required for an (n, k) linear

code over GF (q), sub-divided into s sub-blocks of length t each, that corrects burst

of length l (fixed) with weight w or less lying within a single sub-block of length t

is at least logq
[
1 + s(t− l + 1)(q − 1)[1 + q − 1](l−1,w−1)

]
, where [1 + x](n,m) is the

incomplete binomial expansion of (1 + x)n taken up to mth terms.

Result 1.47. [31] An (n, k) linear code over GF (q) capable of correcting bursts of

length l (fixed) with weight w or less, w ≤ l < t
2 , occurring within a single sub-block

of length t can always be constructed using r check digits where r is the smallest

integer satisfying the inequality

qr > [1+(q−1)](l−1,w−1)
[
1+(q−1)[1+(q−1)](l−1,w−1){s(t−l+1)−l}

]
+

2w−1∑
i=w

(
l−1
i

)
(q−

1)i +
l−1∑
k=1

∑
r1,r2,r3

(
l−k
r1

)(
k−1
r2

)(
l−k−1
r3

)
(q − 1)r1+r2+r3+1, where 1 ≤ r1 ≤ w − 1, 0 ≤ r2 ≤

2w − 3, 0 ≤ r3 ≤ w − 1, r2 + r3 ≥ w − 1, r1 + r2 + r3 ≤ 2w − 2.

Below are the necessary and sufficient conditions respectively, used for the exis-

tence of the error locating codes discussed in [32].

21

Result 1.48. [32] The number of check digits r required for an (n, k) linear code,

subdivided into s sub-blocks of length t each, that locates a single corrupted sub-block

containing errors that are bursts of length l (fixed) with weight w or more (w ≤ l) is

bounded from below by r ≥ logq
[
1 + s

(
qd

d
2 e − 1

)]
, w ≤ d ≤ l.

Result 1.49. [32] A code capable of detecting burst errors of length l (fixed) with

weight w or more (w ≤ l) occurring within a single sub-block, and of locating that

sub-block, can always be constructed using r check digits where r is the smallest

integer satisfying the inequality

r > logq

1 +
[l−1∑
i=w−1

(
l−1
i

)
(q − 1)i

][
1 + (s− 1)(q − 1)(t+ l + 1)

l−1∑
i=w−1

(
l−1
i

)
(q − 1)i

].

Byte unidirectional error-correcting codes are discussed in [19], which are similar

to [68]. Result below discusses the redundancy for determining code rate.

Result 1.50. [19] Let m be the number of information bytes with b bits (1 byte).

Then any code that corrects byte unidirectional errors needs at least log(m(2b− 1) +

1) ≈ b+ logm check bits.

A class of linear codes correcting solid bursts is discussed in [27]. Let

Ak =



x1 x2 . . . xk−1 xk

0 x2 . . . xk−1 xk

.

.

0 0 . . . 0 xk

0 0 . . . 0 0


, Y =



y

y

y

.

.

y


, Bk =



0 0 . . . 0 0

xk 0 . . . 0 0

xk xk−1 . . . 0 0

.

.

xk xk−1 . . . x2 x1


,

where xi, y ∈ {1, 2, . . . , q − 1}, (xi, y) = 1; (xi, xj) = 1 for i 6= j and

H t
k =



Ak Y Bk

0 y a1

0 y a3

0 y a5

. . .

. . .

0 y at



,

22

where at represents the k-tuple (0, 0, ..., 0︸ ︷︷ ︸
t

, xk−t, 0, 0, ..., 0︸ ︷︷ ︸
t

, xk−2t−1, . . . , c) and

c =


x1 if k − t− 1 is a multiple of t+ 1

0 if k − t− 1 is not a multiple of t+ 1.

Result 1.51. [27] An (2k+1, k− t+1
2) linear code Ct

k over GF (q), t is an odd number

whose parity check matrix is H t
k, is capable to correct

1. all solid bursts of length t + 2 or less (t ≤ 2k − 3) and all solid bursts of odd

lengths upto 2k − 1, if k is odd,

2. all solid bursts of length t + 2 or less (t ≤ k − 3) and all solid bursts of odd

lengths upto k − 1, if k is even.

1.5 Thesis layout

The thesis mainly studies integer codes that are capable of correcting certain types of

error patterns. Different types of error patterns observed in communication channels

are considered, and accordingly, the error-correcting algorithms are developed. The

codes are constructed with the help of computer search results. Throughout our

study, we have used Python software to determine the parity check matrix. A link

to the source code for each of the error-correcting codes is attached in the appendices.

The errors considered are either confined within a b-bit byte or spread across two

b-bit bytes. The probability of erroneous decoding is derived for all of the codes

considered for study. Also, a few graphs are plotted to observe the change in Bit

Error Rate (BER) and probability with respect to changing code rates. The chapters

of the thesis are divided into seven chapters as highlighted below.

The first chapter consists of the introduction of coding theory and its relevance

in our day-to-day lives. The beginning of codes used in the form of integers and the

required preliminaries for our study are mentioned.

The second chapter consists of integer codes correcting asymmetric CT-bursts

and their probability of erroneous decoding. Encoding and decoding of the codes

23

inflicted with asymmetric CT-burst errors are discussed. We give some comparisons

with the similar kind of codes. The obtained results show that for many data

lengths, the presented codes require less memory than their linear counterparts.

The probability of erroneous decoding and BER of the codes are also presented.

Further, we discuss how much such type of error may go undetected. The presented

codes have the potential to be used in various practical systems, such as optical

networks and VLSI memories.

The third chapter consists of the low-density and high-density asymmetric CT-

burst correcting integer codes. These classes of integer codes are obtained by putting

restriction on the weight of the asymmetric CT-burst discussed in Chapter 2. By

doing so, the memory consumption and the code rates of the class get better. The

probability of erroneous decoding and the BER are analysed by considering ε as

the crossover probability in the Z-channel. Finally, an approach for identifying the

errors that may go undetected in both the classes is presented.

The fourth chapter consists of the unidirectional solid burst correcting integer

codes defined over the binary symmetric channel. The codes defined are very rate-

efficient and have the capability of correcting the mentioned types of bursts up

to their maximum possible length. Here, the probability of erroneous decoding is

determined by considering the probabilities of 1→ 0 and 0→ 1 as equally likely.

The fifth chapter consists of the integer codes capable of correcting asymmet-

ric solid burst errors. Unlike the codes presented in the preceding chapters, this

code is capable of correcting the mentioned burst errors within a b-bit byte as well

as between two adjacent b-bit bytes. By doing so, the code becomes capable of

correcting the errors without interleaving. The probability of erroneous decoding

is determined and analysed similarly to the preceding chapters, and finally, some

properties of undetected errors are discussed.

The sixth chapter consists of the integer codes correcting asymmetric bursts

occurring anywhere in the codeword. This class is a generalisation of the class of

integer codes discussed in Chapter 5. Obviously, this class has a lower code rate

compared to the preceding one. But in return, it provides error-correcting ability

24

for all types of asymmetric burst errors. The probability of erroneous decoding is

determined and a few graphs are plotted.

The seventh chapter of the thesis consists of the probabilities for existing integer

codes correcting different types of symmetric and asymmetric errors. Errors here

vary from code to code according to their occurrence (within a b-bit or between two

b-bit bytes).

Throughout our study, we have tried to construct the codes in a better way

based on the existing codes, correcting similar types of errors. In each of the codes,

an attempt is made to make the code rate efficient and ensure that it consumes the

least possible memory during the error-correcting procedure. We end our thesis with

the required Python search codes used for finding the parity check matrix followed

by the bibliographical references.

25

	05_chapter 1

