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Chapter 2

Asymmetric CT-Burst Correcting Integer

Codes

2.1 Overview

As mentioned in Section 1.3, in some systems like optical networks without optical

amplifiers, the likelihood of the type 1 → 0 is significantly higher than 0 → 1 due

to the number of received photons never exceeding the number of sent ones. This

gives rise to the concept of a Z-channel (refer Figure 1.1). In a binary asymmetric

channel, the probability of 0 → 1 is zero, so a sent binary message will undergo

an error only if 1 → 0 occurs. The crossover probability ε varies from channel to

channel.

To employ a code’s error-detecting and correcting mechanism in a communication

channel, we frequently require sufficient information about the likelihood of error

patterns occurring. To know this, we require the probability of erroneous decoding.

Influenced by these facts, we have presented a class of integer codes capable of

correcting asymmetric CT-bursts of length l within a b-bit byte and we name the

codes by integer (CTlB)b codes. Encoding and decoding of the codes are presented

in Section 2.2. In Section 2.3-2.4, we give the implementation and comparison of

the codes with existing similar types of codes to justify our study. In Section 2.5,

we derive the probability of erroneous decoding for these codes, followed by a ratio

for undetected error. This approach can also be used to determine the probability

27



of similar integer codes. Finally Section 2.6 concludes this chapter.

2.2 Construction of codes

For the construction of the codes discussed, we use Definition 1.12 with m =

2b − 1,M = 1 and N = k + 1. Because the binary representation of all non-

trivial elements in the ring Z2b−1 is unique, we chose m = 2b − 1. Here, b-bit

byte (x0, x1, x2, . . . , xb−1) with xi ∈ {0, 1} is uniquely represented as [x020 + x121 +

x222 + . . . + xb−12b−1] (mod 2b − 1). By considering the error pattern 1 → 0, B =

(x0, x1, . . . , xb−1) (sent) and B̄ = (x̄0, x̄1, . . . , x̄b−1) (received) in Definition 1.5 with

xi, x̄i ∈ {0, 1}, the collection of all asymmetric CT-bursts of length l beginning from

the 1st position will be e1
b,l =

{
20+p121+p222+. . .+pl−12l−1 | p1, p2, . . . , pl−1 ∈ {0, 1}

}
.

Similarly for asymmetric CT-bursts beginning from 2nd position, the collection will

be e2
b,l =

{
21 + p122 + p223 + . . . + pl−12l | p1, p2, . . . , pl−1 ∈ {0, 1}

}
, continuing this

pattern, we get eib,l =
{

2i−1 +p12i+p22i+1 + . . .+pl−12i+l−2 | p1, p2, . . . , pl−1 ∈ {0, 1}
}

as the error set for asymmetric CT-bursts of length l beginning from ith position,

where 1 ≤ i ≤ b− l + 1.

For i > b−l+1, asymmetric CT-bursts of length l will have less than l positions to

occur. In this case, the set of all possible asymmetric CT-bursts of length l beginning

from ith position, where b− l + 1 < i ≤ b, will be eib,l =
{

2i−1 + p12i + p22i+1 + . . .+

pb−i2b−1 | p1, p2, . . . , pb−i ∈ {0, 1}
}

. Define eb,l =
b−l+1
∪
i=1

eib,l and eb,l =
b
∪

j=b−l+2
ejb,l, then

εb,l = eb,l ∪ eb,l gives us the collection of all possible asymmetric CT-bursts of length

l within a b-bit byte.

2.2.1 Encoding procedure

To encode integer (CTlB)b codes, we choose k distinct coefficients C1, C2, . . . , Ck

from the set Z2b−1 \ {0, 1} with the help of some computer search results. Con-

sider N = k + 1, M = 1 and predefined H = (C1 C2 . . . Ck − 1) in Defini-

tion 1.12, then an encoded codeword of integer (CTlB)b code will be from the set{
(B1B2 . . . BkCB) | (B1B2 . . . BkCB)

[
C1 C2 . . . Ck − 1

]T
(mod 2b − 1) = 0

}
, where
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T represents the transpose of matrix. The last b-bit byte CB is called check byte

and is written as CB = [C1B1 +C2B2 + . . .+CkBk] (mod 2b− 1). In simple words,

the message B1B2 . . . Bk is encoded as B1B2 . . . BkCB.

Considering c = B1B2 . . . BkCB and r = B̄1B̄2 . . . B̄kC̄B to be the sent and

received messages respectively, we have error e = c− r. Thus the syndrome for r

will be

S(r) = [(c− e)HT ] (mod 2b − 1)

= [−eHT ] (mod 2b − 1)

= −
[
(B1B2 . . . BkCB)− (B̄1B̄2 . . . B̄kC̄B)

] [
C1 C2 . . . Ck − 1

]T
(mod 2b − 1)

= −[C1B1 + . . .+ CkBk − CB − C1B̄1 − . . .− CkB̄k + C̄B] (mod 2b − 1)

= [C1B̄1 + . . .+ CkB̄k − C̄B] (mod 2b − 1)

= [CB̄ − C̄B] (mod 2b − 1).

Keeping this in mind, we introduce the set of syndromes for integer (CTlB)b
codes as below.

Definition 2.1. The set of syndromes for integer codes correcting asymmetric CT-

bursts of length l within a b-bit byte will be

S1 =
k+1
∪
i=1

[−Ciεb,l] (mod 2b − 1), (2.1)

where Ck+1 = −1, and other coefficient Ci’s are picked from Z2b−1 \ {0, 1} such that

the sets −C1εb,l (mod 2b − 1),−C2εb,l (mod 2b − 1), . . . ,−Ckεb,l (mod 2b − 1) and

εb,l (mod 2b−1) are mutually disjoint. Appendix A consists of a Python programme

used to find the coefficients.

While representing an asymmetric CT-burst, we choose distinct components ev-

ery time and as each element in the ring Z2b−1 has a unique binary representation,

thus the error set εb,l will not have any repetition consequently S1 as well. Theorem

below gives the number of elements in the syndrome set.

Theorem 2.2. A ((k + 1)b, kb) integer (CTlB)b code can correct asymmetric CT-

bursts of length l within a b-bit byte if there exist k distinct coefficient Ci’s from the

set Z2b−1 \ {0, 1} such that |S1| = (k + 1)[2l−1(b− l + 2)− 1].
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Proof. As the process of choosing coefficient Ci’s requires the distinctness of the sets

εb,l (mod 2b − 1) and −Ciεb,l (mod 2b − 1) for 1 ≤ i ≤ k, also each representation

is unique, so all of the sets above will have the same cardinality. Thus to prove the

result, we show that |εb,l| = 2l−1(b−l+2)−1. Clearly |eib,l| =
(

l−1
0

)
+
(

l−1
1

)
+. . .+

(
l−1
l−1

)
,

there are b− l + 1 number of beginning positions for asymmetric CT-bursts having

length l. So |eb,l| = (b− l + 1)
l−1∑
i=0

(
l−1
i

)
= (b− l + 1)2l−1. For the remaining beginning

positions, the cardinality will be |eb,l| =
(

l−2
0

)
+
(

l−2
1

)
+ . . .+

(
l−2
l−2

)
+
(

l−3
0

)
+
(

l−3
1

)
+

. . . +
(

l−3
l−3

)
+ . . . +

(
1
0

)
= 2l−2 + 2l−3 + . . . + 20 = 2l−1 − 1. Thus by adding we get

|εb,l| = (b− l + 1)2l−1 + 2l−1 − 1 = 2l−1(b− l + 2)− 1. This proves our claim.

2.2.2 Decoding procedure

The decoder constructs a look up table, LUT2 consisting of all syndrome elements

using (2.1) whereas look up table, LUT1 comprises of the coefficient Ci’s. Each entry

from LUT2 is of 2b + dlog2(k + 1)e bits, so the size of LUT2 will be |S1| × (2b +

dlog2(k + 1)e) bits. Figure 2.1 depicts the bit width of each syndrome entry. Once

Figure 2.1: Bit width of each syndrome entry

One syndrome element from S1 Error location Error vector e

←− b −→ ← dlog2(k + 1)e → ←− b −→

a message is received the decoder calculates syndrome of the received message, and

searches the corresponding value of calculated syndrome in LUT2 which requires ηTL
table look ups for the binary search such that 1 ≤ ηTL ≤ blog2 |S1|c + 2 (see [63]).

In case of unavailability, the decoder declares a failure. Following steps are followed

for decoding:

• For asymmetric CT-bursts of length l occurring within the check byte:

CB = [C̄B + e] (mod 2b − 1), where e ∈ εb,l.

• For asymmetric CT-bursts of length l occurring within jth data byte:

Bj = [B̄j + e] (mod 2b − 1), where e ∈ εb,l.
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Example 2.3 describes integer (CT3B)8 code with the help of Table 2.1 generated

using (2.1).

Table 2.1: LUT2 for (40,32) integer (CT3B)8 code

Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S1) Loc. (i) (e) No. (S1) Loc. (i) (e)

1 1 5 1 69 135 3 80

2 2 5 2 70 138 4 48

3 3 5 3 71 139 4 4

4 4 5 4 72 140 2 80

5 5 5 5 73 143 1 56

6 6 5 6 74 145 2 10

7 7 5 7 75 147 3 4

8 8 5 8 76 149 2 56

9 9 3 28 77 156 3 32

10 10 5 10 78 158 2 32

11 12 5 12 79 159 1 48

12 14 5 14 80 160 5 160

13 15 3 160 81 161 4 56

14 16 5 16 82 162 4 12

15 18 3 56 83 167 2 8

16 20 5 20 84 168 4 3

17 21 4 96 85 171 3 192

18 23 4 8 86 174 3 3

19 24 5 24 87 175 1 40

20 25 2 160 88 178 2 7

21 28 5 28 89 183 2 192

22 31 1 112 90 184 4 64

23 32 5 32 91 185 4 20

24 35 2 20 92 186 3 12

Contd...
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Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S1) Loc. (i) (e) No. (S1) Loc. (i) (e)

25 36 3 112 93 189 2 6

26 39 3 8 94 190 1 160

27 40 5 40 95 191 1 32

28 42 4 192 96 192 5 192

29 43 2 112 97 195 3 40

30 46 4 16 98 197 4 2

31 48 5 48 99 199 1 28

32 52 4 7 100 200 2 5

33 56 5 56 101 201 3 2

34 57 3 64 102 202 2 28

35 61 2 64 103 205 4 160

36 62 1 224 104 207 1 24

37 63 1 96 105 208 4 28

38 64 5 64 106 211 2 4

39 66 3 7 107 213 3 96

40 67 4 112 108 215 1 20

41 69 4 24 109 219 2 96

42 70 2 40 110 220 4 10

43 72 3 224 111 222 2 3

44 78 3 16 112 223 1 16

45 79 2 16 113 224 5 224

46 80 5 80 114 225 3 20

47 81 4 6 115 226 4 1

48 86 2 224 116 227 1 14

49 92 4 32 117 228 3 1

50 93 3 6 118 230 4 80

51 95 1 80 119 231 1 12

52 96 5 96 120 233 2 2

Contd...
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Sl. Syndrome Error Error Sl. Syndrome Error Error

No. (S1) Loc. (i) (e) No. (S1) Loc. (i) (e)

53 101 2 14 121 234 3 48

54 104 4 14 122 235 1 10

55 110 4 5 123 237 2 48

56 112 5 112 124 239 1 8

57 113 4 128 125 240 3 10

58 114 3 128 126 241 1 7

59 115 4 40 127 243 1 6

60 117 3 24 128 244 2 1

61 120 3 5 129 245 1 5

62 122 2 128 130 246 2 24

63 123 2 12 131 247 1 4

64 126 1 192 132 249 1 3

65 127 1 64 133 251 1 2

66 128 5 128 134 253 1 1

67 132 3 14 135 254 1 128

68 134 4 224

Example 2.3. Let b = 8 and l = 3, then C1 = 2, C2 = 11, C3 = 27 and C4 = 29,

syndrome elements are listed in Table 2.1. Suppose a message 11101010 00111100

10100101 11010100 is transmitted, then check byte CB will be CB = 10000101. An

asymmetric CT-burst of length 3 within an 8-bit byte may occur in the following

ways:

Case I (Asymmetric CT-burst in a data byte): If the received message is

11101010 00111100 10100101 10000100 10000101, then syndrome S = [CB̄ − C̄B]

(mod 2b − 1) = [126 − 161] (mod 255) = 220 = [−29 × 10] (mod 255). Hence B4

has an error e = 10 = 21 + 23, so the corrected data byte will be B4 = [B̄4 + e]

(mod 255) = [33 + 10] (mod 255) = 43 = 11010100.

Case II (Asymmetric CT-burst in the check byte): If the received message is
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Figure 2.2: Diagram of a quad-core processor

11101010 00111100 10100101 11010100 10000000, then syndrome S = [CB̄ − C̄B]

(mod 2b − 1) = [161 − 1] (mod 255) = 160. Hence the check byte has an error

e = 160 = 25 + 27, so the corrected check byte will be CB = [C̄B + e] (mod 255) =

[1 + 160] (mod 255) = 161 = 10000101.

2.3 Implementation

From the discussions done so far, it is clear that the encoder/decoder uses look up

tables, LUT1 and LUT2, where LUT1 contains the coefficients and LUT2 the syn-

drome table. As these operations are supported by all processors, so it is discussed

below how the proposed codes are implemented in an octa-core processor (Figure

2.2). The processing core has an integer unit and two private caches: L1 and L2.

L1 is of very small size (up to 64 KB) and has very low access latency (1− 5 clock

cycles), whereas L2 has much larger size (up to 512 KB) but slower latency (8− 15

clock cycles) [48]. As shown in Figure 2.2, L3 allows access to all eight cores of

the processor. Also, it has the largest memory (up to 32 MB) and highest latency

(25− 50 clock cycles)[48].

Table 2.2: First 32 possible coefficients for some integer (CTlB)b codes

b l Coefficients

8 3 2, 11, 27, 29

Contd...
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b l Coefficients

8 4 Not possible

8 5 Not possible

16 3 2, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47,

49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 99, 101, 103, 105,

107, 109

16 4 2, 17, 19, 21, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131,

149

16 5 2, 33, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 97,

101, 107, 113, 117, 127, 137, 149, 157, 163, 179, 227, 233, 251, 271,

283, 289

32 6 2, 65, 67, 69, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113,

127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,

197, 199

32 7 2, 129, 131, 133, 137, 139, 143, 145, 149, 151, 157, 163, 167, 173, 179,

181, 191, 193, 197, 199, 211, 199, 211, 223, 227, 229, 233, 239, 241, 251,

257, 263

32 8 2, 257, 259, 261, 263, 265, 269, 271, 277, 281, 283, 289, 293, 299, 307,

311, 313, 317, 331, 337, 341, 347, 349, 353, 359, 361, 367, 373, 379, 383,

389, 397

From Figure 2.1, it is clear that one syndrome element has 2b + dlog2(k + 1)e

bits. So the size of LUT2 will be |S1| (2b+ dlog2(k + 1)e) bits. Theoretically after

constructing LUT2 by using (2.1) for the codes, decoder’s job is to search the value

S 6= 0 (syndrome) obtained for the received message with that of the syndromes

available in LUT2. For this, the decoder does a binary search by matching first b

bits of S obtained with table entries from the set S1. The task will be completed in

ηTL (1 ≤ ηTL ≤ blog2 |S1|c+ 2 ) (refer [63]) table look ups if the elements from the

syndrome sets are sorted in increasing order. Table 2.2 consists of some coefficients
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needed to construct integer (CTlB)b codes. Using these coefficients, in Table 2.3,

memory consumption is depicted for a few codes of this type.

Table 2.3: Lookup table sizes for some integer (CTlB)b codes

Codes b l LUT1 size LUT2 size Number of table look ups

(144,128) 16 4 4× 16B 4.5 KB 1 ≤ ηTL ≤ 11

(528,512) 16 5 4× 64B 32.48 KB 1 ≤ ηTL ≤ 14

(512,480) 32 6 4× 60B 0.12 MB 1 ≤ ηTL ≤ 15

(1024,992) 32 7 4× 124B 0.48 MB 1 ≤ ηTL ≤ 17

(1056,1024) 32 8 4× 128B 0.96 MB 1 ≤ ηTL ≤ 18

2.4 Comparison

Since no codes have been developed in this class capable of correcting the discussed

errors, we compare the codes with similar error pattern correcting codes. Result

1.43 discusses the number of parity bits required for the code in [68] to correct

asymmetric bursts. Thus, by matching the parameters with the proposed codes, we

observe that upon the existence of the same number of information bits, codes in

[68] have code rate R2 = kb

(k + 1)b+ s
≤ kb

(k + 1)b+ log2 k
<

kb

(k + 1)b = R1 (R1:

code rate of the proposed codes). That is, the proposed codes can correct similar

types of errors with less redundancy.

In [30], CT-burst correcting linear codes with two sub-blocks are discussed. We

consider b to be the length of both sub-blocks in [30]. Now taking information

bits = b, redundancy = b and burst length = l in both sub-blocks, the number

of error patterns with fixed length l is 2[(b − l + 1)2l−1], thus the number of bits

in the syndrome table in [30] equals [2b + b] × 2[(b − l + 1)2l−1]. Whereas in the

proposed integer (CTlB)b codes, bits required for constructing the syndrome table

equals [2b+ dlog2(k + 1)e]× 2[(b− l + 1)2l−1], which is clearly less than that of the

36



linear codes. For instance, consider b = 8, l = 3, as per Result 1.44-1.45, we have

the existence of linear (16, 8) code capable of correcting CT-bursts of length 3 in

both blocks. Also, by Table 2.2, we can construct (16, 8) integer (CT3B)8 code, then

we get the number of bits required for storing syndrome table as 1152 and 816 bits

respectively for linear and integer codes.

Table 2.4 features the memory consumed and table look ups required by some

integer codes capable of correcting different types of errors. It should be noted here

that this is just a representation about which code to be used in terms of its cost

effectiveness and possible error-correcting capability as the nature of the error is

different in all of the cases.

Table 2.4: Different integer codes with 32 information bytes

Codes b l LUT2 size No of table look ups

(CTlB)b 32 8 0.96 MB 1 ≤ ηTL ≤ 18

From Result 1.19 32 8 3.84 MB 1 ≤ ηTL ≤ 20

From Result 1.24 32 NA 7.53 MB 1 ≤ ηTL ≤ 21

From Result 1.36 32 8 8.91 MB 1 ≤ ηTL ≤ 21

2.5 Probability and BER

In this section, we derive the expression for probability of erroneous decoding and

BER, followed by a few graphs for the integer (CTlB)b codes. Finally, a method for

investigating undetected errors is discussed.

Theorem 2.4. The probability of erroneous decoding Pd(CT ) for a ((k + 1)b, kb)

integer (CTlB)b code is

(k + 1)
bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2


(
b+ 1− ε

ε

)(1− ε
ε

)(( 1
1− ε

)l−1
− 1

)
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− (l− 1)
( 1

1− ε

)l−1 (1− ε
ε

)
, where ε is the crossover probability.

Proof. A received codeword from a ((k+1)b, kb) integer (CTlB)b code has (k+1) b-bit

blocks, thus a received erroneous message having l corrupted bits will have (k+1)b−l

non corrupted bits. By considering ε as the crossover probability of the Z-channel,

the probability of erroneous decoding for a burst of length 1 occurring within a b-bit

byte will be bε(1 − ε)(k+1)b−1, since there are b number of asymmetric CT-bursts

of length 1, thus the probability in this case will be bε(1 − ε)(k+1)b−1. Similarly,

the probability of erroneous decoding for asymmetric CT-bursts of length 2 will be

(b − 1)ε2(1 − ε)(k+1)b−2, the probability of erroneous decoding for an asymmetric

CT-burst of length 3 will be (b−2)
{
ε2(1− ε)(k+1)b−2 + ε3(1− ε)(k+1)b−3

}
. Continuing

this, the probability of erroneous decoding for asymmetric CT-bursts of length l

occurring within a b-bit byte will be (b− l+1)
l−2∑
i=0

(
l−2
i

)
εi+2(1−ε)(k+1)b−i−2. Therefore,

by summing up, we get the probability of erroneous decoding for asymmetric CT-

bursts up to length l occurring within a b-bit byte as:

b
{
ε(1− ε)(k+1)b−1

}
+ (b− 1)

{
ε2(1− ε)(k+1)b−2

}
+ (b− 2)

{
ε2(1− ε)(k+1)b−2

+ ε3(1− ε)(k+1)b−3
}

+ . . .+ (b− l + 1)
{
ε2(1− ε)(k+1)b−2 +

(
l− 2

1

)
ε3(1− ε)(k+1)b−3

+
(

l− 2
2

)
ε4(1− ε)(k+1)b−4 + . . .+

(
l− 2
l− 2

)
εl(1− ε)(k+1)b−l

}

=bε(1− ε)(k+1)b−1 + (b− 1)
0∑
i=0

(
0
i

)
εi+2(1− ε)(k+1)b−i−2

+ (b− 2)
1∑
i=0

(
1
i

)
εi+2(1− ε)(k+1)b−i−2 + . . .+ (b− l + 1)

l−2∑
i=0

(
l− 2
i

)
εi+2(1− ε)(k+1)b−i−2

=bε(1− ε)(k+1)b−1 +
l−1∑
j=1

j−1∑
i=0

(b− j)
(
j − 1
i

)
εi+2(1− ε)(k+1)b−i−2

=bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2
l−1∑
j=1

(b− j)


(

ε

1− ε

)0
+
(
j − 1

1

)(
ε

1− ε

)1
+ . . .

. . .+
(
j − 1
j − 1

)(
ε

1− ε

)j−1



=bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2
l−1∑
j=1

(b− j)
(

1 + ε

1− ε

)j−1
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=bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2
l−1∑
j=1

(b− j)
( 1

1− ε

)j−1

=bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

b l−1∑
j=1

( 1
1− ε

)j−1
−

l−1∑
j=1
j

 1
1− ε

j−1


=bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

b

(

1
1−ε

)l−1
− 1(

1
1−ε

)
− 1


−

(l− 1)
( 1

1− ε

)l−1 (1− ε
ε

)
−
(1− ε

ε

)2 {( 1
1− ε

)l−1
− 1

}


=bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

b(1− ε)
ε

{( 1
1− ε

)l−1
− 1

}

− (l− 1)
( 1

1− ε

)l−1 (1− ε
ε

)
+
(1− ε

ε

)2 {( 1
1− ε

)l−1
− 1

}
=bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

(b(1− ε)
ε

+
(1− ε

ε

)2){( 1
1− ε

)l−1
− 1

}

− (l− 1)
( 1

1− ε

)l−1 (1− ε
ε

).
Since the code is capable of correcting one asymmetric CT-burst within a b-bit byte

among k + 1 b-bit bytes at a time, thus the probability of erroneous decoding of

((k + 1)b, kb) integer (CTlB)b codes will be

(k + 1)
bε(1− ε)(k+1)b−1 + ε2(1− ε)(k+1)b−2

{(
b+ 1−ε

ε

) (
1−ε
ε

)((
1

1−ε

)l−1
− 1

)

− (l− 1)
(

1
1−ε

)l−1 (1−ε
ε

)}.

Bit Error Rate (BER) is the ratio between the number of corrupted bits and

the number of bits transmitted. In the proposed codes, the number of corrupted

bits differ from 1 to l, so we have considered the average to determine the BER. The

rate for length 1 will be 1
(k+1)b , for length 2, the rate will be 2

(k+1)b , continuing this,

the rate for length l will be
2+3+...+l

l−1
(k+1)b = 2+3+...+l

(l−1)(k+1)b . Thus the BER for (CTlB)b codes

up to length l will be the average from 1 to l bits corrupted, hence

BER = 1
(k + 1)bl

1 +
l∑

j=2

j∑
i=2

i

j − 1


= 1

(k + 1)bl

1 +
l∑

j=2

2 + j

2


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Figure 2.3: Change in probability and BER for different code rates

(a) (CT3B)16 code
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(b) (CT5B)16 code
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(c) (CT6B)16 code
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(d) (CT8B)32 code
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l2 + 5l− 2

4

]
.

By considering a few examples and ε = 0.1, Figure 2.3 shows the change in

probability and BER with respect to different code rates for the proposed codes.

An error is said to be undetected if the error is beyond specification and the

resulting syndrome is equal to zero. With reference to the proposed class of codes,

an asymmetric CT-burst er of length r will go undetected if r > l and the resulting

syndrome affected by this burst will be 0. For example, in the (40, 32) integer

(CT3B)8 code (refer Table 2.2), asymmetric CT-bursts of length 7, 10101010 = 85

and 01010101 = 170 will go undetected since the resulting syndrome −27 × 85

(mod 255) = −27× 170 (mod 255) = 0. Since the discussed codes are constructed

with the help of a computer search result by finding the coefficients Ci, where Ci’s

do not follow any particular algebraic pattern. So to determine the exact probability

of undetected error becomes difficult for these classes of integer codes. Result below

gives us the maximum possible ratio of an undetected asymmetric CT-burst with

all possible bursts of the type having longer lengths.
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Theorem 2.5. The ratio between the number of undetected asymmetric CT-bursts

and asymmetric CT-bursts of length between l and r in a ((k + 1)b, kb) integer

(CTlB)b code is at most
2r+

k∑
i=1

2pi+r−b+1

(k+1)(2r−1−2l−1) , here pi is the highest power of 2 in the

binary representation of the coefficient Ci.

Proof. Let er be an asymmetric CT-burst of length r > l in an integer (CTlB)b
code. For the error er to go undetected in the ith b-bit byte, the resulting syndrome

should be equal to zero, i.e. Ci × er (mod 2b − 1) = 0 =⇒ 2b − 1 divides Ci × er.

As er = {2x(1, 3, . . . , 2r − 1)|0 ≤ x ≤ b − r}, so 2b − 1 divides Ci × 2xe′r, where e′r
is an odd number between 1 and 2r − 1. Since 2b − 1 and 2x are relatively prime,

thus 2b − 1 divides Ci × e′r. Accordingly consider Ci × e′r = (2b − 1) × M and

let pi to be the maximum possible power of 2 in the binary representation of Ci,

therefore the maximum possible power of 2 in the binary representation of M will be

pi + r−1− b+ 1 = pi + r− b. Hence there are 2pi+r−b+1 possible (maximum) choices

for M . Since an asymmetric CT-burst having length up to l is always corrected,

so we only consider asymmetric CT-bursts from length l + 1 to r in the latter part

of the ratio. Number of such bursts of length l + 1, l + 2, . . . , r are 2l−1, 2l, . . . , 2r−2

respectively. Consequently, by considering lengths from l + 1 to r, we have the

number of choices of a burst for a beginning position = 2l−1 + 2l + . . . + 2r−2 =

2l−1(2r−l − 1). Hence the maximum possible ratio for an asymmetric CT-burst up

to length r to go undetected within the ith data byte will be 2pi+r−b+1

2r−1−2l−1 . Since the last

data byte has coefficient value Ck+1 = −1 by default, so pk+1 = b − 1. Therefore,

by considering all k + 1 b-bit bytes, the required ratio will be
2r+

k∑
i=1

2pi+r−b+1

(k+1)(2r−1−2l−1) .

2.6 Conclusion

In this chapter, we have presented a class of integer codes capable of correcting

asymmetric CT-bursts constructed with the help of computer search results. The

probability of erroneous decoding over a Z-channel and the ratio for an error to go

undetected are discussed. Similar encoding and decoding can be tried for CT-bursts

occurring across two adjoining b-bit bytes, which can work without interleaving.
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